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Abstract: The US is exposed to myriad natural hazards causing USD billions in damages and thou-
sands of fatalities each year. Significant population and economic growth during the last several
decades have resulted in more people residing in hazardous places. However, consistent national-
scale hazard threat assessment techniques reflecting the state of hazard knowledge are not readily
available for application in risk and vulnerability assessments. Mapping natural hazard threats is
the crucial first step in identifying and implementing threat reduction or mitigation strategies. In
this study, we demonstrate applied GIS approaches for creating and synthesizing US hazard threat
extents using publicly available data for 15 natural hazards. Individually mapping each threat enables
empirically supported intervention development and the building of a Composite Hazard Index
(CHI). Summarizing the hazard frequencies provides a novel representation of US hazardousness.
Implementing cluster analysis to regionalize US counties based on their underlying hazard charac-
teristics offers insight into hazard threats’ spatial (non-political) natures. The results indicate that
the southeast, central plains, and coastal regions of the northeast had high hazard occurrence scores,
whereas more moderate hazard scores were observed west of the continental divide. Furthermore,
while no place is safe from hazard occurrence, identifying each region’s distinct “hazardousness” can
support individualized risk assessments and mitigation intervention development.

Keywords: natural hazard; multi-hazard assessment; composite hazard index; hexagonal grids;
geospatial approach; open data

1. Introduction

Natural hazards have caused severe damage and substantial loss and pose an increas-
ing threat to the environment and society [1–3]. The impact of natural hazards and disasters
escalated globally in recent years, with the cost to mitigate and reduce risk also increas-
ing [2,4,5]. In the United States (US), natural disasters have caused over USD 1.75 trillion
(2019) in property and crop damages and more than 35,000 fatalities between 1960 and
2019 [6]. Moreover, despite continuous hazard mitigation efforts, the costs of weather and
climate disasters are increasing in the US. This escalating trend is due to a combination of
increased exposure, vulnerability, and changes in the frequency and magnitude of climate
extremes [7,8]. Mitigating future hazard impacts requires an improved understanding
of the spatial extent of hazard threats faced by communities, the expected severity of
consequences for known hazards, and the intersection of threats and consequences with
vulnerable populations and infrastructure. These three pieces of risk information will
enable both planning and emergency management entities to formulate effective mitigation
strategies and response plans for evacuation, sheltering, and relief distribution.
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Qualitative and quantitative natural hazard risk assessments are abundant at US state
and county levels due to federal risk reduction legislation, programs, robust geophysical
data, and advances in modern computing and geospatial technology. The Disaster Mitiga-
tion Act of 2000 (DMA 2000) sets the basis for requiring natural hazard risk assessments
from state and local governments to receive federal risk reduction program funds. As
such, most current risk assessments focus on singular natural hazards, like damages from
earthquake ground motions, inundation from river floods, or exposure to extreme winds in
hurricanes. Natural hazard risk assessments encompass knowledge of the underlying geo-
physical and hydrometeorological processes causing a hazardous condition, how frequently
it occurs, who and what gets exposed to the hazard, and what can be done to mitigate the
consequences of a hazard’s occurrence [9,10]. Turning this definition into an empirically
measurable equation helps move us from concepts toward application. Here, risk is defined
as a combination of hazard threat, vulnerability, and the severity of consequences, where
all components vary across space and over time. This relationship can be expressed using
the pseudo-equation below, indicating the interaction of the three components (Hazard
Threat, Vulnerability, and Severity of Consequences) giving rise to risks:

Risk (R) = f (Hazard Threat (HT) × Vulnerability (V)× Severity o f Consequences(SoC))

where Hazard Threat (HT) is defined as the spatial location of hydrologic, meteorologic,
or geophysical events that posed a possible danger to people and the human use system,
Vulnerability (V) is represented by the distribution of the total population, socially vul-
nerable population, and the locations of those specific lifelines recently identified by the
Federal Emergency Management Agency (FEMA) as critical for enabling continuous opera-
tion of critical government and business functions essential to human health and safety
or economic security, and Severity of Consequences (SoC) combines historical incident
information (event occurrence counts, property and crop losses, fatalities, and injuries), a
measure of frequency vs. severity (Does the threat occur frequently and cause minimal
damage, occur infrequently and cause high levels of damage, or some other combination?),
an indication of climate sensitivity (Is the hazard threat likely to be influenced by changes
in climate?), and a measure of the hazard threat’s priority in current risk assessment and
mitigation planning efforts.

In this conceptual model, risk cannot exist in places without threats, in places with
no vulnerability, or in places threatened and vulnerable but for which no real severity of
consequence exists. For example, hail hazard threats will only manifest into risks where
there are people and community lifelines that will be exposed and in places where hail
itself has been historically impactful on lives and livelihoods.

With hazard threat identification, the first step is risk assessment, which provides
the factual basis for risk reduction activities in mitigation planning in the US, including
informing other planning activities around emergency response operations [11–14]. As one
of the seven core functions of the National Mitigation Framework, FEMA states that hazard
data should be translated “into meaningful and actionable information through appropriate
analysis and collection tools to aid in preparing the public” [15] (p. 16). Notably, to meet a
separate set of goals for emergency preparedness and response capabilities, FEMA estab-
lished a similar but separate program of risk assessments—Threat Hazard Identification
and Risk Assessment (THIRA)—for the analysis of many additional technological and
human-caused hazards [16]. However, this paper focuses only on natural hazard risk
assessments in the context of DMA 2000.

Recognizing the inherent utility in creating individual maps of hazard threat extent
for planning, hazard mitigation, or emergency management, decision makers, practition-
ers, and scholars have focused on building very detailed assessments for many hazards.
Often, these individual hazard assessments span countless manuscripts or government
reports and provide state-of-the-science representations of historical [17] and future hazard
threats [18]. These highly complex individual models and formulas create a disconnect
between science and practice, in which applying robust science to planning and mitigation
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efforts is decreased. Hazard mapping has become a fairly ubiquitous task across the US
since multi-hazard advisory maps became federally required as part of DMA 2000. Every
state, county, and municipality interested in receiving Hazard Mitigation Grant Program
(HMGP) funds from the Federal Emergency Management Agency (FEMA) must provide
“a map on which hazard data concerning each type of natural disaster is identified simul-
taneously for the purpose of showing areas of hazard overlap.” DMA 2000 goes on to
state that “multi-hazard advisory maps shall be made available to the appropriate State
and local governments for the purposes of . . . informing the general public about the
risks of natural hazards in [areas, not fewer than five States, that are subject to commonly
recurring natural hazards (including flooding, hurricanes and severe winds, and seismic
events)” [14]. However, there are relatively few “hazard geographers” capable of applying
complex geospatial techniques in a manner consistent with underlying hazard science
knowledge at the US scale.

This paper aims to address this need by presenting the results from several geospatial
threat assessment processes applied to freely available nationwide datasets for assessing
individual hazard threat areas and a Composite Hazard Index (CHI) spatially incorporating
15 of the most impactful natural hazards for the contiguous United States. Our vision is
to close this gap between research and practice by providing sound geospatial representa-
tions of hazard threats as the first step in empirically defining individual and composite
hazard risk.

2. Background

Mapping and analyzing hazard threats from numerous perspectives—in this case, both
individually and in composite—provides richer information from which to make critical
planning decisions and also offers an opportunity to deepen our understanding around how
these hazards combine, connect, cascade, or otherwise interact with each other spatially.
Recent studies elucidated how singular natural hazard risk assessments may underestimate
the cumulative or total risk by failing to consider concurrent or downstream hazards
occurring in a similar time and space, functioning to increase risks, decrease resilience, and
lengthen follow-on recovery periods [19–22]. Indeed, research efforts in Europe, some in
coordination with United Nations (UN) risk reduction programs and the International Panel
on Climate Change (IPCC), have in recent years begun to focus on multi-risk assessments to
examine how natural hazards have interdependencies, compounding or cascading effects,
or increased complexity when more than one hazard affects an area concurrently [23,24].
Compiling a set of hazard layers on a map may produce a depiction of multiple hazard
threat areas, but such multi-hazard maps may be confusing or distort risk communication
without some explanation or identification of interdependencies between the hazards.
Moreover, one map’s approach to displaying multiple geographic features of different
temporal and spatial resolutions invites questions about sources of errors and biases,
ranging from ill-conceived cartographic design criteria about data classification, scale, and
symbolization to ulterior motives for political or economic goals or, more simply, “a lazy
map author (who) [3] failed to explore designs offering a more coherent or complete picture
of reality(.)” [25]. Indeed, natural hazards are multidimensional across many space, time,
hypsographic, geophysical, and socioeconomic factors, posing numerous cartographical
challenges for mapping and communicating risk, often due to disregarding cartographic
principles that overload or unbalance maps and making interpretation difficult [25–30].
Accordingly, through surveys of engineers, scientists, and spatial planners, Kunz and
Hurni [27] established an urgent need to improve cartographic representations of multiple
thematic layers like natural hazards, a goal of the current work.

Constructing a useful and scientifically-based Composite Hazard Index first requires a
thorough understanding of the terms related to hazard interactions, including those about
individual (singular) and multiple (complex, cascading, or connecting) hazard events and
how these terms are operationalized in the literature. Though natural hazards research
and practice have only more recently begun considering the effects of multiple hazards
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occurring simultaneously or with composite effects in specific areas, the environmental
justice movement arising from the 1964 Civil Rights Act in the US prompted the Environ-
mental Protection Agency (EPA) to develop a cumulative risk assessment (CRA) framework
for risk reduction in vulnerable communities exposed to multiple hazardous chemicals.
Officially released in 2003, the EPA’s CRA focuses on community-scale approaches to solve
the problems of toxic exposure by explicitly incorporating measures of social and cultural
vulnerabilities for holistic risk assessments (i.e., by recognizing that communities are often
impacted by multiple risks at once such that “a collection of individual stressors (occur)
simultaneously and multiply”) [31] (pp. 6–14). Cumulative risk, therefore, is defined by
the EPA “as the combination of risks posed by aggregate exposure to multiple agents
or stressors (including chemical, biologic, radiologic, physical, and psychologic stressors
affecting human and the environment) in which aggregate exposure is exposure by all
routes and pathways and from all sources of each given agent or stressor”. More specifi-
cally, CRA “evaluates the combined effects of multiple stressors rather than focusing on
single compounds” and is “not necessarily quantitative” [32,33]. Though geared toward
environmental regulations, the EPA’s CRA framework acknowledges both a need for tools
to evaluate multiple stressors simultaneously such that exposures are not isolated from the
context of other community exposures and risk factors and that historical risk assessments
focusing on singular hazards “produced uneven results and left significant pockets of
higher exposure and adverse impacts” and “toxic hotspots” in historically disadvantaged,
underserved, and overburdened communities [31] (pp. 11–12). A cornerstone of any
cumulative or multi-hazard risk process, the EPA’s CRA analytical component begins with
hazard identification as the first step in assessing risk [32] (p. 34).

More recently, though DMA 2000 defined a multi-hazard advisory map, the term
multi-hazard is not clearly defined. Several disciplinary definitions of multi-hazard serve
to further complicate the hazard assessment landscape. The World Meteorological Orga-
nization [34] (WMO) defines multi-hazard as “(1) the selection of multiple major hazards
that (a) country faces, and (2) the specific contexts where hazardous events may occur
simultaneously, cascading, or cumulatively over time, and taking into account the potential
interrelated effects.” Furthermore, the WMO states that the first element of efficient warning
systems is “disaster risk knowledge based on the systematic collection of data and disaster
risk assessments.” In a checklist for multiscale organizational efforts to implement warning
systems, the World Meteorological Organization [34] states clearly that risk assessments
for all relevant hazards, including compounding risks, should be integrated into local risk
management plans, with a “responsibility for coordinating hazard identification and risk
information (exposure, social and physical vulnerability and capacity) assigned to one
national organization with a view to consolidating approaches and monitoring linkages
and cascading impacts.” In the UN’s 2015 Sendai Framework for Disaster Risk Reduction
(SFDRR), the term multi-hazard is used frequently but is also not defined specifically. Gill
and Malamud [35] stated that multi-hazard is used regularly in theory and practice in three
keyways: (1) the overlay of single hazards, (2) the identification of all hazards in a place,
and (3) the identification of all hazards in a place and the interactions that may occur be-
tween them. Further, Gill and Malamud [35] explicitly noted that single hazard approaches,
including the overlay of multiple single hazards that are treated independently, may under-
estimate risk, distort risk management priorities, or serve to increase vulnerability to other
spatially relevant hazards occurring in a place. To that end, Scolobig et al. [36] highlighted
that earthquake-proof homes built of wooden frames increased the vulnerabilities of entire
neighborhoods to wildfires that occurred in 2017, when more than 7000 households were
displaced. Similarly, wind-proofed homes with reinforced concrete roofs in Kobe, Japan
observed increased vulnerability to building damage and collapse in the historic 1995
earthquake. As such, Scolobig, Komendantova, and Mignan [36] highlighted a failure
of multi-risk governance in Japan by drawing upon cascading impacts from the Tohoku
earthquake that led to the Fukushima nuclear disaster. In summarizing their research, Gill
and Malamud [35] defined multi-hazard to mean “an approach that considers more than
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one hazard in a given place (ideally progressing to consider all known hazards) and the
interrelation between these hazards, including their simultaneous or cumulative occurrence
and their potential interactions.”

Beyond defining the term multi-hazard, we must consider the analytical methods for
arriving at a multi-hazard risk assessment. Taking multi-hazard to encompass multiple
hazards, the definitional purposes of a multi-hazard advisory map lose some clarity, par-
ticularly in the simplification that some areas have “hazard overlap”, as when multiple
hazards occur in an area, those hazards may causally or coincidentally interact to amplify
the socioeconomic and environmental consequences. Kappes et al. [37] stated that “hazard
relations and interactions may have unexpected effects and pose threats that are not cap-
tured by means of separate single-hazard analysis.” There are numerous terms to describe
the ways that multiple hazards can interact, including but not limited to cascades, chains,
crowding, spatiotemporal coinciding hazards, compounding hazards, follow-on events,
interactions, interconnections, interrelations, knock-on effects, synergic effects, triggering
effects, or complex hazards [37–39].

Garcia-Aristizabal et al. [40] established a framework for moving from single-risk
assessments (i.e., analysis of one hazard’s effects on exposed assets) to multi-hazard risk
assessment, where multiple independent hazard sources occur in a common area, and then
on to multi-risk assessment, resulting in a generalization of the multi-hazard assessment
considering possible interactions and cascading effects. Though describing physical dam-
ages through a vulnerability lens and illustrating reasons that multi-hazard and multi-risk
assessments are under-developed, including the paucity of data and complexity of interac-
tions, Garcia-Aristizabal, Gasparini, and Uhinga [40] described holistic risk assessments
as including contextual conditions that include socioeconomic and other factors affecting
hazard loss scenarios. Regardless, Pilone et al. [41] found that planning processes are
currently inadequate for addressing multiple concurrent and interacting hazards.

Thus, in support of ongoing multi-hazard risk assessment analysis and planning, we
address three specific research aims and questions. First, can nationwide hazard threat
maps be created from open datasets using new, novel, or existing geospatial techniques,
and do resulting threat outputs match the representations built by other subject matter
experts focused on the associated uni-hazard analysis of the same hazards? Second, what
utility does a national-level Composite Hazard Index (CHI) integrating 15 natural hazards
occurring in the contiguous US provide in terms of advancing the common understanding
of where threats coalesce across the nation? Finally, what new information about hazard
threats is derived from applying a regionalization clustering algorithm to the CHI? By
creating individual hazard threat geographies from authoritative and open datasets, we
produce a sum-total hazard layer which acts as the critical first step in the risk assessment
process: hazard threat identification. The CHI forms the empirical basis from which
complete risk assessments accounting for vulnerabilities and severity of consequences can
be undertaken.

3. Materials and Methods
3.1. Hazard Identification, Data Source, and the Individual Hazard Indicator

Addressing the first aim of this manuscript, namely the creation of individual hazard
threat zones for 15 of the costliest hazards affecting the United States using novel geospatial
approaches applied to freely available datasets, required application of geospatial tech-
niques and concepts tied to a variety of works in the hazards literature, significant amounts
of raw data manipulation, and computationally intensive processing. Here, we assess
15 hazards selected because they have the potential to cause damage nationwide, and
underlying datasets provide complete coverage across the contiguous United States [2,42].
For data representation and ease of visualization, we further divided these 15 hazards
into 5 categories: (1) severe weather, (2) flooding, hurricanes, and storm surges, (3) winter
weather, (4) heat, drought, and wildfires, and (5) earthquakes. Volcano hazards, tsunamis,
and mass movements including avalanches, landslides, and debris flows were not included
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here because (1) these hazards have threatened more regional areas, compared with other
hazards that have broader areas of potential impact across the Conterminous United States,
and (2) impacts from these threats have historically accounted for ~2% of disaster property
losses [2]. The 15 hazards, their sources, and the timeframes assessed are detailed in Table 1.
Detailed information on each of the hazard threat identification methods utilized in this
manuscript can be found in the referenced scientific papers. Our intent here was to establish
a baseline method for implementing these state-of-the-science approaches and combining
them meaningfully for the entire United States.

Table 1. Data sources and variables of hazards.

Hazards Period Indicators or Threat Determination Factors Dataset and Source

Wind 1988–2017 Average annual days of wind speed exceeding 30 knots GHCN [43]
Fog 1988–2017 Average annual fog days GHCN [43]

Tornado 2002–2017 Average annual frequency of tornado warnings IEM [44]
Severe Storm 2002–2017 Average annual frequency of severe thunderstorm warnings IEM [44]

Lightning 1988–2017 Average annual of cloud-to-ground lightning flashes per sq. km WWLLN [45]
Hail 1988–2017 Average annual frequency of hail SPC, NOAA [46]

Wildfire 1980–2016 Probability of an acre or more burning if ignited USGS [47]
Hurricane 1988–2017 Average annual frequency of tropical storm-force winds EBT [48]

100-Year Flood - Modeled inundation of 100-year flood FEMA [49]
Storm Surge - Modeled inundation of storm surge from a Category 1 hurricane SLOSH, NOAA [50]

High Temperatures 1988–2017 Average annual frequency of days where the daily maximum is
above 100 ◦F GHCN [43]

Drought 2000–2017 Average annual frequency of weeks in drought per year USDM [51]

Low Temperatures 1988–2017 Average annual frequency of days where the daily minimum is below
32 ◦F GHCN [43]

Winter Day 1988–2017 Average annual frequency of days an area can expect to experience
winter weather GHCN [43]

Earthquake - Peak ground acceleration with a 2% probability of exceedance in
50 years USGS [52]

High temperature, low temperature, wind, winter weather, and fog hazard data were
extracted from the Global Historical Climatology Network’s (GHCN) daily in situ ground
observation data (1988–2017) and were quality controlled by NOAA’s National Climatic
Data Center [43]. For each hazard, the 30-year average hazard indicators for each station
were calculated based on specific criteria for each hazard type (Table 1). Heat and cold
temperature hazards were defined as the number of days in which the daily maximum
temperature was above 310.928 degrees Kelvin (100 ◦F) or the daily minimum temperature
was below 3273.15 degrees Kelvin (2 ◦F), respectively. Wind hazards were defined as the
average annual days with WSF2 (fastest 2-min average wind speed) above 30 knots (wind
hazard advisory). The fog hazard was defined as the annual average number of days in
which WT01 (fog, ice fog, or freezing fog including heavy fog), WT02 (heavy fog or heaving
freezing fog), WT08 (smoke or haze), or WT22 (ice fog or freezing fog) occurred. Winter
weather hazards were defined as the average number of days where WT04 (ice pellets, sleet,
snow pellets, or small hail), WT06 (glaze or rime), WT09 (blowing or drifting snow), WT15
(freezing drizzle), WT17 (freezing rain), WT18 (snow, snow pellets, snow grains, or ice
crystals), or WT22 (ice fog or freezing fog) occurred at a given station. After calculating the
annual average value for each hazard indicator (high and low temperatures, wind, winter
weather, and fog) at the station level, the station data were interpolated into continuous
raster surfaces with a 10-km resolution covering the contiguous US using the Kriging
interpolation technique [53,54]. Finally, the interpolated raster surfaces were summarized
to a 647.5-sq. km (250 sq. mile) hexagon grid (detailed in Section 3.2), where the average
annual number of days for each hazard was assigned to each grid cell.

Drought data were obtained from the US Drought Monitor (USDM), produced jointly
by the National Drought Mitigation Center, the US Department of Agriculture, and the
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National Oceanic and Atmospheric Administration [51]. Weekly USDM drought data
are available in GIS polygon format from 2000 to the present. The drought intensity
was categorized into five different classes: (1) D0 (abnormally dry), (2) D1 (moderate
drought), (3) D2 (severe drought), (4) D3 (extreme drought), and (5) D4 (exceptional
drought), based on five key drought indicators (Palmer Drought Severity Index, CPC
Soil Moisture Model, USGS Weekly Streamflow, Standardized Precipitation Index, and
Objective Drought Indicator Blends) and local condition reports, impact reports, and expert
observation. In the current analysis, drought polygons with an intensity from D1 to D4
were selected to represent the drought hazard threat, and the average annual drought
frequency for each hexagon was calculated by applying areal overlay procedures in GIS.

Flood hazard data were obtained from the National Flood Hazard Layer (NFHL)
provided by FEMA [49]. The NFHL is the digital (snapshot in time) version of FEMA’s
effective 100-year flood maps, the national standard used by FEMA and all federal agencies
for the purposes of requiring and rating the purchase of flood insurance and regulating new
developments. To date, the NFHL does not cover the contiguous US completely, but new,
updated, and revised flood maps are added continuously. In the current assessment, the
Special Flood Hazard Area (SFHA) dataset represents flood hazards with a 0.01 probability
of occurrence in any given year (commonly referred to as a 100-year flood or the 1% annual
chance of flooding) [55]. The flood hazard threat was calculated as the percentage of each
hex grid’s land area inside the FEMA 100-year flood zone.

NOAA’s Sea, Lake, and Overland Surges from Hurricanes (SLOSH) dataset was used
to map Category 1 storm surge inundations for the entire US East Coast and Gulf of Mexico
coastlines. SLOSH is a model that estimates storm surges from an estimated tropical cyclone
wind field using pressure, size, forward speed, and track data [50]. Thousands of hypo-
thetical tropical cyclones are simulated in SLOSH to produce storm surge inundation areas
based on the storm intensity, angle of approach to the coastline, and other hydrodynamic
variables. The Category 1 storm surge threat was calculated as the percentage of each
hex grid’s land area inside the Category 1 hurricane storm surge’s Maximum Envelope
of Water.

Wildfire hazards were obtained from USDA’s Spatial Wildfire Occurrence dataset,
an observational dataset of fire occurrences across the US compiled from federal, state,
and local fire organizations [47]. The wildfire threat was calculated as the average annual
number of wildfire events occurring in each hexagonal grid.

Hurricane wind hazard threats were generated from wind swaths for all North Atlantic
tropical cyclones making landfall over the US during 1988–2017 by implementing the Kruk
et al. [56] model of multi-distance asymmetrical buffer analysis to identify areas affected
by inland tropical cyclone (TC) wind over threshold speeds of 17, 26, and 33 m s−1. Each
wind swath buffer was then categorized according to their Saffir–Simpson intensities for
extra- or post-tropical (PT) storms, tropical storms (TSs), and Category 1–5 hurricanes. The
average overland distances in each of four quadrants (northeast, northwest, southeast,
and southwest) for each wind intensity threshold were calculated using Colorado State’s
Extended Best Track Dataset [48]. Wind swaths for the TCs were constructed using the
distance parameters for 17m s−1 winds and then overlaid with the hexagon grid to ascertain
the total frequency of storm-force winds, from which the average annual frequency was
calculated by dividing the total frequency by the number of years in the record.

Hail occurrence data were obtained from the Storm Prediction Center (SPC) severe
weather database operated by the NOAA National Weather Service (NWS) [46]. The dataset
provides the location (latitude and longitude) and hail size for each hail event recorded
since 1955. In 2010, the NWS changed the criteria for recording from 0.75 inches (1.9 cm)
at minimum to 1 inch (2.5 cm). Here, events with hail sizes equal to or larger than 1 inch
(2.5 cm) were selected, and the average annual frequency of hail events (1989–2018) was
calculated for each hexagon grid.

Lightning data (1988–2017), collected from the World Wide Lightning Location Net-
work developed by the University of Washington (http://wwlln.net/), represent all cloud-

http://wwlln.net/
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to-ground lightning locations [45]. These points, coded as coordinate points (latitude and
longitude), were first plotted in GIS. Then, the average annual lightning frequency was
calculated as the number of lightning points intersecting with each hexagon divided by the
total number of years in the record (n = 30).

The severe thunderstorm and tornado warning polygons (2002–2017) were obtained
from the Iowa Environmental Mesonet [44]. Associated spatial information was system-
atically extracted from the warning text and then converted into the shapefile format,
representing the geospatial footprint of each severe storm warning extent. A total count of
warnings for each hexagonal grid was calculated as the number of severe storm or tornado
warning polygons that intersected each hexagon. An average annual frequency was then
calculated by dividing the total frequency by the number of years on record (n = 16).

Earthquake hazard data were obtained from the USGS 2014 US (Lower 48) Seismic
Hazard Long-Term Model [52]. The data were derived from seismic hazard curves calcu-
lated on a grid of sites across the US that describe the annual frequency of exceeding a set
of ground motions. The data were updated in 2014 based on potential earthquakes and
associated ground shaking information from recent models for ground motions, faults, seis-
micity, and geodesy. We chose the 2% exceedance probability for peak ground acceleration
(PGA) in 50 years of data to map earthquake hazards in the conterminous US and averaged
the PGA values for each hexagonal grid [57,58].

3.2. Hexagonal Grid for Spatial Binning

Hexagonal grids represent a simplified method of displaying complex geospatial
information [59,60] in an approachable way that serves three primary goals. First, hex
grids simplify the data sets and aid in the visual communication of complex data. If
performed correctly, visual binning can enable readers to make reasonable count or density
estimates that would otherwise be impossible because of the complexity of the underlying
data. Here, aggregating outputs to the 647.5 sq. km (250 sq. mile) hex grid provided a
seamless representation of a variety of datasets in a visually approachable way. Second,
spatial binning shows a smooth surface of aggregated values across larger areas. This is
particularly true in the current context, where we were manipulating 15 different types of
hazard data originally represented by both vector (points, lines, and polygons) and raster
GIS data models. Finally, a standardized regular gridded framework, such as the hexagonal
grids used here, enabled analysis and evaluation within and between datasets that would
normally be difficult (or impossible) to compare visually, statistically, or spatially [61,62].
Identifying patterns in individual hazard threat extents or the resultant Composite Hazard
Index (CHI) would be difficult at the US level without standardizing the outputs to a
common geospatial unit: the hexagonal grid.

3.3. Aggregation of Multiple Hazard Layers

Achieving the second aim, creating the CHI, required the implementation of sev-
eral geospatial and statistical steps, including (1) standardizing the indicator values for
each (of 15) hazards using a z-scores method [63], followed by (2) classifying the data
by the z-score values into five categories, namely low (z-score < −1.50), low-medium
(−1.50 < z-score < −0.5), medium (−0.5 < z-score < 0.5), medium-high (0.5 < z-score < 1.5),
and high (z-score > 1.51), and assigned an associated value (1–5 from low to high). This
step was undertaken to minimize the potential for inappropriate regional bias based on raw
z-score values in particular areas of the contiguous US, because each hazard had different
distributions. (3) A composite hazard index (CHI) score was created by summing the
individual hazard threat scores for each hexagon in the national grid without weighting
any individual hazard threat over another, such that
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Composite Hazard Index (CHI)

=
n
∑

i=1
(xi)

= x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13
+x14 + x15

where x is the singular hazard threat hex grids classified (1 = low, 5 = high).
An equal weighting scheme was used in creating the CHI, recognizing the aim of this

work as identifying hazard threat areas (the first part of the risk equation) independently
from the severity of consequences, underlying population, or infrastructure vulnerabilities.
The composite hazard score has a theoretical range from 15 to 75 based on a minimum
value of 1 and a maximum value of 5 for each hazard. Finally, (4) the composite hazard
scores were classified into five categories using the same z-score classification method
discussed above and mapped.

3.4. Clustering of Multi-Hazards

Accomplishing the third aim, developing a regionalization of the Composite Hazard
Index, required an application of k-means clustering that included the observation locations
as part of the weighted optimization routine [64]. The k-means unsupervised algorithm
partitions data in iterations based on similarity within and between data groupings. Similar
to an orthogonal principal component analysis [65], where the data are reduced to groups
based on likeness, k-means clustering includes a spatial component where the cluster
members are most similar to one another within the cluster and most dissimilar to members
of other clusters in terms of both attributes and spatial location. Applying a weighted
optimization k-means to the CHI values produced clusters by means to two separate
functions accounting for the location and attributes, which are where the number of clusters
k is determined using the total within-cluster sum of squares (WSS) and the difference
in the total WSS from k − 1 to k. Oftentimes, using WSS values alone (common elbow
method) is not sufficient for determining an appropriate cut-off value for clusters, because
breaks in the data are not discernable. As previous research mentions, the common elbow
method might not be suitable in all cases (including here), given that no distinct elbow is
established because of the large number of observations considered, yet a relatively small
number of clusters is desired. Thus, the CHI clusters were derived by first calculating the
difference in the total WSS from k − 1 to k and then evaluated using the elbow method (see
the differences between the bars and line in Section 4.2 for an example of the differences
between these two methods for determining clusters) [66]. In cases such as these, the elbow
method [67] for measuring the difference in the total WSS provided a clearer indication of
how many clusters should be selected. The number of clusters was determined using the
difference in the total WSS from k − 1 to k.

4. Results
4.1. Individual Hazard Layers

In this section, the results pertaining to our first specific aim—the spatial distributions
of 15 individual hazard indicators—are examined and validated against similar singular
hazard analyses undertaken by other subject matter experts. As discussed above, these
15 hazards were grouped into 5 categories based on the hazard type, namely (1) severe
weather, (2) flooding, coastal hazards, and hurricanes, (3) winter weather, (4) heat, drought,
and wildfires, and (5) earthquakes. Six severe weather hazards are presented in Figure 1.
Severe thunderstorm (SVR) hazard threats based on storm-based warnings were distributed
over the eastern two-thirds of the CONUS (Figure 1A). High hazard zones were distributed
over the central plains, lower Mississippi Valley, and the southern Appalachians. This
pattern roughly agrees with previous research on SVR [68]. Like the SVR threat areas,
tornado hazard threats were also distributed east of the Rocky Mountains (Figure 1B).
A large area of high tornado hazard threat can be seen in the central plains and lower
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Mississippi River as well as the Tennessee River valleys. A third, smaller concentration of
high tornado threat hex grids is also discernable east of Boulder, Colorado. This pattern
aligns with previous research on tornado hazard threats [68]. The high frequency of
severe thunderstorms and tornadoes in the Midwest and the southeast US likely reflects a
positive trend over the southeastern regions since 1979 [69]. The lightning hazard threat
frequency exhibited a general decrease from south to north and from east to west with high
zones along the Gulf Coast and over Florida, which showed similar patterns to previous
studies (Figure 1C) [70]. The hail hazard threats (Figure 1D) are distributed across the
central and northern plains, with the line of the higher hail threat trending from northern
Alabama through North Carolina. These hail hazard threat patterns resonate with other
studies [71,72]. The wind hazard threat areas visualize a clear pattern of a high threat
along the north-south expanse from western Texas in the south, along the Rocky Mountain
Continental Divide, and through to the Canadian border in central Montana (Figure 1E).
These high wind threat patterns align with those found by others interested in wind hazard
fatalities [73]. The high fog hazard threat zones are more clustered along the Pacific coast
and the Gulf of Mexico’s coast, as well as the northeastern region around New England
and regions adjacent to the Great Lakes and in the Appalachians (Figure 1F). Although
these spotty patterns may indicate a need for more weather stations collecting information
on fog, they generally match the associated fog hazard research [74–76].
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Flooding, coastal hazards, and hurricane winds were combined into a set of storm
surge and flood hazard threat maps (Figure 2). The areas of higher 100-year flood hazard
threats (Figure 2A) tended to follow US major rivers, including the Mississippi, Ohio,
Arkansas, and Missouri River basins, as well as the flatland areas of Florida, where very
small changes in elevation cause water to drain slowly. Additionally, the coastal plain
areas in Virginia, the Carolinas, and Georgia, as well as the coastal lowland swamps of
Louisiana and Texas and the Central Valley of California, also had some of the highest flood
hazard threats (Figure 2A). The storm surge threat zones stretch from South Texas along
the entire Gulf Coast and East Coast up to Northern Maine. These areas can experience
storm surges associated with Category 1 hurricanes, and they were binned into the high
hazard zone in our analysis based on the amount of a hex grid’s land area in the NOAA
modeled inundation zone (Figure 2B). The frequency of tropical cyclone wind hazards had
a general decrease from the southeastern coast to the inland regions (Figure 2C). A vast
and continuous region from coastal Texas extending northeastward to Vermont and Maine
was classified as several moderate-to-high tropical cyclone wind hazard zones. The coastal
states, including all of Florida, the coastal and inland counties in Louisiana, Mississippi,
Alabama, and Georgia, as well as eastern North and South Carolina and Virginia, average
at least one tropical cyclone event per year. This hurricane wind hazard pattern agrees with
previous research on the topic [56].
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The third hazard threat category includes low temperature and winter weather hazard
threats. The distribution of low temperature hazards exhibited latitudinal distributions,
especially over the regions east of the Rocky Mountains (Figure 3A). High hazard zones
(mostly cold temperature days) are distributed across high elevation areas in the Rocky
Mountains over western Wyoming and Colorado. High winter weather hazard threat areas
are generally located within the moderate-to-high low temperature hazard zones and are
confined to small-scale areas (Figure 3B). Previous studies also found that most events were
confined to small areas [77]. This finding strongly indicates the importance of mesoscale
processes in most winter weather systems, although such findings are also linked with the
sparse number of weather stations—mainly in urban areas—collecting winter weather (i.e.,
snow, ice, and freezing precipitation) data. It should be assumed that the spaces between
these high hazard threat areas may in fact be experiencing similarly high levels of winter
weather hazard threats.
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Figure 3. (A) Low temperature and (B) winter weather hazards.

Heat, drought, and wildfire hazards were analyzed together because they are theoreti-
cally most likely to show spatial overlap. The southwestern and south-central US regions
are most impacted by extreme heat hazard threats (Figure 4A). Our assessment found that
much of the southern Great Plains is accustomed to experiencing moderate-to-high heat
hazard threats. Like Wobus et al. [78], we found that large parts of the Mojave Desert over
California and Arizona, as well as the South Texas Plains, are characterized by a higher
heat hazard threat. A higher drought hazard (Figure 4B) is primarily distributed in the
west and southwest regions (California, Nevada, Arizona, Idaho, New Mexico, and Texas)
of the US. The drought hazard threat been most severe in the southern and plains states,
where crop and livestock assets are densely populated. These drought hazard patterns
agree with other research using USDM data [79]. Conversely, wildfire hazard threats are
primarily concentrated in southeast and along a line trending north and south through
central California and Oregon, with numerous small clusters dispersed over eastern Ken-
tucky, southwest West Virginia, New Jersey, and various places in Pennsylvania (Figure 4C).
These wildfire threat areas closely match those identified in [80] in an assessment of US
wildfires (1992–2011).
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Earthquake hazards were presented alone as the single geophysical hazard assessed
here. The areas of the highest earthquake hazard threat are located on the West Coast,
parts of the northern Rocky Mountains from Idaho southward to the Wasatch Range of
Utah, and around the New Madrid, Southern Appalachian, and Charleston Seismic Zones,
corresponding to the USGS-sourced National Seismic Hazard Map (Figure 5). The risk of an
earthquake hazard is primarily associated with the presence of folds and faults across the
country (Figure 5). Elevated earthquake hazard zones in the Pacific Mountain and northern
Rocky Mountain regions in Idaho, Wyoming, and western Montana are characterized by the
presence of numerous quaternary faults. The high earthquake region in South Carolina is
associated with the Charleston fault. Likewise, the high hazard zones in the border regions
of Indiana, Illinois, Missouri, Arkansas, Mississippi, Tennessee, and Kentucky are the result
of the presence of the New Madrid, Reelfoot scarp, Western Lowland, Thebes Gap, St.
Louis-Cape Girardeau, and Wabash Valley faults. However, the occurrence of earthquakes
outside of these fault areas, especially in the central and eastern US, dramatically increased
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in recent years, and this has been attributed to induced seismicity from hydraulic fracturing
and deep injection wells [81,82]. The earthquake map in this study was derived from the
USGS 2014 long-term model, which excludes induced seismicity as ephemeral features
inappropriate for long-term hazard models [83], which may pose a significant challenge for
risk mitigation as many fragile buildings are exposed to these new shaking events.
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4.2. Composite Multi-Hazard Score

Constructing a Composite Hazard Index (CHI) overlaying all singular hazard threat
area maps resulted in a unique visualization of threats across the contiguous US (Figure 6).
The categorized CHI values reflect the regional contrasts between the east and west and
the south and north. In general terms, the areal percentages for each category (high,
medium-high, medium, medium-low, and low) were 7%, 23%, 33%, 32%, and 5% of the
area, respectively, indicating that there were more hex grids in the high hazard areas than
the low hazard areas but fewer hex grids in the medium-high hazard threat zones than
medium-low threat zones. The high and medium-high hazard zones are distributed across
the central, southeastern, and coastal regions from New Jersey in the north through the
southeast and up into the midwestern states and eastern Colorado. The high CHI threat
areas are particularly concentrated over the southeastern region (Georgia, South Carolina,
Louisiana, Mississippi, Alabama, and Florida) as well as the central regions (e.g., Nebraska,
Kansas, Oklahoma, and northern Texas). We further divided the composite hazard score
by state (Figure 7) to enable quick comparisons across the nation. Among the 48 states
observed, Alabama had the highest average CHI z-score of 1.63, followed by South Carolina,
Mississippi, and Georgia. A total of 19 states, including Washington, DC, have more than
50% of their land area located in the medium-high to high CHI zones.
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4.3. Regionalization of Multi-Hazards

Extending their utility, the CHI locations were regionalized using the indicators of the
15 hazards. The number of clusters was determined using the total WSS and the difference
of the WSS from the total WSS from k − 1 to k (Figure 7). In contrast to the very smooth
total WSS curve from the standard elbow approach, the difference in the total WSS showed
apparent elbows, indicating a significant change in the slope at nine clusters. The optimal k
was determined to be nine, since the WSS showed a shape decline from k = 9 to k = 10 and
not much change in the difference in k greater than 10. The map of spatially constrained
multivariate clustering of five spatial metrics is shown in Figure 8. The average values of
the spatial metrics of nine clusters are shown in Table 2.
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Region 1, stretching from the northeast into portions of the mid-Atlantic and upper
Midwest (Figure 9), is characterized predominantly by fog hazard threats, with an average
threat score of 4 (Table 2). Although the northeastern seaboard is one of the most fog-prone
coastal regions of the US, it receives less attention than the West Coast’s fog events [84].
Previous research has found that the area is affected by a combination of advection fog,
precipitation fog, cloud-based lowering, and radiation fog. This region also experienced
a moderate-to-high level of winter weather and hurricanes, which have average hazard
threat scores of 3.8 and 3.44, respectively. Nor’easters, storms that commonly strike the
northeast as winter storms, typically occur between September and April, coupled with
the Atlantic hurricane season from June to November [85], causing a dual threat in terms
of severe weather for the region. The region has a high risk of major storms year round,
which indicates the need for additional personnel and resources during times of multiple
concurrent hazards.



Sustainability 2022, 14, 2685 17 of 25

Table 2. Average hazard indicator values of regions derived from CHI. Red text indicates the most
frequent threats in each region.

Region Created by Clustering Algorithms

1 2 3 4 5 6 7 8 9

1 Severe Storm 3.27 4.28 3.29 2.89 4.16 2.54 2.00 2.39 2.00

2 Tornado 2.58 4.26 3.75 2.85 3.57 2.30 2.01 2.27 2.02

3 Lightning 2.43 3.92 4.27 2.52 3.49 2.58 2.07 2.75 2.00

4 Hail 2.88 3.50 2.89 3.01 4.30 2.62 2.06 2.24 2.02

5 Wind 2.08 2.13 2.03 2.83 3.91 4.81 3.00 2.98 2.08

6 Fog 4.00 3.08 4.07 2.77 2.59 2.25 2.27 2.25 4.17

7 Flooding 2.85 3.36 3.87 2.66 2.66 2.28 2.30 2.62 2.91

8 Storm Surge 3.23 3.01 3.55 3.00 3.00 3.00 3.00 3.01 3.00

9 Hurricane 3.80 3.50 4.66 2.09 2.14 2.05 2.00 2.34 2.00

10 Low Temperature 3.24 2.39 1.59 3.84 3.21 3.74 3.83 1.63 1.75

11 Winter 3.44 3.03 2.94 3.17 3.13 3.04 2.97 2.76 3.09

12 High Temperature 3.00 3.04 3.07 3.00 3.31 3.05 3.01 4.55 3.26

13 Drought 1.61 2.48 2.98 2.05 3.38 3.58 3.79 4.32 2.99

14 Wildfire 2.92 3.11 3.66 2.59 2.59 2.60 2.92 2.66 3.35

15 Earthquake 2.79 3.21 2.31 2.10 2.30 2.81 3.62 3.12 4.58

Overall Average 2.94 3.22 3.26 2.76 3.18 2.88 2.72 2.79 2.75

Overall Rank
(1–9 (most to least hazardous)) 4 2 1 7 3 5 9 6 8
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Figure 9. Regionalization of Composite Hazard Index and associated singular hazards.

Region 2, the second most hazardous based on the overall average CHI score, is mainly
located across the eastern central states. Here, hazardousness is characterized by severe
thunderstorms and tornadoes, each of these ranking first in relation to all nine regions.
This region also experiences a higher-than-average number of lightning strikes, making
severe weather the main driver of hazard threats and pointing to a definitive pattern of
concurrent or compounding hazards across this area. Long et al. [86] found that tornado
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activities in the southeastern US have two peak periods: one in the spring and one in the
fall and early winter, which poses the challenge for hazard mitigation. Previous studies
have also found that most tornado fatalities happen in the lower Arkansas, Tennessee, and
lower Mississippi River valleys of the southeastern US. The high fatalities here may be due
to the unique juxtaposition of both physical and social vulnerabilities [87].

Region 3, spanning the southeastern states extending from Texas to the coastal regions
of Virginia, is the most hazardous region in the United States. Region 3 is characterized
by hurricane winds and lightning hazard threats, both of which are ranked at the top here
compared with all other regions (Table 2). However, our study estimated the hurricane
winds only and not other threats associated with hurricanes such as high wind gusts,
intense rainfall, tornadoes, flooding, and landslides, which pose challenges to hazard
forecasting and mitigation during the Atlantic hurricane season. Moreover, this region
also experiences a variety of hazards beyond hurricanes and lightning, as evidenced by
seven hazards with higher-than-average hazard scores (Table 2), including severe weather,
flooding, fog, coastal hazards, and wildfires. According to the NOAA [88], the southeastern
region experienced a higher frequency and diversity of billion-dollar disaster events than
any other region in the US. Given the continued population growth in coastal areas across
the southeast, this situation poses significant challenges for this and other coastal areas
with high composite hazard index scores.

Region 4 covers the upper Midwest region and is characterized by low temperature
hazards and winter hazards, for which the area is ranked first and second, respectively,
across all nine regions (Table 2). The Midwest is subject to the intrusion of extremely cold
air masses from the Arctic. An important area for corn and soybean production, in addition
to a variety of high-value specialty crops including sweet peas, cranberries, and blueberries,
the effects of cold temperatures infiltrating the crop growing region during the spring
seasons can cause severe frost and freeze damage to crops [89]. Moreover, the Fourth US
National Climate Assessment (2018) reported that Midwest temperatures are expected to
increase more than any other region of the US during the warm season [90]. The warming
trend may have led to earlier and longer occurrences of warm conditions in late winter,
which promote plant development before the last spring freeze. As a result, many fruit and
vegetable crops are at risk of spring freezes due to earlier dormancy breaks [89].

Region 5 covers the central-to-southern Great Plains. This region is characterized by
frequent hail and severe storms, with hail hazard threats ranking first among the nine
regions. Previous studies found that hailstones and tornadoes over the southern Great
Plains are mainly associated with supercell thunderstorms in the warm season (spring and
summer) [91,92]. The Great Plains have witnessed the greatest hail loss [93]. Tang, Gensini,
and Homeyer [72] found that the severe hail frequency increased in the central Great Plains
and the southeastern US. Moreover, Brimelow, Burrows, and Hanesiak [71] found that the
hail damage potential was expected to increase (>40%), especially in the spring, over most
ecoregions, including key hail areas such as the High Plains and Great Plains in the US.

Region 6, spanning the entire Rocky Mountain Continental Divide, is nearly identical
to the high wind hazard threat zones. Orographic lifting of westerly winds and the
associated dissipation of precipitation on the western side of the Rocky Mountains has
resulted in large swaths of this region being characterized by drylands. Here, wind-
driven erosion of topsoil and dust emissions degrade the soil quality, negatively impacting
agriculture, the ecosystem, and human health. Moreover, given Region 6′s large latitudinal
distribution, it experiences frequent cold hazard threats in the northern portions (Figure 3A)
and drought hazard threats in the southern portions (Figure 4B). Thus, in the northern part,
the combination of wind and low temperatures in winter can lead to dangerous wind chill
conditions, while in the southern region, the high wind, coupled with higher temperatures,
promotes rapid evaporation, further worsening drought conditions [94].

Region 7 covers the Rocky Mountain regions. This region did not experience any
hazards, with an average score above 4, and the overall average CHI is the lowest of all
regions making it a region with a relatively lower threat in comparison with all other



Sustainability 2022, 14, 2685 19 of 25

regions. However, a combination of high-ranking threats including low temperatures
(CHI rank = 2), drought (CHI rank = 2), and earthquakes (CHI rank = 2) increases the
overall hazardousness of the region.

Region 8, covering two smaller areas in southern California, Nevada, and Arizona, as
well as southwestern Texas, has the third lowest overall average CHI score (2.79), making
this region relatively less hazardous than others. Here, in the Chihuahuan, Mohave,
and Sonoran Deserts, areas with high temperatures and drought are both the highest in
comparison with other regions. These climate-sensitive hazard threats stand to not only
increase in the future but may also occur concurrently or in a cascading manner in which
heatwaves can exacerbate droughts across the region [95,96].

Region 9 covers the entire Pacific coastal region from Mexico in the south to Canada
in the north. Here, the main hazard threats include fog and earthquakes, both signified
by the highest average CHI scores across all regions. While the earthquake hazard threats
are well known and include building collapses and associated fires from the disruption of
infrastructure assets, fog hazards have also been known to account for vision-related fatal
crashes, including chain reaction crashes and injurious consequences, especially in specific
regions, including the Interstate 5 corridor of California, Oregon, and Washington [74]. In
this region, most fatal crashes occurred due to fog occurring on highways that had high
traffic volumes.

5. Discussion

The individual hazard threat maps created here conform to previous well-understood
patterns of geophysical, meteorological, and climatological events. While the spatial pat-
terns derived here are not new, these output visualizations in a 647.5 sq. km (250 sq. mile)
hex grid and associated annual occurrence data represent a novel approach to undertaking
systematic hazard threat analysis. The creation of a Composite Hazard Index represents a
new method for overlaying hazard threat potentials independent of their consequences for
people and infrastructure as the first step in a multi-hazard assessment. Understanding
the combined overall distribution from potential natural hazard threats in the US adds an
important multifactorial context called for by similar EPA, CRA, and Garcia-Aristizabal,
Gasparini, and Uhinga [40] methods. Grouping the occurrence of multiple natural hazard
threats by standardized z-scores in a novel hexagonal grid representation may assist emer-
gency managers, planners, and the public at large in considering aggregate or holistic risks
affecting their communities differently and disproportionately. To wit, earthquake or flood
hazards may affect only certain parts of the US, but in combination, larger or previously
unidentified regions of the US may face numerous hazards concurrently, sequentially, or
more frequently in the future. Such knowledge can support the development of multi-
ple hazard mitigation options, where one risk management strategy has the potential to
influence the vulnerabilities to one or more other hazards. Thus, the Composite Hazard
Index reveals spatial patterns of potentially consequential events in distributions heretofore
unmeasured, expanding the understanding of natural hazards in the US and establishing a
means for examining connected vulnerabilities, consequences, potential future losses, and
risk reduction strategies.

There are some limitations to the hazard identification process employed in this study.
First, the hazard analysis for severe storms and tornados relied on the historical issuance
of watches and warnings rather than direct observations of these events. The historical
odds of a tornado’s occurrence do not necessarily predict the future locations of tornadoes,
as recent trends show an eastward shift from the Great Plains toward the southeast. As
a proof-of-concept study, the use of watches and warnings as a proxy for severe storm
and tornado frequencies provide both a direct means to assess event occurrence without
interannual variability or climatologically shifting areas and a direction for future research
for the use of flash flood watches and warnings to expand the assessment of hydrological
hazards. Though FEMA’s 1% annual chance flood layer is comprehensive, the data are
aging, constantly updated, and simultaneously incomplete because certain areas have not
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been mapped. These factors lead to the potential underestimation of flood hazards as well
as risk. Second, the use of the SLOSH data for the hurricane storm surge hazard permits
the individual and composite hazards to consider one source of coastal flooding which is
neither probabilistic nor expected but represents a risk of hurricane occurrence. Specifically,
rather than focusing on the frequency or probability, the spatial extent of potential storm
surge inundation permits an aerial calculation for determining the amount of land flooded
in a hexagon as a part of the composite score. Finally, the use of weather station data for
temperature (high and low), winter weather, wind, and fog requires a user to accept the
inclusion of errors associated with non-stationarity and the fact that interpolation between
sometimes scarce weather stations may result in an underestimation of hazard threats in
areas further away from measured events.

Given the recent release of a National Risk Index (NRI) by FEMA [97], further research
into composite natural hazard identification, mapping, and risk assessment is needed for
considering impacts on mitigation planning and risk management strategies. In practical
terms, the NRI appears to be the basis for hazard mitigation planning for the state of New
York, whereas the state of Washington determined the NRI to be insufficient for state and
local interests [98,99]. Future studies should consider the applications for composite hazard
identification and mapping and how social and physical vulnerabilities may be influenced
by aggregate risk assessment rather than analyzing single hazards and risks independent of
other concurrent hazards as well as examine the more complex interactions both between
hazards and for cascading, compounding, synergistic, or otherwise interacting events. As
suggested by the EPA CRA framework, we expect that natural hazards interact in ways
similar to toxic chemicals, whereby cumulative risks for multiple hazards necessitate the
development of novel and unique methods for assessing composite hazards in support of
communities and hazard mitigation planning.

6. Conclusions

This paper presented novel geospatial approaches for creating individual hazard threat
area maps for 15 different natural hazards and provided a national-level Composite Hazard
Index integrating these individual hazards in support of multi-hazard risk assessment and
planning. This study offers a method to map all spatially relevant hazards in a particular
geographic location through both individual and composite hazard risk for the contermi-
nous US. The Composite Hazard Index is based on publicly available authoritative data
analyzed and formatted into a novel hexagonal geospatial binning for better visualization
and computational efficiency and reduced estimate bias. The Composite Hazard Index
represents a sum total multi-hazard layer comprising the first step in a multi-hazard risk
assessment: threat analysis. Although conceptually similar to annual threat assessment
reports like those produced by the United Nations Office of Disaster Risk Reduction (Swiss
Re and Munich Re), this type of threat assessment spans many years on record and pro-
vides a high level of geospatial specificity. In shifting from hazard observations to hazard
warning areas, we provide a newer understanding of hazard occurrence based on popula-
tions being warned of imminent hazardous conditions. This approach inherently includes
exposure to hazardous conditions such that the severity of the consequences to the exposed
populations and built environment can be estimated historically or probabilistically, a shift
called for by hazard mitigation program officials. The temporal and spatial novelty of this
work will enable further combination with vulnerability and severity of consequence data,
resulting in novel information with which decision makers and planners can build specific
mitigation interventions. This empirical understanding of hazard threats, both individually
and in combination, can be extended to include similar spatial representations of hazard
impacts and consequences as well as underlying vulnerabilities and critical infrastructure
information. Together, such composite threat, consequence, and vulnerability information
would result in a novel multi-risk assessment for any place in the US where interacting
natural hazards can be explored, assessed, and analyzed to improve the comprehensive
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understanding of natural hazard risks in combination with vulnerability assessment of
the communities.

The Composite Hazard Index uses equally sized hexagonal binning at a 647.5-sq. km
(250 sq. mile) resolution for the aggregation of hazard occurrences because of its supe-
rior performance over rectangles [61]. The hexagonal cells are regular, with straight-line
edge segments of equal length that reduce the bias to edge effects and therefore provide
more accurate spatial estimates, better visualization, and improved diagonal distribution
patterns [60,62]. We used equal weighting for the hazards to formulate a composite haz-
ard. However, the weighting schemes in this technique can be changed to reflect a more
significant hazard or interaction with other hazards producing a more significant threat
to a community. The CHI’s unique hexagonal quantization also offers advantages over
square tessellations, as lines produced by hexagonal quantization retain informative ge-
ographical shapes for greater differences in scale than those produced by quantization
in square cells [100]. The CHI can be applied across multiple jurisdictional scales from
local to regional, state, and federal levels for comparative hazard analysis. The regionaliza-
tion technique applied here revealed spatial patterns of individual and composite hazard
occurrences that are not defined by political boundaries. As such, the individual and
composite hazard regions revealed potential opportunities to consider or reconsider hazard
mitigation program specialties or focus areas needing improvement for multi-hazard risk
and consequence management.

Future related research aims to empirically define other aspects of the risk equation,
including building a spatial representation of vulnerability and severity of consequences.
Additionally, individual hazard threat zones and associated frequencies over time form
the basis of the CHI, making the application of “space-time” cubes and other clustering
algorithms a certainty in the future. Such forecasts of future hazard threat areas will clearly
identify those places already known to be areas of increased risk and will also result in a
more robust pinpointing of places where emergent threat areas have begun to materialize.

Creating a holistic representation of risks, including economic impacts and severity
of consequences, will result in a spatial view of where hazards are causing the most
losses. The resulting outputs will enable planners and decision makers to see not only the
threat areas where physical mitigation measures can reduce impacts but also where threats
and vulnerabilities intersect, pinpointing where mitigation measures will serve the most
impacted and distressed areas. Appropriate planning and mitigation investments cannot
be made without this critical first step of translating state-of-the-science approaches for
threat assessment by using geospatial tools that result in a mapped representation of the
various hazards occurring at any given place. Just as the National Research Council and
Mapping Science Committee [101] have found that a successful response starts with a map,
and this paper suggests that successful risk assessments and mitigation planning start with
a map as well.
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