
����������
�������

Citation: Park, H.-J.; Kim, K.-M.;

Hwang, I.-T.; Lee, J.-H. Regional

Landslide Hazard Assessment Using

Extreme Value Analysis and a

Probabilistic Physically Based

Approach. Sustainability 2022, 14,

2628. https://doi.org/10.3390/

su14052628

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 26 January 2022

Accepted: 22 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Regional Landslide Hazard Assessment Using Extreme Value
Analysis and a Probabilistic Physically Based Approach
Hyuck-Jin Park 1,* , Kang-Min Kim 2, In-Tak Hwang 1 and Jung-Hyun Lee 1

1 Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea;
intak999@gmail.com (I.-T.H.); jhlee6086@gmail.com (J.-H.L.)

2 Department of Geography, Kyung Hee University, Seoul 02453, Korea; kmkim0208@khu.ac.kr
* Correspondence: hjpark@sejong.ac.kr; Tel.: +82-2-3408-3965

Abstract: The accurate assessment of landslide hazards is important in order to reduce the casualties
and damage caused by landslides. Landslide hazard assessment combines the evaluation of spatial
and temporal probabilities. Although various statistical approaches have been used to estimate
spatial probability, these methods only evaluate the statistical relationships between factors that have
triggered landslides in the past rather than the slope failure process. Therefore, a physically based
approach with probabilistic analysis was adopted here to estimate the spatial distribution of landslide
probability. Meanwhile, few studies have addressed temporal probability because historical records
of landslides are not available for most areas of the world. Therefore, an indirect approach based on
rainfall frequency and using extreme value analysis and the Gumbel distribution is proposed and
used in this study. In addition, to incorporate the nonstationary characteristics of rainfall data, an
expanding window approach was used to evaluate changes in the mean annual maximum rainfall
and the location and scale parameters of the Gumbel distribution. Using this approach, the temporal
probabilities of future landslides were estimated and integrated with spatial probabilities to assess
and map landslide hazards.

Keywords: temporal probability; spatial probability; landslide hazard; physically based model;
extreme value analysis

1. Introduction

Landslides occur frequently, not only in Korea but also around the world, and cause
severe damage to human lives and property. To prevent or reduce damage, injuries,
and death caused by landslides, there is a need for landslide hazard analysis, which
estimates the probability of a potential landslide occurrence within a given period of time
and over a specific area [1,2]. That is, the spatial and temporal probabilities of landslide
occurrence should be analyzed to determine landslide hazards. The spatial probability
of landslide occurrence, which is also known as landslide susceptibility, predicts where
a landslide may occur. A large number of studies have been conducted on landslide
susceptibility using a variety of approaches. Landslide susceptibility analyses are generally
either statistically or physically based [3–6]. Statistical approaches acquire knowledge of
susceptibility obtained through the statistical analysis of the relationship between landslide
occurrences and various conditioning factors [5,7–13]. However, when applied to a wide
area, statistical analysis requires considerable data on both landslide distribution and
conditioning factors. In addition, statistical analysis considers the statistical relationship
between landslides and conditioning factors exclusively without the consideration of slope
failure mechanisms [14]. Therefore, in recent years, physically based analysis, which
incorporates the physical processes and mechanisms of landscape occurrence, has been
used with a physical slope model to estimate the spatial probability of landslide occurrence
independent of its occurrence history [14–32]. This is, therefore, a very promising approach
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to shallow landslide susceptibility analysis [33]. Moreover, a grid-based analytical structure
provides a convenient framework for wide-area coverage in a geographic information
system (GIS) environment [34].

In contrast, temporal landslide probability predicts when landslides may occur. Rel-
ative to landslide susceptibility analysis, few temporal probability studies have been
conducted. In general, temporal probability has been evaluated using the statistical analy-
sis of landslide frequency through long-period multitemporal landslide inventory [35–41].
However, considerable time and effort are required to construct the necessary multitem-
poral landslide inventory and, accordingly, these data are not available in most areas. An
indirect approach based on the frequency of landslide-triggering events (i.e., earthquake
or rainfall events) is, therefore, proposed. In this approach, recognizing that landslides
are mainly caused by rainfall events, the temporal probability of such rainfall events is
adopted as the temporal probability of landslide occurrence [42–49]. A rainfall threshold
for landslide occurrence is determined and then historical rainfall data are analyzed to
derive the probability that the rainfall threshold will be exceeded by a certain rainfall
event (the exceedance probability). The rainfall exceedance probability is observed as an
effective surrogate for temporal landslide probability [37,42,43,45,46,48]. The advantages
of this approach are that a complete multitemporal inventory is not required and that
temporal probability can be estimated wherever historical rainfall records, which can be
easily obtained from rainfall gauges, are available.

In this research, temporal landslide probability was estimated using historical rainfall
records. Then, landslide hazard was calculated by combining temporal probability with the
spatial probability obtained by conducting a physically based analysis. This approach was
adopted in the Jinbu region of Gangwon-do, Korea, where many landslides occurred in
July 2006 as a result of extreme rainfall. This approach can also help to solve a global social
issue. Achour [50] noted that landslide hazard analysis is one of the significant measures
necessary for land use planning and disaster risk reduction, supporting target 15.3 (“By
2030, combat desertification, restore degraded land and soil, including land affected by
desertification, drought and floods, and strive to achieve a land degradation-neutral world”)
of the United Nations 2030 Sustainable Development Goals (SDGs). Our approach will,
therefore, contribute to the achievement of the UN’s SDGs, especially goals 13 (“Take
urgent action to combat climate change and its impacts”) and 15 (“Sustainably manage
forests, combat desertification, halt and reverse land degradation, halt biodiversity loss”).

2. Materials and Methods
2.1. Study Area

The Jinbu area was selected for testing the proposed approach because it experienced
an extreme rainfall event from 14 to 16 July 2006, with numerous landslides being re-
ported (Figure 1). The study area is at latitude 37◦33′20′′ N–37◦39′26′′ N and longitude
128◦29′49′′ E–128◦36′36′′ E and is mostly mountainous, with an average altitude of about
660 m. The predominant lithological units are Triassic Nokam formation and Imgye granite
(Figure 2). These are located on a Precambrian biotite gneiss. The Nokam formation is
mostly fine sandstone and sandy shale, and the Jurassic Imgye granite, which occurs as
batholiths, consists of granite with syenite and diorite. Ordovician limestone, with a small
amount of sandstone and shale, is also distributed across the area. The region was exten-
sively intruded by granitoids during the Daebo Orogeny, which lasted from the Jurassic to
the Cretaceous periods [14,51].

To construct a landslide inventory, landslide locations were identified by conducting
the comparison of 0.5 m resolution aerial photographs, obtained from the National Geo-
graphic Information Institute (Suwon, Korea), taken before and after the 2006 event. A total
of 1310 landslides were identified (Figure 1). This is the only landslide record for this study
area, given that no other landslide occurrence, either before or after the 2006 event, has
been reported. The identified landslides in this area were translational shallow landslides.
Their length and width ranged from 30 to 1200 m and from 4 to 20 m, respectively. Their
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depth to failure plane ranged from 0.5 to 3 m. They started as translational shallow slides
and became flow-type landslides as they moved downward. Rainfall data from 1973 to
2017 were obtained from the Sangjinbu rainfall station (latitude 37◦39′32′′ N and longitude
128◦34′41′′ E), which is the most reliable rainfall station in the area.
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2.2. Evaluation of Temporal Probability
2.2.1. Extreme Value Analysis

In this study, an indirect approach to the evaluation of the temporal landslide proba-
bility was adopted. Specifically, the temporal probability of a landslide-triggering rainfall
event was evaluated by conducting statistical analysis on historic rainfall data, and the
probability of such a rainfall event was adopted as the temporal probability of a landslide
occurring. A rainfall threshold, the minimum rainfall required to initiate landslides [48],
was first determined. Based on rainfall records and the literature, the rainfall threshold in
this area was estimated as 227 mm over a 24 h time period; in July 2006, this threshold was
reached and triggered landslides [52]. Once this threshold was determined, its exceedance
probability could be calculated. In previous studies, exceedance probabilities have been
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evaluated using a binomial or Poisson distribution model [37,42,45,46,53–55]. However,
the use of these models requires an estimate of the mean recurrence interval for the pe-
riods between landslide-triggering events. Where no recurrent landslide event has been
recorded, such as in this study area, it is impossible to estimate the recurrence interval [56].
Therefore, extreme value analysis, which is able to infer the probabilities of future extremes
using past records, was used to evaluate the exceedance probability. This can be applied
even in areas where no recurrent landslide-triggering rainfall has been observed. Extreme
value analysis is recognized as appropriate for the analysis of the temporal probability of
shallow landslides caused by intense rainfall [48]. Therefore, it has been widely used in the
context of extreme hydrological events. In extreme value analysis, the maximum rainfall
event in a given year, the annual maximum (AM), is considered to follow a generalized
extreme value (GEV) distribution [56,57]. Among various GEV distributions, the Gumbel
distribution (extreme value type I) has been adopted to estimate the temporal probability
of rainfall-induced landslides [39,46,48,49,58–63]. In addition, the Gumbel distribution
has been applied to determine the frequency of extreme rainfall events in Korea [64]. The
cumulative Gumbel distribution is evaluated by the following:

FGUM(x) = exp
{
−exp

(
− x− u

α

)}
,−∞ < x < ∞, (1)

where u is the location parameter and α is the scale parameter. Subsequently, the exceedance
probability of a rainfall event for a specific year is evaluated by the following.

p = 1− FGUM(x) = 1− exp
{
−exp

(
− x− u

α

)}
(2)

To evaluate the exceedance probability by adopting the Gumbel distribution, Gumbel
parameters (i.e., location and scale parameters) must be estimated. The method of moments,
which assumes the equality of population and sample moments, has commonly been
applied to estimate the parameters for a given probability model [39,62]. In this study, the
method of moments was used to estimate Gumbel parameters.

2.2.2. Nonstationary Approach

Previously, extreme value analysis assumed processes to be stationary, which means
that historical rainfall data are invariant over extended time periods. However, increases in
extreme rainfall frequency and intensity caused by climate change have been reported by
many recent studies. The stationary assumption, with unchanging AM values and Gumbel
parameters, is therefore not valid. A nonstationary model should respond to changes in
AM rainfall and consequent changes in Gumbel parameters. Zeng et al. [65] proposed an
expanding window approach to analyze nonstationarity in AM rainfall. The expanding
window begins with a given minimum size at a fixed starting point, but as the analysis
progresses into the time series, the window expands to include each new data value rather
than only a finite and constant widow size [66]. Initially, a 20-year window of historical data,
as suggested previously [67], was used to evaluate the mean AM and Gumbel parameters.
Next, the period window was expanded to include 21 years. This procedure was repeated
until all the data years were included. In this study, rainfall data from 1973 to 2017 were
available, and the mean AM rainfall and Gumbel parameters were initially calculated from
1973 to 1992. Using the expanding window, the means and parameters were then obtained
for 1973 to 1993, etc. This approach is able to reveal any nonstationary trend in mean and
statistical parameters.

2.3. Evaluation of Spatial Probability

Spatial probability was calculated using a physically based approach. As recent
landslides triggered by heavy rainfall are mainly shallow, the infinite slope model, which is
widely used for shallow-depth slope failure, was used as the physical model. Previously,
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the infinite slope model has mainly been used to assess the stability of individual slopes.
With the rapid development of GIS-based analysis, the infinite slope model can now be
used to analyze shallow landslide susceptibility over broad areas.

The infinite slope model evaluates a factor of safety (FS) based on the concept of limit
equilibrium. It analyzes the equilibrium of a potentially unstable mass by comparing the
driving force, the force tending to slide along the failure plane, with the resisting force,
which is the shear strength. If the groundwater height is assumed to be zw above the sliding
plane (Figure 3), the equation used for calculating FS using the infinite slope model is
as follows:

FS =
c + (γD− γwzw) cos2 α tan φ

γD sin α cos α
, (3)

where c and φ are the cohesion and effective friction of the slope materials; γ and γw are
the unit weights of the slope materials and water, respectively; D is the vertical depth to
the failure surface; zw is the groundwater level; and α is the angle of the slope.
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A transient hydrological model was used to estimate zw. The transient infiltration
model is a process used for estimating pore pressure changes during rainfall infiltration.
This was used in conjunction with a grid-based regional slope stability model (Transient
Rainfall Infiltration and Grid-Based Regional Slope-Stability Model, TRIGRS) [68], which
estimates shallow landslide occurrence by combining the transient pressure increases
caused by rainfall and infiltration [69]. The infiltration model was based on Iverson’s [70]
solution, which provides a theoretical background to the influence of hydrologic processes
on landslide locations and occurrence times derived using the Richards’ equation [18,27].
This evaluates transient infiltration by modeling pore water pressure. TRIGRS was coupled
with Monte Carlo simulation (MCS) for the spatial probability assessment carried out in
this study. In MCS, the values of predictive variables are randomly generated according to
their probability density functions (PDFs). This technique is widely used for probabilistic
analysis because of its robustness and conceptual simplicity. Here, FS values were calculated
from sets of these randomly generated input values. After numerous iterations, the failure
probability was evaluated from the repeated FS values. This calculation was carried out for
all pixels throughout the study area, and the results were mapped as the spatial distribution
of landslide probability.

2.3.1. Construction of a Spatial Database of Input Parameters

The physical slope model requires input parameters such as geometric characteris-
tics and strength parameters for the slope materials. Geometric input parameters can
be obtained from topographic data and strength parameters can be acquired from field
investigation and laboratory tests. A digital elevation model (DEM) was constructed to
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obtain the geomorphic attributes of the study area using digital topographic maps acquired
from the National Geographic Information Institute. Then, a thematic map for the slope
angle (Figure 4) was created using DEM. In addition, soil thickness, which is the depth to
the failure surface, was acquired from digital soil maps obtained from the National Institute
of Agricultural Science (NIAS, Jeollabuk-do, Korea). The obtained map was converted
into a grid-based (raster) layer, providing a thematic map of soil thickness with a 10 m
resolution (Figure 5).
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The calculation of spatial probability using a physically based method (Equation (3))
requires strength parameters (cohesion and friction angle), unit weight, and the hydraulic
conductivity of slope materials, since these are indispensable input parameters in physically
based analyses [71]. These parameters should be obtained from laboratory tests of soil
samples collected from the field. Twenty soil samples were collected from the study area.
The geotechnical parameters were obtained from direct shear tests conducted on the slope
materials. Other laboratory tests (such as permeability tests) were carried out to obtain
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the hydraulic conductivities and unit weights of the soils. These were considered as
deterministic parameters.

Slope material is composed of soils developed from underlying rocks, and soil prop-
erties such as geotechnical and hydrological parameters are strongly affected by the rock
type involved. The soil samples used for laboratory tests were, therefore, collected from
areas with different underlying rock types. The geotechnical and hydrological parameters
listed in Table 1 are linked to the underlying rock type. While the mean values of the
strength parameters were calculated using test data, there was substantial uncertainty
because the quantity of test data was limited compared with the size of the study area.
Therefore, high values for their coefficients of variation (COV) (namely, 30% for cohesion
and 15% for friction angle) were used in this analysis. To estimate the groundwater height
using the hydrological model, hourly rainfall data were acquired from Sangjinbu automatic
weather station (Figure 6). The landslides began around 10:00 on 15 July, and 227 mm (in
the previous 24 h) was considered as the landslide-triggering rainfall threshold [52].

Table 1. Input parameters for the physically based model.

Geological Formation
Friction Angle (◦) Cohesion (kPa) Unit Weight

(kN/m3)
Hydraulic

Conductivity (m/h)Mean COV (%) Mean COV (%)

Felsite 20.8 15 17.5 30 17.8 0.171

Quartzite in Sambangsan 40.6 15 8.0 30 19.3 0.096

Imgye granite 35.2 15 3.8 30 23.2 0.089

Jeongseon limestone 28.4 15 4.4 30 17.9 0.019

Sandstone in Nokam 40.2 15 10.4 30 18.4 0.090

Sandstone in Gobangsan 37.1 15 7.8 30 18.7 0.084
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2.3.2. Monte Carlo Simulation

In probabilistic analyses, using MCS, cohesion and friction angle, the major sources of
uncertainty as a consequence of limited sampling and spatial variability, were considered
as random variables. Their statistical properties, as required for MCS, were based on a
normal PDF, as previous studies have suggested [21,72–80]. Their assigned means and
COVs are shown in Table 1. In the MCS process, uniformly distributed random numbers
between zero and one were generated, then random values for each input variable were
calculated using the generated random numbers corresponding to the cumulative normal
distribution function for each input variable. The generated parameters were used, in
combination with the deterministic input data, to calculate 5000 individual FS values for
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each pixel. Then, the failure probability, or the proportion of cases in which FS was less
than 1, was determined. This process was conducted for all pixels in the study area to
produce a landslide probability distribution map.

3. Results
3.1. Temporal Probability of Landslide Occurrence

The Sangjinbu rainfall time series from 1973 to 2017 were used to determine the
nonstationary character of the local rainfall data using the expanding window approach.
The maximum 24 h rainfall value for each year was calculated from hourly rainfall data
and designated as the AM rainfall for that year. Then, the mean AM values and Gumbel
parameters were calculated for the first 20 years of data (1973–1992). By adding rainfall
data for each year to the initial 20 years of data, new mean AM and Gumbel parameters
were then derived. Table 2 shows the mean AM and location and scale parameters for
different time periods under this method.

Table 2. Mean AM rainfall and the parameters of the Gumbel distribution using an
expanding window.

No. Data Period Location Parameter Scale Parameter Mean of AM
Rainfall

1 1973–1992 110.42 50.12 140.4
2 1973–1993 109.38 50.91 138.8
3 1973–1994 106.18 50.40 135.6
4 1973–1995 109.10 50.01 138.5
5 1973–1996 111.02 50.46 140.0
6 1973–1997 113.05 49.37 141.7
7 1973–1998 115.45 49.85 144.0
8 1973–1999 118.18 49.97 147.1
9 1973–2000 116.54 49.98 145.2
10 1973–2001 116.88 49.73 145.1
11 1973–2002 119.60 50.49 148.7
12 1973–2003 120.84 49.87 149.6
13 1973–2004 120.57 50.19 148.9
14 1973–2005 121.34 50.31 149.2
15 1973–2006 123.82 50.77 153.1
16 1973–2007 122.81 50.35 151.9
17 1973–2008 124.10 50.94 152.9
18 1973–2009 126.16 50.33 155.3
19 1973–2010 126.28 50.81 155.0
20 1973–2011 128.40 50.59 157.9
21 1973–2012 125.95 51.43 155.7
22 1973–2013 126.25 50.86 155.6
23 1973–2014 125.42 50.59 154.6
24 1973–2015 122.44 51.02 152.1
25 1973–2016 124.28 51.21 154.4
26 1973–2017 122.87 51.13 153.1

Linear regression was then used to check for temporal trends in the mean AM and
Gumbel parameters to estimate the AM values and Gumbel parameters for future years.
Figure 7 shows the results of the linear regression for mean AM. The linear regression
equation used was as follows:

Mt = (0.7677× Nt)− 1390.2, (4)

where Mt is the mean AM for the year Nt. Using this equation, the mean AM for future
target years can be estimated. The Gumbel parameters were estimated, for future years,
using linear regressions between the mean AM values and the location and scale parameters
(Figures 8 and 9). Equation (5) is the linear regression equation used for estimating location
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from the mean AM, while Equation (6) is the regression equation used for the scale and
mean AM:

uT = 0.9863×Mt− 27.077, (5)

αT = 0.0215×Mt + 47.231, (6)

where uT is the location parameter, Mt is the mean AM, and αT is the scale parameter for
the target year. Using these equations, the mean AM and the scale and location parameters
of the Gumbel function for each of the next Ni years from the final year of rainfall data,
2017, were estimated for Ni = 10, 50, 100, and 150 (Table 3). From these values, future
exceedance probabilities can be calculated using the Gumbel distribution function, and
these values can be considered as the temporal probability of landslide occurrence. Table 4
shows the temporal landslide probabilities over the four analyzed time periods.
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Table 3. Mean AM and statistical parameters of the Gumbel distribution over the next Ni years.

Period Ni (Years) Mean AM Location Parameter Scale Parameter

10 160.6 131.35 50.69
50 191.3 161.64 51.35

100 229.7 199.50 52.17
150 268.1 237.35 53.00

Table 4. Temporal probability of landslide occurrence over the next Ni years.

Period Ni (Years) Temporal Probability

10 0.2197
50 0.3659

100 0.6145
150 0.8575

3.2. Spatial Probability of Landslide Occurrence

Figure 10 maps the distribution of the spatial landslide probability. A receiver operat-
ing characteristics (ROC) graph was used to evaluate model performance. In the analysis,
true class (landslide occurrence) is compared with modeled class (landslide prediction)
using a confusion matrix [3]. Here, the analyzed grid cells (i.e., modeled class) were clas-
sified as unstable or stable for comparison with the landslide occurrence (i.e., true class).
In previous studies [27,30,33,77,81–83], a landslide probability greater than 10% has been
used as the criterion for an unstable area; hence, a grid cell with a probability greater than
10% was classified here as unstable. It was found that 71.3% of the observed landslide
locations were classified as unstable. That is, the true positive rate (TPR; the number of
correctly predicted landslide pixels over the total number of landslide occurrence pixels)
was 0.713. In addition, 27.4% of the nonlandslide pixels were mapped as unstable; that is,
the false positive rate (FPR) was 0.274. Model performance was evaluated as 71.9% on the
basis of the area under the curve (AUC) value.

3.3. Landslide Hazards

Landslide hazard was evaluated by multiplying the temporal probability of landslide,
obtained from extreme value analysis, by spatial probability, which was obtained using a
physically based model and MCS. The landslide hazards for four future time periods (10,
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50, 100, and 150 years) were calculated (Table 5) and are mapped in Figure 11. As expected,
the landslide hazard values increased as the time period increased. In the 10-year-period
landslide hazard map, no pixels had landslide hazard values of over 0.2. Moreover, for
the 10- and 50-year periods, all pixels were less than 0.5, which means that there was a
low landslide hazard area. When the landslide hazard maps for 10 and 50 years were
compared with the spatial probability map, landslide hazards were substantially lower than
the spatial probability of landslide occurrence. This is because the temporal probabilities
that were multiplied by the spatial probabilities to obtain the landslide hazards over the
10- and 50-year periods were small: 22.0% and 36.6%, respectively.
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Table 5. Proportion (%) of landslide hazard values.

Time Period (Years)
Landslide Hazard

0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

10 85.90 9.21 4.89

50 82.02 5.76 5.31 6.91

100 78.02 5.23 3.36 2.98 3.19 5.66 1.56

150 74.47 6.26 3.01 2.37 2.14 2.11 2.30 3.22 4.12

The landslide hazard values for the 100- and 150-year periods were, as expected,
larger than those in the 10- and 50-year periods. The proportion of high-hazard pixels
(hazard value > 0.5) in the 100- and 150-year periods was greater: for 100 years, 7.22%, and
for 150 years, 11.75%. This is because of the greater temporal probabilities found for the
100- and 150-year periods: 61.5% and 85.8%, respectively.

4. Discussion and Conclusions

We proposed a process to estimate temporal landslide probability using extreme
value analysis and spatial probability using a physically based model. In previous studies,
temporal probability was estimated by using frequency analysis of historical landslide
occurrences or, indirectly, of rainfall events that triggered landslides. For this, sufficient
data on repetitive landslides or recurrent rainfall events are required. However, in many
cases it is practically impossible to obtain sufficient data on either landslide occurrence
or recurrent landslide-triggering rainfall events. Therefore, this study adopted extreme
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value analysis to evaluate temporal probability. This approach can be applied in areas
where a multitemporal inventory is not available or where a single landslide event has
occurred. Extreme value type I distribution, also known as the Gumbel distribution, was
used to analyze time series rainfall data and estimate the triggering threshold exceedance
probability. Moreover, to accommodate the nonstationary character of rainfall records in
a time of climate change, the expanding window method was adopted, and changes in
AM rainfall and the Gumbel parameters were estimated. Rainfall data from 1973 to 2017
were used and AM rainfall and Gumbel parameters for four future periods (10, 50, 100,
and 150 years hence) were estimated using linear equations derived by the expanding
window method. The temporal probabilities of landslide occurrence for the next 10, 50,
100, and 150 years were calculated, and their values were 0.2197, 0.3659, 0.6145, and 0.8575,
respectively. Spatial probabilities were evaluated using a physically based approach and
the infinite slope model, in conjunction with probabilistic analysis. Input parameters were
obtained from laboratory tests and a DEM, with the strength parameters considered as
random variables because of their uncertainty and variability. Subsequently, MCS, known
as the most complete probabilistic method, was used to account for the uncertainty and
estimate the spatial probabilities. Finally, temporal and spatial probabilities were combined
to estimate the landslide hazard for future periods.

The proposed approach overcomes the shortcomings of previous studies that de-
termined temporal probability from the frequency analysis of recurrent events. When
a multitemporal inventory of historical landslide data is not available or no recurrent
landslide events have occurred in an area, as in our case, the existing approach cannot
estimate temporal probability. Therefore, an extreme value model (based on the Gumbel
distribution) was used to obtain temporal probabilities from available time series rainfall
data for the study area. This approach can be used when the conventional approach is
impossible. In addition, our approach estimated nonstationary temporal probability, which
previous stationary extreme value analyses could not calculate, by using an expanding
analytical window. In this manner, the temporal probabilities of landslide occurrence for
several different periods were obtained and combined with spatial probabilities, obtained
from the probabilistic physically based approach, to evaluate landslide hazard. In previous
work, spatial probabilities were estimated using statistical analysis or machine learning
methods. However, it has been argued that translating the results of statistical analysis
into spatial probabilities may not be appropriate, since the landslide susceptibility index
from statistical analysis could not be replaced directly with spatial probability [84]. There-
fore, this study used a more appropriate approach by estimating, in combination with
probabilistic analysis, physically based spatial probabilities.

However, our proposed approach has some limitations. In this study, only the strength
parameters of slope materials were considered as random variables in the MCS in order
to limit computational time and effort. However, uncertainty and variability also could
be involved in hydrological parameters and the unit weight of soil, and these could also
be considered as random variables in future research. In addition, climate change and its
influence on landslide occurrence can vary substantially, even over small distances [85].
In our experience, rainfall in this study area has a nonstationary trend, but other rainfall
gauges located some distance from the study area suggest a more stationary character.
Therefore, it is critical to carefully scrutinize stationarity in rainfall data. Finally, since
information about elements at risk and their vulnerability was not available for our study
area, it was not possible to fully assess landslide risks—that is, the accurate assessment
of threat to life and property. To reduce or prevent the damages and fatalities caused by
landslide occurrences effectively, landslide risk should be evaluated in future studies.
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