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Abstract: Focusing on the issues of slow convergence speed and the ease of falling into a local
optimum when optimizing the weights and thresholds of a back-propagation artificial neural network
(BPANN) by the gradient method, a prediction method for pork supply based on an improved mayfly
optimization algorithm (MOA) and BPANN is proposed. Firstly, in order to improve the performance
of MOA, an improved mayfly optimization algorithm with an adaptive visibility coefficient (AVC-
IMOA) is introduced. Secondly, AVC-IMOA is used to optimize the weights and thresholds of a
BPANN (AVC-IMOA_BP). Thirdly, the trained BPANN and the statistical data are adopted to predict
the pork supply in Heilongjiang Province from 2000 to 2020. Finally, to demonstrate the effectiveness
of the proposed method for predicting pork supply, the pork supply in Heilongjiang Province was
predicted by using AVC-IMOA_BP, a BPANN based on the gradient descent method and a BPANN
based on a mixed-strategy whale optimization algorithm (MSWOA_BP), a BPANN based on an
artificial bee colony algorithm (ABC_BP) and a BPANN based on a firefly algorithm and sparrow
search algorithm (FASSA_BP) in the literature. The results show that the prediction accuracy of the
proposed method based on AVC-IMOA and a BPANN is obviously better than those of MSWOA_BP,

check for ABC_BP and FASSA_BP, thus verifying the superior performance of AVC-IMOA_BP.
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China is the most populous country in the world and is not only a big pork producer,
but also a big pork consumer. From the perspective of the consumption structure of national
meat products, pork accounts for about 63.45% of the overall consumption of national

meat products. The No. 1 Central Document 2020 pointed out that the stable production
and supply of live pigs is a major topic in the current economic work. It is necessary to
strengthen market monitoring and regulation, and do a good job of ensuring pork supply
and stabilizing pork prices. Whether it is the No. 1 Central Document of 2022 and the No. 1
Document of the Ministry of Agriculture and Rural Affairs, or the just-concluded National
Two Sessions, ‘stable pig production” has become a consensus repeatedly mentioned in the
field of animal husbandry. In recent years, domestic pork prices have fluctuated greatly;
the main factor causing fluctuations in pork prices is the imbalance between supply and
demand. Affected by African swine fever, the supply of pork decreased in 2019-2020, and
the demand for pork did not change significantly, resulting in an increase in pork prices
and a large fluctuation in pork prices. Pork price fluctuations not only affect the income of
pig producers and the economic interests of consumers, but also affect the development of
other industries related to the pig industry. Accurately predicting the future trend of the
pork supply is not only of great significance for ensuring the pork supply and stabilizing
pork prices, but also can promote the healthy development of the national economy. To
improve prediction accuracy regarding the pork supply, many prediction methods have
been deeply studied and discussed. At present, the prediction methods for the pork supply
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mainly consist of time series prediction [1], regression prediction, grey prediction, improved
VAR model prediction, BPANN prediction and combination prediction [2]. In the case of
reasonable structure design of a BPANN, the prediction accuracy and stability of a BPANN
are higher than other prediction methods [3,4]. In addition, BPANNSs have been broadly
used for prediction because of their good linear and nonlinear fitting ability, fault tolerance
and high prediction accuracy. For example, the BPANN method has achieved more accurate
prediction results in human body shape prediction [5], short-term photovoltaic power
generation prediction [6], railway passenger traffic volume prediction [7], centrifugal
pump performance prediction [8] and other prediction problems. However, because the
error function is a multi-extremum function, if the gradient descent method is used to
optimize the weights and thresholds of a BPANN, it is easy to fall into a local optimum,
which will cause the fitting accuracy to be low. In recent years, intelligent optimization
algorithms have developed rapidly and have been broadly used in the field of dealing with
complex optimization problems. In addition, an intelligent optimization algorithm has the
characteristics of strong search ability and not easily falling into local optima, which can
overcome the shortcomings of the gradient descent method in optimizing the weights and
thresholds of a BPANN. Therefore, many scholars began to use intelligent optimization
algorithms to optimize the weights and thresholds of BPANNSs. The authors of several
papers [9-12] selected an improved genetic algorithm, improved grey wolf optimization
algorithm, particle swarm optimization algorithm and whale optimization algorithm,
respectively, to optimize the weights and thresholds of BPANNSs, which improved the
fitting accuracy of the BPANN:S. It is worth noting that when the weights and thresholds of
a BPANN are optimized by an intelligent optimization algorithm, if the performance of
intelligent optimization algorithm is improved, the fitting accuracy of the BPANN will also
be improved.

All kinds of biological and natural phenomena in nature always give people pro-
found enlightenment, so people obtain design inspiration and put forward a great deal of
intelligent optimization algorithms. In 2020, Konstantinos Zervoudakis [13] proposed a
new swarm intelligent optimization algorithm, the mayfly optimization algorithm (MOA),
inspired by the flight and reproduction behavior of mayflies. Because MOA has good
optimization ability, it has been applied to many practical engineering optimization prob-
lems such as performance prediction for a solar photovoltaic thermal collector [14], precise
modeling of a PEM fuel cell [15], bearing fault diagnosis [16], COVID-19 diagnosis [17],
etc. The existing MOA has the problems of slow optimization speed and easy premature
convergence when solving high-dimensional nonlinear complex optimization problems. In
recent years, more and more scholars have proposed improved research on MOA. After
Konstantinos Zervoudak [13] proposed MOA in 2020, he proposed improvement points
such as a gravity coefficient and velocity processing to address the shortcomings of the
original algorithm. In 2020, Gao et al. [18] considered that attracted mayflies should move
as far as possible to the mayflies that attracted them. Based on this, the velocity update
formula was revised. In the same year, Gao et al. [19] introduced opposition-based learning
rules into the algorithm to find the optimal solution using the worst individual guidance.
In 2020, Zhao et al. [20] introduced the idea of Chebyshev mapping into the algorithm to
increase the probability of obtaining a better solution. In the same year, Zhao et al. [21]
proposed a negative MOA based on the idea that mayflies move away from the worst global
position. In 2022, Zhang et al. [22] proposed a mayfly—sparrow search hybrid algorithm
with a circle chaotic map and Lévy flight, and used nonlinear inertial coefficients to balance
the relationship between global search and local search. In the same year, Zhou et al. [23]
further improved the quality of the algorithm by introducing orthogonal learning and a
chaotic exploitation strategy.

Because there are many weights and thresholds to be optimized in a BPANN, the opti-
mization of weights and thresholds in a BPANN is a nonlinear and complex optimization
problem with multiple extremums. The existing improved MOA algorithm still has the
disadvantages of low precision, ease of falling into a local optimum and slow convergence
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speed when solving complex optimization problems. In order to improve the global search
ability and convergence speed of MOA, an improved mayfly optimization algorithm with
an adaptive visibility coefficient is proposed (AVC-IMOA), and the improved MOA is
used to optimize the weights and thresholds of the BPANN(AVC-IMOA_BP). On this basis,
the BPANN with the best weights and thresholds is used to predict the pork supply in
Heilongjiang Province, which improves the prediction accuracy of the BPANN.

Based on the above analysis, the main contributions of this paper can be summarized
as follows:

(1) Animproved speed updating formula is proposed to overcome the disadvantage that
the speed of a mayfly in the mayfly optimization algorithm cannot be updated due to
the large distance between individuals;

(2) An adaptive visibility coefficient is introduced to balance the global search ability and
local search ability of the algorithm;

(3) Animproved mating operator is proposed to increase the probability of producing
more potential offspring mayflies;

(4) AVC-IMOA is used to optimize the initial weights and thresholds of the BPNN, which
improves the fitting accuracy of the network;

(5) AVC-IMOA_BP is used to forecast the pork supply in Heilongjiang Province, China,
laying a foundation for studying the fluctuation law of the pork price and the balance
of pork supply and demand.

2. Material and Methods
2.1. BPANN

Theoretically, it has been proven that for a three-layer BPANN, as long as there are
enough neurons in the hidden layer, it can fit any complex nonlinear function, which shows
that the BPANN has a strong fitting ability. The structure of the three-layer BPANN is
shown in Figure 1. The formulas and charts related to neural networks involved in this
section can be found in the literature [24].

X1
(4]
X2 :
O
Xi .
Om
Xn

Figure 1. Three-layer BPANN.

In Figure 1, the input sampleis X = (X1, Xp, ..., X¢, ..., X)), X, =(xy, x2, ..., Xiy .-,
xn)T. The output of the hidden layeris Y = (Y1, Yy, ..., Y}, ..., Ys), and the output of the
hidden layer corresponding to the sample X;is Y, = (y1, y2, .- , Yj, - -, yp)T. The output of the
output layeris O = (01, Oy, ..., Oy, ..., Og). The output of the output layer corresponding to
the sample X, is O, = (01,02, ... , 0, ..., om)T. The expected outputis D = (D1, D, ..., Dy,
..., Dg), and the expected output corresponding to the sample X, is D, = (d1, dy, ..., dy)T.
The weight matrix between the input layer and the hidden layeris V = (V1, V5, ..., Vi,...,
Vp), and V; is the weight vector corresponding to the j-th neuron in the hidden layer. The
weight matrix between the hidden layer and the output layeris W = (W, Wy, ..., Wy, ...,
Wi,), and Wi is the weight vector corresponding to the k-th neuron in the output layer.
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For the r-th training sample, X;, the sum of errors of all neurons in the output layer of
the BPANN is recorded as E,. The calculation formula of E, is

m

E, =05Y (dy — o) 1

k=1

The average value of the sum of errors of all samples is recorded as E,;, and the
calculation formula of E,; is

1 S
Ew= Z E, (2)
Sr:l

where S is the number of samples.

First, it is judged whether E;, meets the given error accuracy requirements. If it does,
the training is stopped, and the optimal weight and threshold are output; otherwise, the
weights and thresholds are adjusted until the given accuracy requirements are met.

To calculate the value of E,, it is necessary to calculate the output of the output layer.
Let the output of the output layer be O, = (01,02, ... , 0k, ..., om)T, and the net input of the
output layer be net;. For the output layer, there are

or = f(nety) k=1,2,...,m €)
4

netp =y Wiy, k=1,2,...,m (4)
j=0

Let the net input of the hidden layer be net;; then, the calculation formulas of the net
input net; and output y; of the hidden layer are

yj=f(netj) j=12,...p ®)
n

nEt]:Z:Ul]xl j:l,2,...,P (6)
i=0

In Equations (3) and (5), the activation functions are Sigmoid functions. The Sigmoid
function is as follows

F) = 1y )
The derivative of f(x) is
fr(x) = 301~ F(x)? ®

With the expansion of E, in Equation (1) to the hidden layer, the calculation formula
of E, is

2

m P

E, =05Y [ — f(net)]* =0. 52 [dk - <Z wjkyjﬂ )
k=1 j=0

E; in Equation (9) is expanded to the input layer, and there is

2

2
m 14 m p n
E = 0.5k21{dk -f L;O wjicf (nefj)l } = 0-5k21{dk —-f L‘;O Wik f (EO Uz‘jxi)] } (10)
From Equations (2) and (10), there is

r=1 r=1k=1

s S m p n 2
Ew = %Z E = %2 Z{drk _fLZ wikf(Zvi]‘x”')‘| } (11)
i=0 i=0
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It can be seen from Equation (11) that the size of E;, can be changed by adjusting the
weights. When E,;;, < e (e is a sufficiently small positive number) or the preset learning
times are reached, the training process is ended. Otherwise, the weights and thresholds of
each layer are adjusted to gradually reduce Eg.

2.2. MOA

MOA is a swarm intelligence optimization algorithm based on the flight and repro-
duction behavior of mayflies. Suppose that an initial population X with size n is randomly
generated, X = (X1, Xp, ..., Xj, ..., Xu), X; = (i1, Xi2, ... , xip), and D is the dimension of
the variable. X is divided into two groups: one is male mayflies, and the other is female
mayflies. The velocity of each mayfly in the population is V, where V = (V1, Vo, ..., V;,
oo, V), Vi=(vi1, via, ..., Uip). Let pbest; be the historically optimal position of the i-th
mayfly in the population, and gbest be the historically optimal position of all mayflies in
the population. The formula of each part of the standard mayfly optimization algorithm
involved in this section can be found in the literature [13].

2.2.1. Position and Velocity Updates of Male Mayflies

Male mayflies gather in groups a few meters above the water to perform courtship
dances. They move according to their own and other individuals” experiences, but not at a
rapid rate. Let x;I be the position of the i-th male mayfly at the t-th iteration, and v! be the
velocity of the i-th male mayfly at the ¢-th iteration. The position update formula for male
mayflies is as follows

X = x4 ot (12)

The velocity update formula of male mayflies is
ol =of + aje P (pbest; — x}) + aye P ( gbest — x}) (13)

where 1, is the individual cognitive coefficient, and a; is the social contribution coefficient;
usually, a; = 1, while ap = 1.5. B is the visibility coefficient controlling the visible range of a
mayfly; usually, B = 2. r, is the Euclidean distance between the i-th mayfly and pbest, while
r¢ is the Euclidean distance between the i-th mayfly and gbest.
The velocity update formula of the best male mayfly in the population is

ol =ovl+dxr i=12--,n/2 (14)
where d is the dance coefficient—usually, d = 0.1—and r is a D-dimensional random vector
evenly distributed between [—1,1].

2.2.2. Position and Velocity Updates of Female Mayflies

Each female mayfly has its own corresponding mate. Male and female mayflies are
paired in order, that is, the best male mayfly mates with the best female mayfly, and the
suboptimal male mayfly mates with the suboptimal female mayfly. When its spouse is
better than itself, the female mayfly moves toward its spouse; otherwise, the female mayfly
will randomly walk.

Let y! be the position of the i-th female mayfly at the t-th iteration. The position update
formula of the female mayflies is

v =yi+ot i=051+1,05n+2,--,n (15)

The velocity update formula of the female mayflies is

1 Uit aze P (xt—yt) if (vi) > f(x) (16)
! vl + fi xr otherwise
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where 1y, is the Euclidean distance between a female mayfly and its spouse, f; is the
random walk coefficient—usually, f; = 0.1—and r is a D-dimensional random vector evenly
distributed between [—1,1].

2.2.3. Mating of Mayflies

During the mating process, the optimal individual of the male mayflies mates with
the optimal individual of the female mayflies, the suboptimal individual of male mayflies
mates with the suboptimal individual of female mayflies, and so on. Supposing that the
male mayfly involved in mating is x,;, and the female mayfly is x;, the two offspring
individuals obtained after mating are offspring1l and offspring2. The formulas for mating x;
and x;, to produce offspring are as follows:

offspringl = L+ xy + (1 — L) * x¢ (17)

offspring2 = L+ xp 4 (1 — L) * xp, (18)

In Equations (17) and (18), L is a random number uniformly distributed between
[—1,1].

3. Improved Mayfly Optimization Algorithm with Adaptive Visibility Coefficient
3.1. Improved Velocity Update Formula

Because there is a coefficient e " in the velocity update formula of MOA in the

existing literature, when the distance r between the mayflies is large, the value of e
approaches 0. If the value range of the variable is large, or the distance between the mayflies

is large at the beginning iteration, the velocity update formula with the coefficient e P is
almost ineffective. The trend of e~#* with r is shown in Figure 2.

Figure 2. Change trend of ¢ =" * with 7.

It can be seen from Figure 2 that when the distance between mayflies is r > 2, the
value of e P approaches 0. At this time, except for the random walk mayflies, the
velocity update formula of most mayflies in the population almost does not work, resulting
in almost no update of the position of these mayflies, so potential mayflies cannot be
generated. Therefore, when the distance between mayflies is r > 2, the velocity update
formula is not instructive, and MOA has a slow convergence speed and weak global search
ability. In addition, when the problem is to be optimized with a large range of variable
values, the distance between the mayflies is relatively far at the beginning of iteration,
e b approaches 0, and the attraction term does not work. As the number of iterations
increases, the distance between the mayflies gradually decreases. When r < 2, the attraction
term begins to work, and the heuristic of the velocity update formula gradually increases.
The algorithm has a slow convergence speed in the early stage of iteration and a fast
convergence speed in the later stage. To solve the above problems, an improved velocity
update formula is proposed.
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(a) Improved velocity update formula of male mayflies:

ol = ol + a1/ (1+1,) (pbest; — x!) + ayB/ (1+74) ( gbest — x!) (19)

where a; is the individual cognitive coefficient, and a; is the social contribution coefficient;
usually, a; = 1, while a, = 1.5. 7 is the Euclidean distance between the i-th mayfly and
pbest, while r is the Euclidean distance between the i-th mayfly and gbest. The best male
mayfly in the population still updates its velocity according to Equation (14).
(b) Improved velocity update formula of female mayflies:
S { + B/ (1) (¥ —yh) if (i) > f(x) 0)

i t .
v+ fixr otherwise

where 7y, is the Euclidean distance between female mayflies and their spouses, and
f1 is the random walk coefficient; usually, f; = 0.1, and r is a D-dimensional random
vector evenly distributed between [—1,1].

The improved velocity update formula solves the problem that the disturbance term
caused by the distance fluctuation not working, and it avoids the situation of the algorithm
stagnating and easily falling into a local optimum because the velocity and position of
some mayflies are not updated in the search process. The heuristic and search ability of the
improved algorithm are enhanced.

3.2. Adaptive Visibility Coefficient

In the existing MOA, the value of § is a constant. If the value of § is large, the
exploration ability of the algorithm is strong. If the value of § is small, the algorithm’s
development ability is strong. Therefore, when B is a constant, MOA cannot better balance
the exploration and exploitation capabilities of the algorithm. Aiming at this problem, a
calculation formula of adaptive change for 3 is given as follows

B= (1.8 - m> (0.8 + 0.1 * rand) (21)

where Maxtime is the maximum running time of the algorithm set in advance, runtime is
the time the algorithm has run so far, and rand is a random number between [0,1].

Because a1 and a; are constants, the effect of the attraction term on velocity in Equations
(19) and (20) depends on the values of /(1 + 1), B/(1 + r¢) and B/(1 + ry). B/ (1 + 1)
can be taken as an example to analyze the change trend of B/(1 + r¢) with the number of
iterations. The CO1 test function in CEC 2017 is selected, and the maximum running time
of the algorithm is set to 20 s. Taking /(1 + r,) in the male mayflies update formula as
an example, the value of B/(1 + r,) of the 10th male mayfly in the population is recorded
every 100 iterations. The trend of B/(1 + ;) with the increase of the number of iterations is
shown in Figure 3.

0 20 40 60 80 100 120 140
Number of iterations / 100

Figure 3. The change trend of B/(1 + r¢) with the number of iterations.
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It can be noticed from Figure 3 that as the number of iterations increases, the overall
trend of B/(1 + rg) increases first and then decreases. The value of /(1 + rg) increases
gradually at the beginning of iteration and decreases with oscillations later in iteration.
Therefore, the exploration ability of a male mayfly is strong in the early stage of iteration,
and the exploitation ability of male mayfly is strong in the later stage of iteration. In
the whole iteration process, 8/(1 + r¢) does not approach 0. In summary, the improved
velocity update formula can better balance the exploration and exploitation capabilities of
the algorithm and help to improve the performance of the algorithm.

3.3. Improved Mayflies Mating Operator

The mating operator L in the existing MOA literature is a random number in a given
range, and the two offspring mayflies produced by mating are located on the connection
between the two parent mayflies. To illustrate the spatial position of the offspring mayflies
produced by mating according to Equations (17) and (18), a two-dimensional space is
taken as an example. It is assumed that the male mayfly involved in mating is X, the
female mayfly is Xg, and L is a random number between [—1,1]. The spatial position of the
offspring mayflies produced by mating is shown in Figures 4 and 5.

X2

o X

Figure 4. The spatial position of the mayflies produced according to Equation (17).

X

Figure 5. The spatial position of the mayflies produced according to Equation (18).

In Figure 4, the spatial position of the mayflies produced by mating according to
Equation (17) is on the line segment X;A. Also, the spatial position of the offspring mayflies
produced by mating according to Equation (18) is on the line segment AX;;,. As the saying
goes, ‘One who nears vermilion becomes red, and one who nears ink becomes black’, so
the male mayflies among the two parental mayflies have a greater probability of being
near the optimal solution. Because X, is superior to Xy, the offspring of mating mayflies
should be located near the male mayflies in the parent generation, which is more likely to
produce potential offspring mayflies. However, the offspring mayflies produced by mating
according to Equations (17) and (18) have only a small probability of being located near X,
can only be located on the line XA or AXj, connecting Xy and X;, and cannot be located in
other areas near X;;,.

In order to overcome the problems of the mating operators in Equations (17) and (18),
an improved mating operator is proposed, which causes the offspring mayflies produced
by mating to be located near the male mayflies. The specific mating operators are as follows

offspringl = L1 Xy, + (1—L1)OX (22)

offspring2 = Ly ©Xs + (1-L2) O X (23)
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where © denotes the multiplication of two vectors or the multiplication of elements at
the same position in the matrix, L; is a D-dimensional random vector that is uniformly
distributed between [0,0.5], and L; is a D-dimensional random vector that is uniformly
distributed between [0.5,1].

The spatial positions of the offspring mayflies produced by mating according to
Equations (22) and (23) are shown in Figures 6 and 7.

X2

o

Figure 6. The spatial position of the mayflies produced according to Equation (22).

X2

Xr| —

0o

Figure 7. The spatial position of the mayflies produced according to Equation (23).

The spatial positions of the offspring mayflies produced by mating according to Equations
(22) and (23) are the shadowed parts in the figures. It can be seen from Figures 6 and 7 that
the probability that the offspring mayflies produced by mating according to Equations (22)
and (23) are located near X, is much higher than that produced by mating according to
Equations (17) and (18). Therefore, compared with Equations (17) and (18), mating according
to Equations (22) and (23) is more likely to produce more potential offspring individuals.

3.4. Time Complexity Analysis

The time complexity of the algorithm is an important indicator reflecting the advan-
tages and disadvantages of the algorithm, so this section analyzes the time complexity
of the proposed AVC-IMOA. The following components are primarily responsible for
increasing the time complexity of AVC-IMOA: the generation of the initial population, the
speed and position updating of male mayflies, the speed and position updating of female
mayflies and the mating operation of male and female mayflies. These four operations are
represented by D, @, ® and (), respectively. Suppose the population size is 7, the number
of male mayflies is n/2, the number of female mayflies is 11/2, and the dimension of the
variable is D. The time complexity analysis is summarized in Table 1.

3.5. Flow Chart of AVC-IMOA

Taking the objective function minimization as an example, the flow chart of AVC-
IMOA is shown in Figure 8.

3.6. Pseudocode of AVC-IMOA

A maximum running time for the algorithm, denoted as Maxtime, is set. When the
algorithm runs to a set maximum, it then stops running and outputs the final result. The
pseudocode of the improved mayfly optimization algorithm with an adaptive visibility
coefficient is shown in Algorithm 1.
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Algorithm 1: Improved mayfly optimization algorithm with adaptive visibility coefficient
(AVC-IMOA)

Begin
Randomly generate an initial population with size n and calculate the fitness values of all
individuals.
The global optimal position gbest of all mayflies and the optimal position pbest of male mayflies
were recorded.
Runtime =0
While runtime < Maxtime do

Update the position and velocity of male mayflies according to Equations (12), (14), (19)
and (21).

Update the position and velocity of female mayflies according to Equations (15), (20) and
(21).

Male and female mayflies mate according to Equations (22) and (23) to produce
offspring.

Process the individuals beyond the search scope.

Recalculate the fitness values of all mayflies and retain n better individuals.

Update gbest and pbest.
End while
Output the optimal solution and the optimal value.
End
‘ Initialize the relevant parameters and generate initial population of size n
‘Culculalc fitness values and rank them from small to large
Recorded the optimal position gbest of male mayflies and the global optimal position pbest
\
‘ Update the speed and position of male mayflies according to Equations (12), (14), (19) and (21) ‘
‘ Update the speed and position of female mayflies according to Equations (15), (20) and (21) ‘
‘ Male and female mayflies mate according to Equations (22) and (23) to produce offspring
Processing the individuals beyond the search scope ‘
‘ Recalculate the fitness values of all mayflies and retain » better individuals
Update pbest and xbest
No

/hether satisfies the stop condition?

‘ Output the optimal solution and optimal value ‘

End

Figure 8. The flow chart of AVC-IMOA.

Table 1. The time complexity of AVC-IMOA.

Names of Various
Operators @ &) ® ® AVC-IMOA

Time complexity O(n) On/2) O(n/2) O(n/2) O(n) + O(n/2) + O(n/2) + O(n/2) = O(n)

4. Numerical Experiments and Analysis

The CEC 2017 test function set is currently the internationally used test function set to
measure algorithm performance. All constrained optimization problems in the test function
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set are minimization problems. To test the performance of the proposed AVC-IMOA, the
CEC 2017 test function set [25] is selected as a source of test functions.

4.1. Algorithm Performance Evaluation Indicator

In order to compare the performance of AVC-IMOA and various comparison algo-
rithms, the mean value (Mean), standard deviation (Std) and Friedman rank ranking of
algorithms are used as performance evaluation indicators [26].

1. Mean

The mean value is defined as the average of the optimal value of the test function
obtained by the algorithm in R independent runs, and is recorded as Mean. The calculation
formula of Mean is

R s
Mean = E:Tlfl (24)

where R is the total number of independent runs of the algorithm, and f; is the optimal
value of the test function obtained when the algorithm runs independently for the i-th time.

2. Std

The standard deviation can reflect the dispersion degree between the optimal value
obtained by R operations of an algorithm and the average value of R optimal values. The
standard deviation is recorded as Std. A large Std represents a large difference between
most of the optimal values and their averages; a smaller Std means that the optimal value
is closer to the average. Therefore, the smaller the Std, the better the robustness of the
algorithm. The calculation formula for Std is

2
Std = \/ElRl (fl — Meﬂn) (25)

R

3. w/it/l

To better compare the performance of AVC-IMOA with the various algorithms in-
volved in the comparison, the comparison result of the Mean of AVC-IMOA with another
algorithm (denoted as, Algl) involved in the comparison is denoted as w/t/l. For a test
function, if the performance of the AVC-IMOA algorithm is better than Alg1, the value of
w is denoted as 1. If the performance of the AVC-IMOA algorithm is the same as that of
Alg1, the value of t is denoted as 1. If Alg1 performs better than AVC-IMOA, the value of [
is recorded as 1. For all test functions, adding the value of w = 1 in Alg1 and AVC-IMOA
yields the value of w. Similarly, the values of t and I can be calculated.

4.  Friedman rank ranking

Friedman rank ranking is a nonparametric statistical method which can rank the
performance of algorithms involved in comparison [26]. When the number of algorithms
participating in the comparison is m and the number of selected test functions is k, the
Friedman ranking of the algorithm can be calculated according to the following steps.

(1) Each algorithm runs R times independently on each test function and retains the
optimal value for each run.

(2) According to Equation (24), the average value of the optimal value obtained from R
runs is calculated.

R
L fi()
Meanf:lle i=1,2,...m j=1,2,...k (26)

where m is the number of algorithms involved in the comparison, k is the number of
test functions, R is the number of independent runs, and meanf; is the average value
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of the optimal value obtained by the i-th algorithm independently running R times on
the j-th test function.

(3) For each test function, m algorithms are sorted in accordance with the meanf; from
small to large and given the mnkif (i=1,2,...,m;j=1,2,...,k) of each algorithm.
Sometimes there will be cases where the algorithms involved in the comparison obtain
the same meanf/; in this case, the average value of the ranking position is taken as the
rank ranking.

(4) According to Equation (27), the Averank; of each algorithm is calculated.

1 k .
Averank; = EZ mnkﬁ , 1i=12,...m (27)
j=1

(5) After sorting by the Averank; of each algorithm from small to large, the sorting result
is the final ranking of the various algorithms.

4.2. Parameter Setting

To verify the performance of AVC-IMOA, four MOA algorithms and two meta-heuristic
algorithms are selected for comparison. These are the algorithms involved in the compari-
son: standard MOA (MOA) [13], MOA with velocity processing and gravity coefficient (VG-
MOA) [13], MOA with improved velocity update formula (IMOA) [18], MOA with opposition-
based learning rules (OBL_MO) [19], sparrow search algorithm (SSA) and opposition-based
learning particle swarm optimization by group decision-making (OBLPSOGD) [27]. The
parameters of the algorithms involved in the comparison are all the values found in the
original literature, and the specific parameter values are shown in Table 2.

Table 2. Algorithms and parameter settings involved in the comparison.

Algorithm Year Parameters
MOA 2020 a1=1,a,=15p=2,d=01,/=01
VGMOA 2020 ap=1,ap=15=2,d=0.1, £ =0.1, gmax =0.9, i = 0.5
IMOA 2020 a1 =1,ap=15pB=2,d=01,f=01
OBL_MO 2020 a1=1,a,=15p=2,d=01,/=01
OBLPSOGD 2018 Wyyin = 0.4, Wpax = 0.9, Pg=0.3, 0 =3.2,k=15,0=0.3
SSA 2020 PD =0.2NP, SD =0.1INP, ST =0.8
AVC-IMOA 2022 a0y =1,ap=15,d=01.£,=01

4.3. Test Results and Analysis
4.3.1. Test Results

To ensure that the experimental results are fair and reasonable, all test experiments
are completed on the same computer. All experiments in this paper are carried out in the
same operating environment, that is, under the Windows 10 system, using an AMD Ryzen
9 3900 12-core Processor CPU @ 3.09 GHz desktop computer. The software and version
used are: MATLAB R2019b. Let the population size of the seven algorithms be n = 30, the
dimension of the variable be D = 30 and the maximum running time be Maxtime = 20 s.
When the algorithm reaches the maximum running time, stop the iteration and output the
optimal solution and optimal value. Each test function runs 25 times independently, and
the Mean and Std of the optimal values of each test function obtained by each algorithm
are recorded. The results of each algorithm on the CEC 2017 test function set are shown in
Table 3, and the best results for each test function have been bolded. The Friedman mean
rank and final rank ranking results of each algorithm are shown in Figure 9.



Sustainability 2022, 14, 16559 13 of 21
Table 3. Calculation results of each algorithm.
Statistical Algorithm
Problem Indicator:
ndicators MOA VGMOA IMOA OBL_MO SSA OBLPSOGD AVC-IMOA
Mean 1.36 x 10?2 8.05 x 103 1.69 x 10" 2.89 x 102 1.44 x 10° 7.88 x 107 222 x 1073
Co1
Std 5.09 x 107 3.21 x 107 4.16 x 102 1.55 x 102 401 x 10* 3.37 x 107 7.81 x 10713
Mean 253 x 102 1.16 x 102 2.12 x 107 2.80 x 102 5.32 x 10* 1.61 x 10° 3.99 x 10710
C02
Std 8.39 x 107 415 x 103 3.28 x 102 1.18 x 102 1.51 x 10* 7.26 x 10? 1.54 x 10°
Mean 294 x 10° 1.02 x 10° 3.81 x 10° 1.80 x 10° 9.21 x 107 6.45 x 10* 6.53 x 10°
Co03
Std 6.49 x 10° 1.48 x 10° 3.20 x 10° 3.13 x 10° 3.32 x 107 2.94 x 10* 1.07 x 10°
Mean 8.79 x 10? 9.16 x 10? 9.01 x 10? 8.81 x 10? 6.17 x 10? 5.67 X 102 6.57 x 10?
Co04
Std 6.95 x 10! 4.15 x 10 5.67 x 10! 6.55 x 10! 2.71 x 10! 6.27 x 10! 1.92 x 10!
Mean 3.75 x 10 4.18 x 10 5.75 x 10! 3.87 x 10! 6.74 x 10° 4.98 x 10? 1.97 x 10!
C05
Std 2.68 x 10 2.75 x 10! 6.17 x 10! 2.67 x 10! 6.76 x 10* 3.43 x 10? 6.43 x 10°
Mean 1.00 x 10° 5.30 x 107 6.32 x 108 6.70 x 107 1.19 x 10 1.25 x 10° 2.98 x 107
Co06
Std 1.43 x 108 1.07 x 108 1.51 x 108 1.44 x 108 4.76 x 10° 4.43 x 10° 1.03 x 10°
Mean 8.46 x 107 1.25 x 10* 1.09 x 10'2 3.74 x 10? 7.67 x 1013 —7.28 x 10! —3.06 x 102
Cco7
Std 5.25 x 10° 6.33 x 10* 1.70 x 10" 2.20 x 10° 1.64 x 1013 1.41 x 10? 1.47 x 10?
Mean 1.61 x 10° 1.86 x 10° 1.04 x 10° 9.89 x 10° 1.63 x 107 1.17 x 101 7.19 x 10*
Co08
Std 9.05 x 10? 1.41 x 10° 4.62 x 10° 6.80 x 10° 5.98 x 10'® 8.10 x 10'2 3.31 x 10*
Mean 7.25 x 10° 6.22 x 10° 4.02 x 10° 6.79 x 10° 8.31 x 10%3 8.91 x 10" 2.18 x 10°
C09
Std 2.40 x 10° 1.88 x 10° 1.24 x 107 2.31 x 10° 4.30 x 10'3 2.2 x 102 2.97 x 10°
Mean 3.71 x 10 3.16 x 10! 1.19 x 10° 2.18 x 10? 3.12 x 108 2.23 x 1013 2.76 x 10
C10
Std 5.08 x 10 2.97 x 10! 5.67 x 10° 248 x 10? 9.28 x 107 2.07 x 1013 8.29 x 10°
Mean 2.65 x 10'2 461 x 10 4.86 x 1013 3.93 x 1012 2.14 x 107 8.92 x 10'° 5.87 x 10'°
C11
Std 4.40 x 10'2 7.24 x 101 6.45 x 1013 5.20 x 10' 8.61 x 10'° 9.96 x 10'° 1.01 x 10"
Mean 9.68 x 10! 8.05 x 10! 1.29 x 10? 1.09 x 102 2.59 x 107 1.40 x 10'2 1.31 x 10!
C12
Std 3.36 x 10! 2.83 x 10! 2.85 x 10! 3.88 x 10! 4.99 x 10 1.80 x 10'2 9.76 x 10°
Mean 6.90 x 10 1.78 x 10" 7.53 x 10%° 1.80 x 10%° 2.86 x 107 1.57 x 10% 591 x 10
C13
Std 3.77 x 10" 8.85 x 10™ 2.66 x 10'° 7.15 x 10% 3.93 x 10' 1.22 x 10% 245 x 10
Mean 1.94 x 10° 1.97 x 10° 2.06 x 10° 1.97 x 10° 5.25 x 107 2.77 x 1012 1.41 x 10°
Cl4
Std 7.63 x 102 7.50 x 102 8.48 x 102 9.82 x 102 542 x 10% 5.22 x 10'? 2.02 X 10%
Mean 2.31 x 10! 2.45 x 10! 2.37 x 10! 2.27 x 10 2.32 x 107 1.49 x 10 2.57 x 10!
C15
Std 2.57 x 10° 3.07 x 10° 3.76 x 10° 3.86 x 10° 3.75 x 10'® 1.60 x 10° 5.37 x 10°
Mean 2.41 x 102 2.39 x 10? 2.42 x 10% 2.37 x 102 2.42 x 107 1.34 x 102 1.32 x 102
C16
Std 1.01 x 10! 9.88 x 10° 1.27 x 10! 1.15 x 10! 3.50 x 10'® 7.55 x 10° 1.46 x 10'°
Mean 9.61 x 10 9.61 x 10 9.61 x 10 9.61 x 10 2.86 x 107 1.44 x 102 9.61 x 10
Cc17
Std 7.62 x 10 3.93 x 10° 9.95 x 1073 5.34 x 10 3.44 x 10 2.82 x 10'2 4.44 x 10?
Mean 9.95 x 10 4.78 x 104 1.38 x 10" 6.52 x 10™ 213 x 10% 3.80 x 10" 5.97 x 10"
C18
Std 1.65 x 105 8.14 x 10" 257 x 10%° 9.78 x 10% 443 x 107 438 x 10" 1.68 x 10™
Mean 1.85 x 107 1.85 x 10" 1.85 x 107 1.85 x 107 1.85 x 107 1.84 x 10" 1.83 x 10V
C19
Std 9.16 x 10%3 7.14 x 1013 8.55 x 1013 7.91 x 1013 4.15 x 1013 1.84 x 10" 4.87 x 10°
Mean 2.89 x 10° 3.10 x 10° 7.61 x 10° 2.76 x 10° 8.27 x 10° 8.26 x 10° 2.50 x 10°
C20
Std 5.11 x 107! 6.82 x 1071 2.79 x 1071 4.44 x 10" 3.51 x 107! 410 x 107 449 x 107
Mean 1.21 x 10? 8.53 x 10! 1.39 x 10? 1.05 x 10? 1.10 x 10" 6.58 x 102 1.10 x 10!
C21
Std 4.03 x 10! 3.55 x 10! 2.05 x 10! 3.26 x 10! 2.11 x 10% 6.22 x 1012 1.03 x 10!
Mean 7.30 x 10™ 1.77 x 101 5.77 x 10'® 1.89 x 10" 1.17 x 10" 4.64 x 10% 8.46 x 101
C22
Std 4.40 x 10 9.42 x 10 2.04 x 10" 9.23 x 10 1.72 x 10'° 3.74 x 101 5.17 x 10
Mean 1.97 x 10° 1.99 x 10° 2.04 x 10° 1.97 x 10° 2.00 x 10'7 1.92 x 101 1.43 x 10°
C23
Std 6.09 x 102 8.28 x 102 9.63 x 102 7.98 x 1072 3.46 x 10'® 2.80 x 1013 3.23 x 102
Mean 232 x 10! 2.17 x 10! 237 x 10! 2.36 x 10! 9.18 x 10 1.59 x 10! 2.35 x 10!
C24
Std 4.43 x 10° 2.51 x 10° 2.99 x 10° 4.08 x 10° 1.17 x 10'® 1.45 x 10° 3.80 x 10°
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Table 3. Cont.
Problem Isrt;tiistticil Algorithm
cators MOA VGMOA IMOA OBL_MO SSA OBLPSOGD AVC-IMOA
Mean 242 x 10? 2.38 x 102 243 x 10? 2.40 x 102 8.46 x 1016 139 x 102 242 x 10?
C25
Std 1.09 x 10! 9.58 x 10° 9.05 x 10° 1.14 x 10! 1.72 x 106 1.01 x 10! 130 x 10!
Mean 9.61 x 101 9.61 x 10%° 9.61 x 10 9.61 x 10 117 x 107 5.00 x 1012 9.61 x 10
C26
Std 342 x 107 3.14 x 107 3.05 x 103 6.69 x 103 1.71 x 10'6 7.47 x 1012 474 x 102
Mean 2,01 x 1013 7.94 x 1013 6.84 x 101 2.35 x 10 5.86 x 107 3.99 x 10" 8.14 x 1012
c27
Std 2.33 x 103 274 x 10% 1.05 x 105 7.13 x 101 1.07 x 10 5.09 x 101 1.77 x 108
Mean 1.85 x 107 1.85 x 10V 1.85 x 1077 1.85 x 1077 1.85 x 107 1.84 x 107 1.85 x 1077
C28
Std 1.10 x 10 112 x 1014 9.35 x 1013 8.29 x 1013 7.60 X 1013 2.42 x 104 142 x 1014
Mean: w/t/1 26/2/0 25/2/1 26/2/0 26/2/0 28/0/0 21/0/7 -
The value of mean rank . The value of final rank
8.00
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4.00 346
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Figure 9. Friedman ranking results of various algorithms. (a) Mean rank, (b) Final rank ranking.

4.3.2. Result Analysis

(1) Result analysis of test function

It can be seen from Table 3 that the quality of VGMOA is the best when using the above
seven algorithms to solve the C17 and C25 test functions. When solving the C26 test function,
the solution quality of IMOA is the best. When solving the seven test functions C03, C04, C13,
C15, C22, C24 and C28, the solution quality of OBLPSOGD is the best. When solving the other
19 test functions, AVC-IMOA has the best solution quality. According to the value of w/t/lin
Table 3, the performance of AVC-IMOA is better than the other six algorithms.

As can be observed from Figure 9, AVC-IMOA ranks first among all algorithms when
the dimension of the variable is D = 30, which indicates that the performance of AVC-IMOA
is better than the other six algorithms involved in the comparison.

In addition, in order to verify whether there are significant differences in the perfor-
mance of the above seven algorithms, the Friedman test method is selected. The Friedman
test was first proposed by Friedman in 1945 as a nonparametric test method to determine
whether there are significant differences between algorithms [28]. The Friedman test results
of the seven algorithms are shown in Table 4.

Table 4. Friedman test results for each algorithm.

Dimension
Level

Significance

Null
Hypothesis

Alternative
Hypothesis

Number of 2

2 -
Algorithms X X" afk—1] p-Value

D =30

« =0.05

7 91.62 12.50 1.39345x 10717 Reject Accept
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Table 4 shows that when the significance level is & = 0.05, the critical value is x2 «[k—1] = 12.50,
while the test value is x? = 91.62. Therefore, x? > )(i k1] which shows that there are significant
differences in the performances of the above seven algorithms.

To sum up, from the running results of each algorithm on the CEC 2017 test function set,
the performance of AVC-IMOA is better than the other six algorithms, and the performance
of each algorithm is significantly different, thus verifying the effectiveness of AVC-IMOA.

(2) Convergence curve analysis

To verify the convergence of AVC-IMOA, two unimodal test functions, C01 and C02,
and two multimodal test functions, C10 and C18, are selected to draw the convergence
curves of AVC-IMOA and the other algorithms. The convergence curves are shown in
Figure 10, where the x-axis represents the running time of the algorithms and the y-axis
represents the fitness function value.

20 C01 D=30 C02 D=30
10 T T [——AvC—1IMOA 105 " [e——AVC—1IMOA
o ——VGMOA o ——VGMOA
2 SSA 2 SSA
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Figure 10. Convergence curves for partial test functions.

It can be seen from Figure 10 that when calculating the 30-dimensional test function, for
the test function C01, AVC-IMOA and SSA have a fast convergence speed early in iteration,
which indicates that AVC-IMOA and SSA have strong global search ability. In addition,
the solution accuracy of AVC-IMOA is higher than those of the six comparison algorithms,
which indicates that AVC-IMOA can not only jump out of a local optimum, but also has
strong local search ability. For the test function C02, AVC-IMOA has a faster convergence
speed and higher solution accuracy than the other six comparison algorithms, which shows
that AVC-IMOA has global search ability and local search ability. For the C10 test function,
the convergence speed of AVC-IMOA is faster in the early stage of iteration. In the middle
stage of iteration, AVC-IMOA has the same effect as MOA, VGMOA and OBL_MO, but
AVC-IMOA has higher accuracy in the later stage of iteration. Other algorithms fall into a
local optimum. It can be seen that the global search ability of AVC-IMOA is better those
that of the six comparison algorithms. For the test function C18, AVC-IMOA converges
faster than the other six comparison algorithms throughout the iteration process, indicating
that AVC-IMOA has strong global search ability.



Sustainability 2022, 14, 16559

16 of 21

4.4. AVC-IMOA to Optimize BPANN

Because the error function of a BPANN is a nonlinear multi-extremum optimization
problem, it is easy to fall into a local optimum when the weights and thresholds of the
BPANN are adjusted by the gradient method. When the number of neurons in each layer
of a BPANN is large, the number of weights and thresholds is large, that is, there are many
variables to be optimized, and it is difficult for the gradient method to obtain satisfactory
results in a short time. In recent years, intelligent optimization algorithms have been used
to optimize the weights and thresholds of BPANNS, and good results have been achieved.
However, when there are many weights and thresholds to be optimized, there are problems
such as low optimization accuracy and a poor solution effect. Therefore, an improved
algorithm with an adaptive visibility coefficient is proposed to optimize the weights and
thresholds of the BPANN.

Because the error function of a BPANN is a function with weights and thresholds as
variables, the error function E,, in Equation (11) can be used as the objective function, and
the weights and thresholds in Equation (11) can be used as variables. AVC-IMOA is used
to optimize the objective function, and the optimal weights and thresholds are given when
the iteration termination conditions are satisfied.

5. Prediction of Pork Supply
5.1. Sample Data
The data for pork supply in Heilongjiang Province can be obtained from the China

Animal Husbandry and Veterinary Yearbook. The data for pork supply in Heilongjiang Province
are shown in Table 5.

Table 5. Pork supply in Heilongjiang province from 2000 to 2020 (unit: 10,000 tons).

Year Supply Year Supply Year Supply
2000 89.0365 2007 101.68 2014 133.4
2001 87.1 2008 92.11 2015 142.6
2002 73.1 2009 96.6 2016 138.4
2003 82.4 2010 108.2 2017 138.2
2004 85.57 2011 114.48 2018 159.3
2005 93.87 2012 116.9 2019 149.9
2006 100.44 2013 128.4 2020 135.2

When using a BPANN to predict pork supply, sample data need to be normalized. The
normalization processing formula is

(28)

X — X
Xngw:a—i—(b—a)( min >

Xmax - Xmin

where X is the sample data, X, is the normalized sample data, Xuuy and X, are the
maximum and minimum values in the sample data, respectively, and a and b are the lower
and upper limits of the data processing interval, respectively; usually, a = —0.8, b = 0.8.

The structure of the BPANN is 5-8-1, that is, the numbers of neurons in the input layer,
hidden layer and output layer are 5, 8 and 1, respectively. The first training sample takes
the data from 2000 to 2004 as input data, and the data from 2005 as the expected output;
the second sample takes the data from 2001 to 2005 as input data and the data from 2006 as
the expected output. By analogy, a total of 16 groups of sample data were obtained.

5.2. Prediction of Pork Supply

We take a sigmoid function as the activation function of the BPANN. Firstly, the
weights and thresholds of the BPANN are initialized, that is, the initial weights and
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thresholds are randomly generated in the range of [—1,1], and the initial weights and
thresholds are used as the initial population of AVC-IMOA. Secondly, taking the error
function E,, as the objective function and the weights and thresholds as the variables to be
optimized, the objective function is optimized by AVC-IMOA, and the optimal weights and
thresholds of the BPANN are given. Finally, the trained BPANN is used to predict the pork
supply in Heilongjiang Province from 2005 to 2022. The optimal weights and thresholds of
the BPANN are shown in Table 6.

Table 6. Optimal weights and thresholds of BPANN.

Vi =2.1204 Va1 =0.2963 V31 = —2.1252 Vip = —1.8276 Vs1 = —1.6392
Vip=—34353  V,, = —14154 Vs, = —3.8704 Vi = —2.5717 Vs =2.9983
Vis=—2855  Vy3=—05859 V33 = —0.8830 Vs = —2.2500 Vss =2.5122

v, Vig=20599  V,u=-18145 V34 = —2.4980 Vi =2.2324 Vs = —11.4764

V5 =0.7585 Va5 = 2.8209 Vs = —9.8287 Vs =3.2329 Vss = —3.2925
Vie=—05469 Vo =05614 V36 = —0.8615 Va6 =0.8089 Vs6 = 0.3829

Viy=14614  Vy;=—03741 V7 = —3.5242 V7 =2.1073 Vsy = —0.8814
Vig=—16766  Vy5=11384 Vg = —1.0364 Vg = —2.4203 Vsg = 4.0111

T, To1=—17852  To,=58729 Ty = 0.2750 Tos = 2.4645 Tos = 1.7107 Ty = 0.1905 To7 = 0.6535 Tos = 0.4202

Wi Wi, = 33681 Wo1 =17397 W3y =—22738 Wy =-19837  Ws;=05642  We=—3.6471  Wyp=—18537  Ws; =04153

T Ty = 1.6062

In Table 6, V is the weight matrix from the input layer to the hidden layer, W is the
weight matrix from the hidden layer to the output layer, T is the threshold of the hidden
layer, and T is the threshold of the output layer.

To verify the superiority of AVC-IMOA for optimizing the weights and thresholds of
the BPANN, a BPANN based on the gradient descent method, a BPANN based on a mixed-
strategy whale optimization algorithm (MSWOA_BP) [29], a BPANN based on the standard
artificial bee colony algorithm (ABC_BP) [30] and a BPANN based on an improved sparrow
search algorithm (FASSA_BP) [31] are selected as comparison algorithms. In addition, in
order to fairly compare the performance and the accuracy of prediction of the different
models, the structure of the BPANN is 5-8-1, the population size of the four intelligent
optimization algorithms is 40, the sigmoid function is used as the transfer function, and the
maximum running time of the five algorithms is 60 s. The prediction results and prediction
accuracy are shown in Table 7. The fitting accuracy of the five models and the predicted
value of pork supply are shown in Figure 11.

150 Fitting accuracy of each model
T T

=& = Actual supply

170 Predicted value of standard BP model 4

—*— Predicted value of MSWOA_BP model

—&— Predicted value of ABC_BP model

160 [~ | —e—Predicted value of FASSA_BP model A N
Predicted value of IAVC_IMOA_BP model AN
150 /) N
Y. \
A
140 L=

Pork supply (10,000 tons)

90 1 ! 1 ! | 1
2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Year

Figure 11. Trend chart of pork supply in Heilongjiang Province (Unit/10,000 tons).
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Table 7. Prediction accuracy and prediction results.
Pork (Gra dielﬁlz)escent) MSWOA_BP ABC_BP FASSA_BP AVC-IMOA_BP
Year \51311311:111}; Predicted Relative ﬁ:le:;‘glz Predicted Relative ﬁ:le:g‘g; Predicted Relative ﬁ:f:;‘g,: Predicted Relative g:le:;%: Predicted Relative ﬁ:f:;%z
Value Error Error Value Error Error Value Error Error Value Error Error Value Error Error
2005 93.87 94.494 0.66470% 95.563 1.80358% 95.139 1.35233% 93.443 0.45456% 93.87000 0.000001%
2006 100.44 98.744 1.68853% 96.910 3.51436% 99.553 0.88350% 97.647 2.78110% 100.44000 0.000000%
2007 101.68 99.615 2.03126% 99.707 1.94045% 98.698 2.93291% 94.676 6.88786% 101.68000 0.000000%
2008 92.11 100.342 8.93669% 100.683 9.30729% 96.293 4.54162% 98.192 6.60249% 92.11000 0.000001%
2009 96.6 95.395 1.24786% 100.211 3.73802% 95.592 1.04387% 95.655 0.97802% 96.60000 0.000002%
2010 108.2 108.451 0.23230% 107.849 0.32455% 107.770 0.39724% 109.922 1.59178% 108.20000 0.000001%
2011 11448 113.870 0.53328% 114.490 0.00870% 115.334 0.74561% 114.705 0.19661% 114.48000 0.000000%
2012 1169 117.822 0.78886%  1.68000% 118.366 1.25445%  3.08207% 116.682 0.18688%  0.94325% 118.936 1.74168%  262584% 11690000  0.000000%  0.000001%
2013 1284 122.345 4.71590% 124.828 2.78191% 128.478 0.06087% 124.856 2.76015% 128.40000 0.000002%
2014 133.4 134.844 1.08244% 140.365 5.22096% 133.921 0.39041% 139.325 4.44143% 133.40000 0.000000%
2015 142.6 140.935 1.16729% 138.748 2.70093% 141.679 0.64612% 135.837 4.74294% 142.60000 0.000001%
2016 138.4 141.139 1.97878% 142.598 3.03344% 138.841 0.31868% 142.426 2.90931% 138.40000 0.000000%
2017 138.2 138.564 0.26325% 142911 3.40883% 138.966 0.55450% 139.717 1.09803% 138.20000 0.000001%
2018 159.3 159.562 0.16418% 147.836 7.19677% 158.137 0.73001% 154.342 3.11262% 159.30000 0.000002%
2019 149.9 149.317 0.38882% 148.734 0.77765% 149.890 0.00634% 149.182 0.47915% 149.90000 0.000000%
2020 135.2 134.840 0.26604% 138.311 2.30117% 134.793 0.30111% 136.871 1.23579% 135.20000 0.000000%
2021 175.821 141.856 159.113 150.274 159.92
2022 153.896 148.885 153.209 154.735 161.26
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According to the data in Table 7, the average relative error of the BPANN is 1.68000%,
while the average relative error of MSWOA_BP is 3.08207%; for ABC_BP, it is 0.94325%; for
FASSA_BP, it is 2.62584%; and for AVC-IMOA_BP, it is 0.000001%. Therefore, the prediction
accuracy of AVC-IMOA_BP is significantly higher than those of the BPANN, MSWOA_BP,
ABC_BP and FASSA_BP.

As can be seen from Table 7 and Figure 11, the supply of pork in Heilongjiang Province
of China was as high as 1.593 million tons in 2018, and the supply of pork decreased
continuously in the following two years, reaching only 1.352 million tons in 2020. This is
because the first outbreak of African swine fever in China occurred in August 2018. Since
then, there have been sudden outbreaks of African swine fever throughout the country.
A total of 800,000 live pigs were culled in 2018, and 390,000 live pigs were culled in 2019,
resulting in a decrease in pork supply, higher pork prices, increased enthusiasm of farmers
to raise pigs and an increase in the number of new, small sows and breeding sows. In
addition, the African swine fever epidemic in China will be effectively controlled in 2020,
and the pork supply in Heilongjiang Province will show a steady upward trend in 2021
and 2022. The pork supply numbers in Heilongjiang Province in 2021 and 2022 will be
1.5992 million tons and 1.6126 million tons, respectively.

6. Conclusions

When using the gradient method and existing intelligent optimization algorithms to
optimize a BPANN, there are some shortcomings such as slow optimization speed and low
precision. An improved MOA is proposed to optimize the weights and thresholds of a BPANN,
and then the trained BPANN is used to predict the pork supply in Heilongjiang Province.

To improve the global optimization ability and solution accuracy of MOA, an improved
mayfly optimization algorithm with an adaptive visibility coefficient was proposed. Firstly,
focusing on the problem of the velocity update formula of some mayflies in the population
not working when the distance between mayflies is large in the existing algorithm, an
improved velocity update formula is proposed. The improved velocity update formula
does not have the limitation that the velocity and position of an individual cannot be
updated due to the large distance between individuals in the iterative process. Secondly, a
method of adaptively adjusting the visibility coefficient is given, which makes the update
method of the position and velocity of the algorithm have strong global search ability in the
early stage of iteration and strong local search ability in the later stage of iteration; thus, the
global search ability and local search ability of the algorithm are better balanced. Finally,
in order to improve the probability of generating better potential solutions in the mating
process of mayflies, an improved mating operator is given. The improved mating operator
improves the solution quality and convergence speed of the algorithm.

AVC-IMOA is used to optimize the weights and thresholds of the BPANN with a
network structure of 5-8-1. The BPANN determined by the obtained optimal weights and
thresholds was adopted to predict the pork supply in Heilongjiang Province. In order to
verify the performance of AVC-IMOA, AVC-IMOA_BP, a BPANN based on the gradient
descent method, MSWOA_BP, ABC_BP and FASSA_BP were used to predict the pork
supply in Heilongjiang Province. The prediction results show that the prediction accuracy
of AVC-IMOA_BP is obviously better than those of other prediction models, which verifies
the effectiveness of the proposed prediction method. In addition, it can be seen from the
results that the pork supply in Heilongjiang Province will show a steady growth trend in
2021 and 2022, which can provide a reference for pig producers and governments at all
levels to make decisions. Accurately predicting the pork supply lays the foundation for
further study of pork price fluctuation and pork supply and demand balance.

In the future, there will be many fields worthy of our research and exploration. In
addition to the speed update formula proposed in this paper, the performance of the
algorithm will be further improved by starting with the position update formula, mutation
method and hybrid algorithm. In addition, AVC-IMOA_BP can also be used to solve
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similar forecasting problems in production and life, not only for forecasting the supply of
agricultural products.
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