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Abstract: With the increasing demand on grid modernization for improving environmental sustain-
ability and grid security, the topic of smart meter adoption has attracted much attention, especially
with regard to the roles of public policies. However, there is a lack of research investigating the
association between the multi-layered government policies and smart meter adoption from a spatial
perspective to explain the variant adoption rates across the United States. This study constructs a
panel of 48 contiguous U.S. states and the District of Columbia over the period 2007–2019. Using
this unique dataset and spatial econometric models, we investigate the impacts of federal and state
policies as well as spatial spillover effects of smart meter adoption in the residential sector. Results
indicate the following: (1) Smart meter adoption has spatial spillover effects between the adjacent
states in a sense that the rate of adoption in one state is positively associated with adoption rates in
the neighboring states; (2) federal funding and state-level legislative actions on advanced metering
and smart grid have positive impacts on smart meter adoption. These findings provide important
implications for the formulation and implementation of public policies for the adoption of a modern
electric grid in the U.S.

Keywords: smart meter; technology adoption; government policy; spatial spillover

1. Introduction

The integration of smart-grid technologies has important contributions to sustainable
development. It enhances the utilization efficiencies of the power system, improves the
integration of intermittent renewable and clean energy, and increases energy savings [1].
As the world is facing the challenge of energy and climate crisis, many countries have been
promoting smart grids as a way to reduce energy waste and air pollution [2–6]. For example,
European Union (EU) member states approved a proposal to invest USD 1.147 billion in
energy infrastructure projects in 2020, 84% of which would be allocated to electricity and
smart-grid projects [7]. Similarly, the China Electricity Council reports that the smart grid
accumulated investment of around USD 0.63 trillion by 2020 [8]. As in other countries in
the world, the U.S. electric power industry is also facing the challenges of increased utility
price, peak load fluctuations, and the need to reduce carbon dioxide emission [9].

Smart meters are important components of a smart grid. They measure and store
hourly electricity usage, and allow two-way communication that transmits pricing and
energy information between the utility companies and the consumers. Smart meters, along
with communication systems and meter data management systems, constitute advanced
metering infrastructure (AMI) [10]. With the real-time information from AMIs, the utilities
can utilize dynamic pricing, such as charging differently for different types of customers,
different locations of the customer, different times of day, and different seasons, to balance
the utility usage so that they can lower the risk of a power outage [11,12]. With the feedback
information, customers have better knowledge about their spending patterns of using
electric devices, and consequently are able to make behavioral adjustments to lower their
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electric bill and drive the reduction of electricity consumption [13–15]. In addition, the
deployment of smart meters has the potential to reduce the need to build additional power
plants that are used only for fluctuating peak load demand, which in turn will reduce
greenhouse gases and pollutants emissions [13,16].

To accelerate the adoption of smart meters, governments have made important invest-
ments and developed various policies to promote grid modernization [17,18]. The Smart
Grid Investment Grant (SGIG) Program aimed at accelerating the development of smart
meters in the United States [19]. The American Recovery and Reinvestment Act of 2009
(ARRA), for example, provided for a total budget of about USD 8 billion in the develop-
ment of a smart grid. About USD 2 billion from the budget was invested in AMIs [19].
According to the U.S. Energy Information Administration (EIA)’s report, by the year 2020
about 102.9 million AMIs were installed in the U.S., and about 88% of them are in the
residential sector [20]. A total of 115 million smart meters were projected to be installed by
the end of 2021 [21].

The electric utility sector in the U.S. is composed of a large arrays of stakeholders
for electricity generation, transmission, distribution, and commercialization. According
to the U.S. EIA’s data [22], almost 3000 electric utilities were operating in the U.S. in 2017.
Of all utilities, 1958 were publicly owned (including federal-, state-, and municipal-run
utilities), 812 were rural electric cooperatives, and 168 were investor owned. In particular,
72% of U.S. electricity customers were served by investor-owned utilities in 2017 [23].
Additionally, the U.S. electricity sector is governed by different public institutions, with
each having independent yet overlapping functions. The federal government sets general
policies through the Department of Energy (DOE), environmental regulations via the
Environmental Protection Agency, and consumer protection policy through the Federal
Trade Commission [24]. The Nuclear Regulatory Commission is in charge of the safety
of nuclear power plants. States are responsible for economic regulation of the electric
power distribution segment, usually through the Public Utilities Commissions (PUC),
while the interstate transmission segment is governed by the Federal Energy Regulatory
Commission [24,25]. For instance, the California PUC approved the Pacific Gas and Electric
Company’s application for the deployment of ten million smart meters in 2005 [26,27].
Colorado legislature passed data privacy and security policies in 2012 to address customers’
concerns [26]. Due to health and privacy concerns, some states mandated through PUC that
utilities offer opt-out options for their customers at some cost [26]. In most cases, customers
who choose to opt out are charged to do so, except for two states, New Hampshire and
Vermont, where customers can decline smart meter installations with no cost [28,29].

According to U.S. EIA [20], approximately 102.9 million smart meters had been in-
stalled in 2020, about 88% of which were in the residential sector. This covers approximately
75% of U.S. households [21]. In Figure 1, the U.S. EIA’s report shows a dramatic growth
in the number of smart meters during the years 2007–2020. Installations of smart meters
in 2020 have grown to be more than four times greater than in 2010 in the residential
sector [30].

Existing studies have proved the importance of federal funding [31,32]. However,
the AMI adoption rates across regions vary drastically [32,33]. West coast states, west
south-central states, and New England are clearly leading the country with much higher
penetration rates, which is shown in our results. It is possible that different states also
introduced various regulatory interventions that may have facilitated or impeded the
development of the smart grid [32,34]. Therefore, it is important to explore the confluence
of multi-layered government interventions. Moreover, literature in innovation adoption
often pointed to the existence of technology spillover effects, in a sense that the diffusion
of an advanced technology often transcends state boundaries and becomes a regional
characteristic [35–37]. The spatial spillover effects are often used to explain the imbalanced
adoption of new technologies in different regions [38]. This study builds on our previous
effort of studying the impacts of federal government policies, and attempts to identify how
state policies along with regional spillover effects lead to different levels of adoption in
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smart meter deployment [31]. For this purpose, we constructed a dataset that uses the
data from the SGIG program released by the U.S. DOE, EIA, and some other sources to
investigate the spatial effect of technology spillover in the state-level development of smart
meter adoption. Our study made important contributions to the theories and practices that
promote sustainable technology adoption in regions.
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Figure 1. Smart meter count in the U.S. residential sector, 2007–2020.

The rest of the paper is arranged as follows. Section 2 introduces the existing literature
in this field. Section 3 describes the methods. Section 4 presents the results. In Section 5,
we discuss our findings and their implications.

2. Literature Review

Given the important roles that AMI plays, previous studies have examined the factors
that may affect new technology adoption. An important factor is government interven-
tions [31,32,34,39,40] since they help to overcome obstacles such as information deficiencies,
financial shortcomings, and heterogeneity among populations [41]. The government inter-
ventions that affect technology adoption decisions include financial incentives, regulations,
and standards [42,43]. First, the government often provides grant incentives (or tax bene-
fits) to promote early adopters [44]. Second, information policies, such as demonstration
projects and advertising campaigns, may on average give rise to earlier diffusion assuming
that potential adopters are risk-averse [45,46]. Third, governments reduce uncertainty by
imposing technical standards on the market [45,47,48].

The adoption of technologies has been found to be affected by federal and state policies
and regulations in the oil, healthcare, and telecommunication industries [49–51]. More
specifically, multiple studies have explored the impacts of government interventions on
smart meter adoptions. Zhou and Matisoff [32] identified significant impacts of federal
and state polices efforts on smart meter deployment. Strong [34] used duration models
and fractional response models to examine the determinants of the early diffusion of
smart meters in the U.S. and found that policy and regulatory support lead to a higher
level of smart meter adoption. Similarly, a case study focusing on the adoption and
diffusion of smart meters in Washington State was conducted by Kallman and Frickel [52].
Their results suggest that the relationships across different institutional processes and
different organizational forms promote the implementation of smart meters by authorizing
organizational behavior such as collaboration among private utility companies.
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However, the existing studies have several limitations. Zhou and Matisoff [32] used a
panel dataset encompassing the years 2007–2012. They missed the data between 2013 and
2016, when the implementation of the ARRA act actually took place. Strong’s [34] analysis
failed to quantitatively test the marginal effects of federal policies and state policies, as
they omitted the federal policy factors and measured the state-level AMI support with a
binary variable (coded as one if the utility is subject to state support for AMI adoption). The
understanding of the varied levels of the state support is missing. Additionally, Kallman
and Frickel’s [52] results, based on a case study of Washington State, provide a limited
basis for generalization to other states.

Moreover, no existing studies have taken the spatial spillover effect of smart meter
adoption into consideration. Technology adoption was proven to have significant spatial
autocorrelations in the literature. In particular, Snape [53] found that areas of similar
installed Photovoltaic (PV) capacity were clustered when testing the spatial and temporal
patterns of PV adoption in the U.K. Dharshing [38] also found significant spatial spillover
effects of PV adoption between neighboring counties in Germany. In addition, Noonan,
et al. [54], based on data from the Greater Chicago area from 1992 to 2004, demonstrated that
spatial dependence exists for the adoption of energy-efficient HVACs across neighborhoods.
In the agricultural field, spatial spillover effects were found in the adoption of sustainable
technologies employing a sample of Irish dairy farms [55]. Similar evidence was also found
in the adoption of hybrid rice in Bangladesh [56] and shuttle train elevators in the U.S. [57].

Many studies have shown that technological knowledge spillovers are local rather
than global [35,58]. The reasons behind the spatial spillover effect of adopting solar thermal
systems in Germany are the larger pool of skilled workers, solar initiatives, supplier
activities, and advertising campaigns in the region [59]. Similarly, it was found that the
adoption of new technologies by big firms could influence other firms in the local market
because it makes it easier for other firms in the local market to get access to the suppliers of
the new technology; small firms would imitate the big firms after seeing the benefit of new
technologies, and a larger pool of human resources is available in the local market [60]. New
technology adoption requires obtaining knowledge that frequently comes from human
interactions between neighboring agents [61,62].

Nevertheless, no study to our knowledge has investigated the spatial patterns of smart
meter adoptions, which can result in estimation bias. Including spatial spillover effects
not only addresses this issue, but also demonstrates the effect of smart meter adoption
on neighborhood areas, providing insights for policymaking and interstate cooperation
supporting grid modernization. Therefore, this paper applies a spatial panel model to
investigate whether the smart meter adoption in one state is affected by the adoption in
neighboring states.

3. Materials and Methods
3.1. Panel Data Model

Various econometric models are used in this paper. First, we employ fixed-effect
models that allow the intercept to vary for different states and in different years. Hence, we
include state fixed effects to control for the observable and unobservable factors that vary
across states, such as ideology and new technology acceptance level [63]. Besides, year
fixed effects are also controlled for factors such as policy changes and technology shocks
that are common to all the states in any given year.

In our research, the general empirical specification of the fixed effect model is as follows:

Adoptioni,t = α + β1Fundingi,t + β2State_Acti,t + γCi,t + µt + τi + εi,t (1)

where the dependent variable Adoptioni,t is the smart meter adoption rate in the state i, in
year t. Fundingi,t is the federal funding from the Smart Grid Investment Grant. State_Acti,t
stands for the total number of actions concerning smart meter in state i as of year t. Ci,t
consists of 2 control variables that vary across states and years, including the percentage of
the population that has at least completed four years of college and total energy consumed
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per dollar of real GDP. µt is the year fixed effect that captures the time-specific events,
which could affect the willingness of each state to adopt the smart meter. τi is the state fixed
effect, controlling for the average differences across states. εi,t is an idiosyncratic error term.

3.2. Spatial Panel Model

One problem may occur when panel data incorporate geographic information, because
spatial dependence may exist between the neighboring areas and parameters may not be
homogeneous across different areas [59,64]. Elhorst [64] solved this problem by introducing
the fixed-effects spatial autocorrelation model (FE-SAR) and the fixed-effects spatial error
model (FE-SEM).

We use a FE-SAR model and a FE-SEM model in this paper. The FE-SAR model
assumes that smart meter adoption in one state is not only affected by the exogenous
variables of the state but also smart meter adoption in adjacent states. The general form of
the FE-SAR models is as follows:

Adoptioni,t = α + ρWAdoptionj,t + β1Fundingi,t + β2State_Acti,t + γCi,t+
µt + τi + εi,t

(2)

where ρ in the FE-SAR model is the spatial autoregressive parameter, which reflects the
strength of the spatial dependency. W is an n× n spatial weight matrix that takes the form:

W =


w1,1
w2,1

w1,2
w2,2

. . .

. . .
w1,n
w2,n

. . .
wn,1

. . .
wn,2

. . .

. . .
. . .

wn,n


In this paper, we constructed an inverse distance spatial weight matrix for the main

results, where:

wi,j =

{
1

di,j
i f i 6= j

0 i f i = j

di,j is the distance between the geographic center of state i and the geographic center
of state j. We also constructed a contiguity spatial weight matrix for the robustness test,
where:

wi,j =

{
1 i f state i is a neighbor o f state j
0 i f state i is not a neighbor o f state j

Unlike the FE-SAR model, the FE-SEM model assumes that the spatial dependencies
exist only in the error term but not in the dependent variables or the independent variables.
The general form of the spatial error models is as follows:

Adoptioni,t = α + β1Fundingi,t + β2State_Acti,t + γCi,t + µt + τi + λWεj,t + ϕi,t (3)

where λ in the FE-SEM is the autoregressive parameter for the error term which measures
the effect of spatial dependency in some unobserved variables. ϕi,t is an idiosyncratic error
term. The subscripts and other variables are the same as those in Equation (2).

3.3. Data Source

This study uses a balanced panel dataset of the 48 contiguous states and the District
of Columbia from 2007 to 2019, which yields 637 observations, to investigate the spillover
effect from the smart meter adoption and the impacts of government policies on smart
meter (AMI) adoption rate. Alaska and Hawaii are excluded as they do not border any
other U.S. state. Compared to cross-sectional data or time-series data only, the panel data
include more information and variation across time and so they could give more efficient
estimates [64]. Moreover, with panel data it is easier to control for variables that are difficult
to measure, such as cultural factors. To identify the spillover effects, we constructed
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two types of spatial weight matrices based on inverse distance and contiguity using the
geographic data from the U.S. Census Bureau [65].

3.3.1. Explained Variable: SmartMeter Adoption Rate

Form EIA-861 (Annual Electric Power Industry Report) by the U.S. Energy Information
Administration collected data from utilities across the country. In 2019, the Report included
data from about 1700 utilities. The dataset contains the utilities’ information about their
business and location. Data of advanced meters were first collected in 2007. They include
the number of meters from AMR and AMI [30]. In this study, we aggregated the number
of meters from AMI and the number of total customers at the state level based on utility
location and generated the smart meter adoption rate as the ratio of the number of AMI
meters to the number of total customers.

3.3.2. Explanatory Variables: ARRA SGIG and State Policy

To accelerate the modernization of the electric power grid, the Recovery Act appropri-
ated about 3.4 billion to fund the 99 Smart Grid Investment Grant (SGIG) projects across the
nation. In this paper, we collected the ARRA funding data from Smartgrid.gov maintained
by DOE [19,66]. To obtain the annual ARRA award amount for each project, following
Zhou and Matisoff [32], we divided the total project award amount by project time span
based on the assumption that money was spent uniformly across the project timeline. Then
we aggregated the ARRA federal funding at the state level and generated the ARRA SGIG
federal funding per capita in each state.

We also considered state energy actions as an important factor in the smart meter
adoption decisions. We used the summary of state smart metering policies between 2007
and 2012 collected by Zhou and Matisoff [32]. In addition, we added the state policies from
2010 to 2019 based on the AMI report from smartgrid.gov [26]. We measured the state
government intervention using the total number of state actions in a year.

3.3.3. Control Variables

Smart meters can provide customers with information on their energy usage and
enable them to take advantage of a more flexible rate. Well-educated customers are more
likely to utilize this information to reduce their bills. Following the existing literature [32,34],
this study selected educational attainment and energy intensity as control variables [67,68].
We expected the adoption rate to be higher in states with more college graduates. Thus, we
expected the coefficient on the percentage of college-educated population to be positive.
In addition, we collected data on the total energy consumption per dollar of real GDP
measured as 1000 British Thermal Units (BTU) per chained 2012 dollar from the U.S.
EIA [68].

We merged those variables with the state-level data (State Act, College Educated, and
Energy Intensity) and constructed a strongly balanced panel of 48 contiguous U.S. states
and the District of Columbia. The descriptive statistics of variables are given in Table 1.

Table 1. Data description.

Variable Mean S.D. Definition Source

Adoption 0.31 0.33 Adoption rate of AMI meters U.S. EIA

Funding 0.001 0.003 ARRA SGIG Federal Funding ($1000) per capita SmartGrid.gov

State Act 1.22 1.55 Total number of state actions as of each year Zhou (2016)
SmarGrid.gov

College Educated 29.51 6.38 Percentage of the population that completed four years
of college or more (%) U.S. Census

Energy
Intensity 7.01 3.05 Total energy consumed per dollar of real GDP (1000 BTU

per (2012) dollar) U.S. EIA
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4. Results
4.1. Spatial Pattern of the Smart Meter Adoption in the Unites States

We selected three cross-sections of time in 2009, 2014, and 2020, and displayed the
smart meter adoption rates on maps with STATA 16. As illustrated in Figure 2a–c, the
nation showed an overall increase over the 12 years. Maximum smart meter penetration
by state was found in Washington, D.C., Pennsylvania, Nevada, Michigan, Kansas, and
Maine, among others, in 2020. The low adoption rates were mainly clustered in the Rocky
Mountain region and the Midwestern United States. Figure 3a–c depicts the state-level
spatial patterns of the number of state policies in the United States as of 2009, 2014, and
2020. Similar to Figure 2a–c, the development is imbalanced across the country. There are
more state actions in the west coast states, west south-central states, and New England.
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4.2. Spatial Autocorrelation Analysis

We used cross-sectional data on the smart meter adoption rates from 2007 to 2019
to calculate the global Moran’s I to accurately understand the smart meter technology
diffusion at the state level. Table 2 presents the results. The smart meter adoption rate has
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had a significant positive Moran’s I since 2010, except for the year 2012. According to EIA,
the installations of smart meters has increased dramatically after 2010 [69]. Therefore, the
distribution of the smart meter adoption demonstrated significant spatial autocorrelation
after 2010. The adoption rates of smart meters are similar in adjacent states.

Table 2. Moran’s I and significant level of smart meter adoption rates, 2007–2019.

Year Moran’s I

2007 −0.034
2008 −0.04
2009 −0.043
2010 0.029 *
2011 0.039 **
2012 0.028
2013 0.054 **
2014 0.063 ***
2015 0.063 ***
2016 0.048 **
2017 0.041 **
2018 0.035 *
2019 0.041 **

*** p < 0.01, ** p < 0.05, * p < 0.1.

4.3. Spatial Panel Model Analysis

This section presents the estimation results of Equations (1)–(3). In Model (1) of Table 3,
we run a fixed effects model without spatial factors. In Model (2) and Model (3), we conduct
the fixed effects SAR and the fixed effects SEM using an inverse distance weight matrix. A
contiguity weight matrix was used in Model (4) and Model (5). In the FE-SAR estimations
(Model (2) and Model (4)), the estimated values of ρ are 0.257 and 0.141, respectively, and
significant at the 1% level. It indicates that adjacent states have a significant positive spatial
spillover effect on smart meter adoption rates; an increase of 1% in smart meter penetration
rate in the surrounding states leads to an increase of approximately 0.2% in the penetration
rate in the focal state. In the FE-SEM models, the λ value was positive and significant at the
1% level. This implies that smart meter adoption is affected not only by observable factors
such as government interventions but also by unobservable factors in adjacent areas, such
as energy consumers’ ideology and new technology acceptance.

Table 3. Regression results for different models.

Variables (1) FE (2) FE-SAR (3) FE-SEM (4) FE-SAR (5) FE-SEM

Inverse Distance Weight Matrix Contiguity Weight Matrix

Funding 0.671 3.972 * 2.560 4.107 * 3.622
(3.984) (2.285) (2.435) (2.271) (2.391)

State Act
0.0466 *** 0.0519 *** 0.0517 *** 0.0549 *** 0.0533 ***
(0.0171) (0.00944) (0.00902) (0.00918) (0.00902)

College Educated 0.0406 0.0605 *** 0.0727 *** 0.0622 *** 0.0735 ***
(0.0301) (0.00640) (0.00562) (0.00575) (0.00523)

Energy Intensity −0.0185 −0.0343 * −0.0360 * −0.0372 * −0.0407 **
(0.0331) (0.0193) (0.0193) (0.0192) (0.0191)

ρ
0.257 *** 0.141 ***
(0.0974) (0.0463)

λ
0.556 *** 0.173 ***
(0.158) (0.0577)

Constant
−0.934 0.163 *** 0.162 *** 0.162 *** 0.162 ***
(0.904) (0.00475) (0.00474) (0.00474) (0.00475)
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Table 3. Cont.

Variables (1) FE (2) FE-SAR (3) FE-SEM (4) FE-SAR (5) FE-SEM

Inverse Distance Weight Matrix Contiguity Weight Matrix

Observations 637 637 637 637 637
Year FE Y Y Y Y Y
State FE Y Y Y Y Y

R-squared 0.606 0.083 0.060 0.064 0.060
(1) F-Tests

(β1 = β2 = 0 ) 4.67 ** 17.74 *** 17.30 *** 21.15 *** 19.33 ***

(2) F-Tests
(all βs = 0 ) 15.56 *** 167.38 *** 105.06 *** 169.08 *** 156.88 ***

Number of groups 49 49 49 49 49

Standard errors in parenthesis, *** p < 0.01, ** p < 0.05, * p < 0.1. Pseudo R-squares are reported for model (2)–(5).

First, we concentrate on the impact and magnitude of federal funding on smart meter
adoption. The panel FE, FE-SAR, and FE-SEM models demonstrate that the coefficients of
ARRA funding are all positive and pass the significance test with a 90% confidence level
in Model (2) and Model (4). It indicates that federal funding is positively correlated with
the diffusion of the smart meter and is an important incentive to promote its penetration.
Second, with regard to state-level legislative actions, the cumulative number of policy
efforts at the state level is significantly positive at 1%. One piece of additional legislative
action concerning smart meter deployment at the state level increases the adoption rate
by approximately 5%. Third, the educational attainment in the FE-SAR and FE-SEM
models is significantly positive at the 1% level. A greater proportion of college-educated
residents leads to greater adoption of the smart meter as human capital has positive effects
on technological diffusion. Finally, the coefficients for energy intensity are negative and
statistically significant at the 10% level in both FE-SAR and FE-SEM models.

Furthermore, we conducted two F-tests for each model to enhance the credibility of
our model. The first F-test was to determine whether coefficients of ARRA funding and
state actions are jointly statistically different from zero. As shown in Table 3, the p-values
for the F-tests of the joint significance of ARRA funding and state actions were less than 0.05
in Model (1) and less than 0.01 in other models. This suggests that our regression models
fit the data better than the models without those two independent variables. Second, we
also performed the overall regression F-statistic tests that determine whether all the slope
coefficients are zero. The tests yielded p-values that were less than 0.01 in all five models.
The results indicate that the regression models provide better fits to the data than a model
that contains the intercept only. Thus, as expected, smart meter adoption is fairly strongly
related to ARRA funding and state actions.

5. Discussion and Policy Implications

The findings of the study are as follows. First, the distribution of smart meter adoption
presents significant spatial autocorrelation after 2010. A higher penetration rate of the
smart meter in the focal state is associated with higher smart meter diffusion rates in the
neighboring states. It is affected not only by observable factors but also unobservable factors
in the surrounding states. Second, government interventions have positive associations
with smart meter adoption. The ARRA funding is positively correlated with smart meter
adoptions, particularly at the federal level. In addition, state legislative actions have a
significant and positive impact on smart meter adoptions. The possible reasons for this
are (1) some states mandate that regulators approve utilities’ cost recovery frameworks
for metering projects, which sets motivation for smart meter adoption in those states [33];
(2) the related data security and privacy legislation that was enacted by states reduce
the policy uncertainty for the electric power sector and ensure the protection of energy
consumer’s data. In addition, the role of higher education can effectively promote the
diffusion of smart meters, which is consistent with Akhvlediani and Cieślik [70] using
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European evidence. Energy intensity has a negative association with the adoption due to
the competition between different clean energy technologies. Utility companies may have
distributed their resources to different clean energy technology such as solar photovoltaic
technology, and/or may have traded their smart meter deployment with renewable energy
investments when the energy consumption grows [71]. Finally, the above conclusions are
still valid in the tests using the contiguity weight matrix.

Our results are consistent with the existing literature in sustainable technology adop-
tion. More importantly, this study extends the existing literature in a number of ways. First,
the way that we constructed the data has a few innovations. We integrated datasets from
various sources including U.S. EIA, smartgrid.gov, U.S. Census Bureau, etc. We collected
and coded state policies using the number of existing legislative actions in a given year,
and we made it possible to conduct spatial analysis. Secondly, in terms of results, we added
a state dimension to the existing literature, especially with regard to the state policy and
spillover effect. This is the first study, to our knowledge, that explored spatial spillover on
smart meter penetration.

These findings have several policy implications. At the federal level, major policies
promoting smart meters adoption have been absent since the Recovery Act of 2009. As
President Biden presented the USD 2 trillion plan to improve the nation’s infrastructure
and clean energy technologies, this study provides evidence for government investment in
smart meters and smart grids around the nation to build a more resilient and sustainable
economy. Second, the role of the state and local governments is just as important. State
and local policymakers and regulatory agencies, working with utility companies, are
instrumental in establishing a framework for cost recovery mechanisms for smart meter
investment. In addition, smart-grid adoption can also benefit from actions taken by the
states and electric utilities to protect the privacy and security of consumers’ data and clarify
the disclosure rules.

Although this study bridges some of the research gaps on the impacts of government
interventions on smart meter adoption and provides an empirical reference for the spillover
effects of clean energy diffusion, there are a few limitations. First, this analysis is conducted
at the state level and the sample size is limited. In the future, it can be performed at a more
micro level, such as at the utility level. Second, the diffusion of smart meters varies across
sectors (residential, commercial, industrial, and transportation) and each sector has its
unique characteristics. This should be further explored by future studies. Third, it will be
very productive to examine the impacts of smart meter adoptions, especially with regard
to environmental concerns such as energy efficiency and carbon reductions. Researchers
should look closely at the evidence for energy savings and carbon reductions. This focus
will extend our understanding of the relationships between government policies, grid
modernization, and ultimately, sustainable development in the energy sector.

6. Conclusions

In summary, this study constructs unique spatial panel data at the state level to
investigate the spatial patterns of smart meter adoption in the U.S and the impacts of
federal and state policies. We calculated the adoption rate of the smart meter in each state
from 2007 to 2019, and tested the spatial spillover effects of smart meter adoption using the
global spatial correlation. Additionally, fixed effects regression, SAR, and SEM models were
employed to examine the impacts of federal and state government interventions on smart
meter adoption. We found positive associations between government policies and adoption
and identified significant positive spillover effects among U.S. states. These results extend
the existing literature on smart meter adoption by highlighting the importance of the
regional effect of smart meter adoption and the impacts of the multi-layered government
policies. Discussions of these findings provide important implications for the formulation
and implementation of public policies for the modernization of the U.S. electric grid. These
findings provide empirical evidence that supports the government actions for clean energy
technologies adoption, which includes the initiatives of the federal government in seeding
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the investment and establishing incentive programs, and the active roles of the states in
establishing policy frameworks for cost recovery and security and privacy protections.
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