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Abstract: With growing environmental and ecological concerns, innovative energy storage systems
are urgently required to develop smart grids and electric vehicles (EVs). Since their invention in
the 1970s, rechargeable lithium-ion batteries (LIBs) have risen as a revolutionary innovation due to
their superior benefits of high operating potential and energy density. Similarly, fuel cells, especially
Proton Exchange Membrane Fuel Cells (PEMFC) and Solid-Oxide Fuel Cells (SOFC), have been
developed as an energy storage system for EVs due to their compactness and high-temperature
stability, respectively. Various attempts have been made to explore novel materials to enhance existing
energy storage technologies. Materials design and development are significantly based on trial-and-
error techniques and require substantial human effort and time. Additionally, researchers work on
individual materials for specific applications. As a viewpoint, we present the available sustainable
routes for electrochemical energy storage, highlighting the use of (i) green materials and processes,
(ii) renewables, (iii) the circular economy approach, (iv) regulatory policies, and (v) the data driven
approach to find the best materials from several databases with minimal human involvement and
time. Finally, we provide an example of a high throughput and machine learning assisted approach
for optimizing the properties of several sustainable carbon materials and applying them to energy
storage devices. This study can prompt researchers to think, advance, and develop opportunities
for future sustainable materials selection, optimization, and application in various electrochemical
energy devices utilizing ML.

Keywords: sustainability; machine learning; electrochemistry; batteries; fuel cells

1. Introduction

Electrochemical energy conversion and storage (EECS) technologies, batteries, and
fuel cells have the potential to make a significant contribution to the energy conversion and
storage sector [1]. For example, a low-carbon dioxide emission, environmentally-friendly,
and cost-effective public transportation system is becoming increasingly crucial in our
everyday lives [1]. Global energy consumption is rising owing to population growth and in-
dustrial expansion. Lithium-ion batteries have become a crucial enabler for energy storage
and are expected to be widely used in the data center and electric vehicle sectors in the near
future [2,3]. Similarly, hydrogen is an enticing replacement for carbon-based fuels [4]. Part
of its attractiveness arises from the fact that it may be made from a variety of renewable re-
sources (solar, hydro, wind). The global vehicle market is expected to approach 180 million
sales by 2045, with electric battery vehicles accounting for 100 million, using fuel cells and
battery technology [5]. The creation and design of innovative EECS systems aims to find
suitable catalysts and membranes in fuel cells, as well as electrodes and electrolytes in
batteries, with desirable properties to improve efficacy and safety [6,7]. Optimizing the
interfacial and material characteristics, however, calls for significant effort in the devel-
opment of high-performance organic batteries and environmentally friendly fuel cells [8].
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Experimentally examining the characteristics of the available materials takes a lot of time
and is difficult. Therefore, we propose that the combination of Machine Learning and EECS
research can provide solutions to a number of unresolved questions about materials and
associated properties. In this review, we highlight the main components and sustainable
trends in EECS technologies. We also present how the use of a data-driven approach helps
to advance the material identification as well as the device optimization process. Modern
statistical and computational approaches may anticipate the properties of certain compo-
nents in specific scenarios. Nonetheless, due to complicated electrochemical processes and
thousands of material options, selecting the proper materials remains a tough step. Thus,
machine learning (ML) and artificial intelligence (AI) may work together to realize trial
circumstances and anticipate the optimal material choice for EECS devices. This review
presents the two significant scenarios—: the sustainable methods and ML—separately,
which will aid in understanding the interrelationship of distinct qualities for the selection
of sustainable materials for EECS. Therefore, we connected the approaches for constructing
sustainable EECS, which we separated into four aspects: (i) green materials development,
(ii) a circular economy approach, (iii) renewable powering sources, and (iv) policies and
regulations, followed by interrelating the sustainable aspects of materials development
with ML/AI (Figure 1).
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2. Fuel Cell Technologies

Fuel cells are one of the cleanest and most efficient routes for producing hydrogen [9].
Although gasoline, diesel, supercapacitors, and fuel cells are mostly used in portable and
automotive industries, fuel cells possess higher gravimetric and volumetric energy density,
as shown in Figure 2a–d, and are cleaner. Hydrogen can be created by various processes,
including partial oxidation, methane pyrolysis, and plasma reforming [10]. As long as the
fuel source is provided, fuel cells transform the chemical energy in the fuel and oxidant
into electrical energy. Furthermore, no carbon dioxide is generated due to the absence of
the combustion process, and the produced heat may be utilized for co-generation. There
are six different types of fuel cells, namely, alkaline fuel cell (AFC), solid oxide fuel cell
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(SOFC), proton exchange membrane fuel cell (PEMFC), molten carbonate fuel cell (MCFC),
phosphoric acid fuel cell (PAFC), and direct methanol fuel cell (DMFC), with characteristics
shown in Figure 3a,b. Due to their operating stability and advancements, AFC, SOFC, and
PEMFC have the most potential for commercialization in the near future.
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Figure 2. Comparison of power density, capital cost, and gravimetric and volumetric energy densities of
Pb-acid battery, Li-ion battery, ultracapacitor and fuel cells (data obtained with references from [11–14]).
(a) Gravimetric energy density; (b) Volumetric energy density; (c) Power density; (d) Capital cost.

AFCs [15] were the first developed technology employed in spacecrafts [16]. The
electrolyte used in the AFCs is the solution of potassium hydroxide and water. Electrodes
are mostly non-precious metals and their alloys [17]. AFCs are similar to PEMFCs, except
for using an alkaline membrane instead of an acid membrane. However, it is prone to
carbon dioxide toxicity (CO2) [17]. In essence, even trace amounts of CO2 in the atmosphere
can substantially impact cell performance and endurance owing to carbonate production.
AFCs with aqueous electrolytes can be driven in a circularity mode, allowing for electrolyte
rejuvenation to lessen the impacts of carbonate production in the electrolyte. However,
it creates shunt current complications [18]. Recent research on AFCs addresses some
of the challenges in AFCs, including high temperature operability, water management,
membrane conductivity, etc. [15]. Recently, AFCs were created with a polymer membrane
as the electrolyte with hydrophobic backbone, with functional hydroxide ions separating
the anode and cathode; these are known as alkaline anion exchange membrane fuel cells
(AEMFC) [19]. The exchange membrane’s electrochemical and mechanical characteristics
are critical for the design of effective AEMFCs [20]. Improvements in the mechanical
characteristics of the polymer membrane, such as elasticity and tensile strength, enhance
fuel cell performance. However, when the temperature rises, tensile strength falls, and
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as porosity rises, conductivity falls, presuming the microstructural characteristics stay
constant [21].
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(a) Comparison of power level, efficiency, specific power and mileage for PEMFC, batteries and conven-
tional fuels (b) Comparison of working characteristics for different fuel cells.

Although numerous materials such as carbon-polymer matrices and Fe7C3-CNT com-
posites enhance AEMFCs’ performance [24], there are still a lot of opportunities for identify-
ing the correct type of material, its proportion, additives and properties for standardization,
and commercial usage. Membranes in fuel cells influence friction, swelling, water absorp-
tion, ion transport, and ion diffusion (surface hopping) [17]. The main function of the mem-
brane is to transport hydroxide ions and block electron crossover between the electrodes.
The membrane consists of a hydrophobic backbone to which hydrophilic functional groups
are attached, and it conducts ions via the interaction between the positive hydrophilic and
OH− anions. The length of the hydrophobic backbone is proportional to the length of the
ion transfer channel formed. For instance, if there are more ions, they get aggregated into
a cluster and facilitate interconnected transfer channels. Furthermore, increasing the ion
exchange group increases the ionic conductivity of the electrolyte, resulting in increased
water absorption, which is troublesome. Hydrophilic polymers have higher ion exchange
groups but also higher water uptake [25]. On the other hand, hydrophobic polymers have
fewer ion exchange groups but also lower water uptake [17]. The main problem with the
membrane materials is keeping the water uptake in control. Increased water absorption
causes membrane swelling and, as a result, loss of mechanical characteristics. Water uptake
depends on the temperature, elasticity, and hydrophobicity of the membrane, presence of
conducting functional groups, and membrane pretreatment. Water management is simpler
in AEMFCs, as they transport water from cathode to anode by electroosmosis. Recently,
quaternary ammonia compounds, imidazole, pyridine, and guanidine have been used as a
membrane material [26]. Quaternary ammonium side groups with multiple cation chains
in particular increase ionic conductivity with less water uptake. Further, cross linked poly-
mers such as hydroxypropyltrimethyl ammonium chloride, iodomethane, and pyridine
carboxaldehyde are also used in membranes. Patil et al. used a dual hydroxide co-polymer
membrane consisting of quinuclidinum and piperidinium cations on polyethersulfone
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(QP-PES), which is compatible with NaOH electrolytes [27]. The water uptake and swelling
slightly increased for Q-PES and QP-PES membranes with a rise in temperature from 25 ◦C
to 80 ◦C owing to the alkyl hydrophobic spacer preventing the membrane from absorbing
water. Also, the QP-PES membrane had a hydroxide conductivity of 0.06 S/cm, higher
than conventional quaternary compounds, and lower activation energy (16.42 kJ/mol) for
ion transport [27].

Considering the commercial aspects, AEMFCs are cheaper and easier to manufacture.
Recent developments in bipolar plates and anion exchange membranes including liquid
urea solutions and metal amine complexes have led to better performance efficiency [28,29].
The disadvantage is that AEMFCs are not suitable for high temperature applications
and have membrane conductivity and swelling issues. The solution is to identify the best
polymer exchange material suitable for both high hydroxide conductivity and low swelling.

SOFC operates at high temperatures (1000 ◦C) without the need for precious metal
catalysts and employs a non-porous ceramic electrolyte (Pt). SOFCs are also resistant to
sulfur, can be made from any fuel source, and are not harmed by carbon monoxide [30].
Higher thermal shielding and cooling systems, on the other hand, are required to retain
heat and safeguard against mishaps. The creation of low-cost materials with high dura-
bility at cell operating temperatures is the key technological challenge for this technology.
Scientists are now investigating the possibility of building lower-temperature SOFCs that
operate at or below 700 ◦C, have fewer durability issues, and are less expensive [31]. Am-
monia, being lighter than air, has recently been used as a fuel for generating hydrogen
via SOFC. The fuel gets oxidized at the anode, and oxygen gets reduced at the cathode.
At first, oxygen gas enters via the cathode and reacts with the free electrons, generat-
ing charged ions. These charged ions transfer via the electrolyte to the anode and react
with the fuel, releasing electrons externally. The interface and the electrode materials
strongly influence the cell performance [31]. Co-ionic ceramic electrolytes like BaCeO3,
LaMnO3, and Ba(Ce1−xTix)1−yYyO3−δ lead to higher oxygen vacancies [32]. Rare earth
materials are suitable for high temperature fuel cells. For instance, europium doping in
La2-xNiO4+δ improves the oxygen transport and reduces the activation energy for ion
transport. Lenka et al. compared Ca, Ba, and Sr doped Nd2NiO4+δ as cathodes in SOFCs
and found that Ca improved the power density (188 mW cm−2) [33]. Lower-temperature
SOFCs have not yet equaled the efficiency of higher-temperature systems, and materials
for this lower temperature range are currently being developed. Nanomaterials with high
surface area and quantum size effects used as a thin film electrolyte can enhance the ionic
conductivity and interfacial reaction kinetics at low temperatures. In this regard, artificial
intelligence can help accelerate new material discovery for SOFCs [33].

Proton exchange membrane fuel cells (PEMFC) are operable from 70 ◦C to 250 ◦C.
Low-temperature PEMFCs require pure fuel and suffer from catalytic poisoning and re-
duced oxygen transport [34]. High-temperature PEMFCs have improved reaction kinetics
and performance. However, corrosion, mechanical failure of catalyst and membranes, and
water management are still issues. Designing catalysts requires a lot of consideration for
their intrinsic properties [21]. Generally, Pt-based catalysts are utilized in PEMFC; how-
ever, scientists are currently concentrating on developing inexpensive, higher-performing
catalysts based on Ru, Ir, carbon, and metal oxide nanostructures. In Pt-based catalysts,
the oxygen reduction process (ORR) typically generates H2O through a four-electron
route [34,35]. Concerns such homogeneous dispersion, bulk loading of catalysts, and the
expensive price of Pt must be addressed. Pt catalysts supported on graphene, wrapped by
CNT, attached to metal alloys, and compositing with nanomaterials are the most recent
progress made based on research [35]. Wrapping polymers such as polyvinyl pyrrolidone
(PVP) and poly [2,2′-(2,5-pyridine)-5,5′-bibenzimidazole] (para-PyPBI) on the Pt or Ru
catalysts has proven to have enhanced H+ conductivity [35]. Further, non-platinum group
metals like carbon-based nanomaterials have also shown progressive catalytic behavior for
ORR [36,37].
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The proton exchange membrane, which is present in between the anode catalyst layer
and cathode catalyst layer, plays a vital role [38]. The anode catalyst layer undergoes a
hydrogen oxidation reaction (HOR), and the cathode catalysts undergo ORR, generating
heat and water [38]. The PEM membrane should have high H+ conductivity to reduce the
voltage loss and improve the power density [38,39]. Sulfonated hydrocarbon polymers,
perfluorinated sulfonic acid polymers, phosphoric acid, and acid base membranes are the
main materials researched so far. Metal organic frameworks (MOFs) like ZIF-8, ZIF-67,
and MIL-101 are becoming attractive for their use as catalysts and gas diffusion layers in
fuel cells [40,41]. An ideal membrane should be mechanically stable, thin, conductive, and
undergo fewer dimensional changes during hydration and dehydration [42]. However, in
general, highly conductive polymers have increased water uptake due to hydrophilic side
groups, which reduces the device performance [42,43]. Utilizing cross-linked polymers,
blends, and composites using electrospinning is the key solution for altering the membrane
properties suitable for fuel cells, as summarized in Figure 4.
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Similarly, the pursuit of the “green” battery has been the focus of various initiatives
over the past few years. The present experimental agenda includes the substitution of
ecologically dubious metals like Li and Cd with more ecologically friendly sustainable
compounds like Mn, Fe, carbon, Ti, and Si [46–50]. The best method to overcome con-
ventional batteries’ technological and financial limitations is to use organic or polymer
compounds rather than metals or metal oxides [51]. However, fluorinated salts (LiTFSI) are
corrosive and should be avoided. Instead, eco-friendly 4,5-dicyano-1,2,3-triazolate (DCTA)
and PVDF-based polymer electrolytes are used [52,53]. Metal usage relies on available
metal reserves, but hereafter, it may be possible to synthesize alternate green materials
like polymers and carbon from organic components in a natural way from renewable
resources [46,47,52]. Furthermore, green electrodes can also offer superior processability
and flexibility, leading quickly to flexible electronics [54,55]. However, completely organic
batteries exhibit poorer performance characteristics and can only sustain low temperature
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operations [56,57]. Fully organic Li-ion batteries, for instance, which have an OCV less
than 2 V and a capacity less than 100 mAh g−1, can perform better with morphological and
structural tuning. Organic polymer gel and composite electrolytes based on polyethylene
oxide and polycarbonates are already known [51]. The procress of making complete organic
batteries relies on making high performing organic electrodes [58]. Organic electrodes are
classified based on the reaction type, i.e., donating electrons (P-type) or accepting electrons
(N-type) [58–60]. It is necessary to select and optimize suitable organic electrodes for the
organic batteries [56,58–61].

Exploring the membrane materials, catalysts, and diffusion layers in fuel cells experi-
mentally with thousands of different compositions and optimizing control parameters will
be time-consuming [62–64]. Similarly, developing green materials for batteries and opti-
mizing the material composition based on performance traits require immense effort and
are challenging [58,64]. This review addresses these challenges with a beneficial opinion
for future directions. Some of the most important sustainability needs for EECS systems
are covered prior to presenting the AI-based solution [65].

3. Routes for Sustainable EECS

The significance of material selection, the circular economy, renewable energy sources,
and existing and potential future strategies for sustainable EECS are all covered in this
section [60].

3.1. “Green” Material Development for EECS

The term “green” refers to low toxic and environmentally benign EECS materials.
There are six important factors to be considered while designing a sustainable material
for an EECS device, namely (Figure 5): (i) abundance, (ii) toxicity and carbon emission,
(iii) cost, (iv) safety, (v) recyclability, and (vi) electrochemical performance [58,59].
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Aside from these considerations, choosing materials for eco-friendly EECS or emerging
technologies involves assessing various additional chemical and commercial factors [6].
The most-used Li-ion batteries for energy storage contain Li, Ni, Cu, Co, and F as the main
components. The predicted shortage of elements Li and Co has driven scientists to consider
alternative metals as electrode materials, such as titanium, iron, and manganese [68]. Fe, Si,
Mn, Ti, and carbon have been most studied, since these materials can be produced from
biomass and biowaste [68,69]. For example, P, Na, H, S, O, K, Ca, Mg, Mn, Ti, and Fe can
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be used in batteries since they can be recycled and are ecologically more beneficial than
Li, Co, Ni, and Cu. Sustainable metal-sulfur and metal-air batteries are made possible by
employing low-toxicity, abundant materials such as sulfur and oxygen as cathodes [70,71].
Sulfur is cheap (USD 100 to 300 per ton), plentiful (500 parts per million in the lithosphere)
and generated at a pace of 60 million tons per year [72]. Sulfate salts and O2 are typically
used as cathode materials in alkali metal-ion batteries [73]. However, O2 must be separated
from other air constituents, which is costly and necessitates a complex device construction.
Phosphorus is another abundant, open-source element that is less harmful and does not
pose a potential shortage issue [74]. These materials can be utilized as “green” alternatives,
and the above reasons justify the huge investments in metal-air and metal-sulfur technology.
Furthermore, the correct choice of transition metal cations, such as PO4

3− in LiFePO4 (LFP),
is presently the most desirable electrode material for Li-ion batteries in terms of safety
and sustainability [74]. Currently, companies like Tesla are using carbon nanostructures
in LFP pioneered by Michel Armand et al. to beat the theoretical capacity (170 mAh g−1)
of LFP in Li-ion batteries [75]. Switching from the previous choice of electrode-electrolyte
materials to Na-ion batteries, which are identical to Li-ion batteries, might be another
option for developing cleaner batteries. The same applies to Li-supercapacitors and fuel
cells. While considering fuel cells, three significant issues with commercialization need to
be addressed: production cost, technology standardization, and safety [76]. Integrated fuel
cells and battery storage also lead to a spectrum of opportunities. Together, batteries and
fuel cells can revolutionize the transportation sector by eliminating CO2 emissions. These
innovations provide a significant chance to switch the carbon dioxide polluted world to a
sustainable, green, and secure one centered on hydrogen throughout the whole spectrum
of electricity usage. The difficulties are tremendous, necessitating scientific discoveries,
significant technology improvements, and ongoing socioeconomic commitment [77].

Mimicking nature and its tremendous combinations is becoming increasingly pop-
ular in energy conversion and storage technologies. Organic materials and their related
chemistry solutions offer the benefit of developing novel electrodes and low dimensional
structures with improved physicochemical characteristics that are safer (Figure 6) [78].
Porous carbon derived from biomass has been found to provide excellent ion diffusion
characteristics in battery systems [79]. A few other examples are fish scale lamellae, shrimp
skin, lotus petal, and crab shell structure, containing essential salts and biopolymers, which
increases the mobility of ions in electrolytes while effectively inhibiting the agglomeration
of nanoparticles [80–83]. The Bouligand structure of a crab shell serves as an effective
host, allowing transfer of sulfur in Li-S batteries [84,85]. Several researchers have identi-
fied farm crops and leftovers as a critical source of sustainable carbon-based electrodes
for fuel cells [77,86]. Some agro-based sources used to produce carbon are waste sugar-
cane baggage, paddy waste, sawdust, rice husks, coconut shells, vegetables, and floral
waste [80,87–91]. In addition to agricultural waste, textile and plastic waste are also burned
at high temperatures to produce carbon nanostructures for electrodes [80,87,88,92]. Using
pyrolysis, the waste tier is converted into pyro char, pyro oil, and porous carbon com-
pounds, which are utilized as additives for electrodes in energy storage devices [93]. It is
worth noting that agro/biomass/waste-derived carbon comes in various allotropes, includ-
ing graphene, diamond, fullerenes, nanorods, and nanotubes, all of which may be used
to make highly polarizable electrode materials [88,92]. For a very long time, biomass has
been used as a precursor for the creation of innovative carbon-based nanostructures since
it is abundant, sustainable, inexpensive, and ecologically beneficial [94]. More significantly,
biomass materials frequently show a wide variety of nanostructures, making them excellent
candidates to serve as precursors for creating the anticipated carbon compounds with
distinctive structures [94–96]. For instance, a certain quantity of N, O, and S obtained from
polysaccharides, proteins, and other organic molecules in the biomass resource category
may often form self-doping carbon compounds with improved electrochemical characteris-
tics [94]. Low temperature pyrolysis, hydrothermal carbonization, and template synthesis
are mostly used for extracting a higher content of carbon from biomass [94]. Further,
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1D carbon nanofiber and CNT have better transport properties than diamond, graphite,
and 3D structures [86,97]. The electronic conductivity of the resultant carbon electrodes, on
the other hand, is substantially determined by the features of the feedstock (for instance,
size and morphology) and the synthesis routes used (e.g., activation, hybridization, and
annealing) [66,98]. Furthermore, carbon might exist in both the anode or cathode due to its
amphoteric nature and varying electrochemical characteristics. The selection of feedstocks
and synthesis routes is vital for optimizing the end product’s characteristics [66]. Signif-
icantly, the synthesis process must not be polluting, as it serves no purpose to produce
greener materials using an ecologically detrimental synthesis approach. Low-temperature
synthesis (less than 180 ◦C) procedures should be used instead of high-temperature (400 to
1000 ◦C) synthesis protocols, unless solar heat is used [97]. The low-temperature processes
preserve the intrinsic structure and properties, save money, and do not emit toxic fumes [99].
For example, Si and Si-phosphates can be prepared at ~200 ◦C rather than using high tem-
perature (700–900 ◦C) ceramic methods [100,101]. Wet chemical synthesis methods such
as sonochemical, hydrothermal, solvothermal, and microwave assisted techniques with
temperatures below 300 ◦C have been recently employed for preparing electrode materials
with customized morphologies [97,98]. In fact, the use of less hazardous microorganisms
for electrode synthesis is gaining popularity due to its low cost [99]. Biomineralization with
bacteria for mineral precipitations has long been acknowledged and practiced in the field
of microbiology. The same can be applied for preparing electrodes in EECS. One example is
the preparation of V2O5 and nanotubes for the Si anode using tobacco mosaic virus (TMV)
as bio-template [102]. The major limitation of this technique is reduced cycle numbers
and performance compared to commercial batteries. Compositing or doping chemically
synthesized materials with microbe derived elements and tailoring their morphology could
help in optimizing the electrochemical characteristics [46,103].
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3.2. Circular EECS Economy—Reuse, Recycle and Refurbish

Lead (Pb) acid batteries are widely used, have a high recycling efficiency (>90%), and
account for 86% of worldwide secondary battery recycling, with this figure predicted to
climb by 2025 [104]. Lead-based items are recognized easily, collectible, and able to recycle
all of the regularly employed metals; further, lead has the most remarkable end of life (EoL)
recycling rate. Fully used Pb acid cells are well-managed in developed countries such as in
Europe and the USA through effective retail strategies and transportation by super-efficient
initiatives with higher requirements for labor training and technological standards [104].
Pb acid batteries widely demonstrate a readily accessible battery circular economy due
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to their ample recycling possibilities and the fact that they are manufactured from reused
components. Nevertheless, Pb acid batteries are recovered in unstructured or substandard
processes in many other countries, resulting in significant Pb leaks into the ecosystem
and high levels of toxic exposure in society [105]. The most used pyrometallurgical and
hydrometallurgical techniques have several shortcomings, mostly owing to technical and
atmospheric considerations [106]. There is an immense desire to develop innovative
techniques to extract Pb from worn or entirely used Pb acid batteries due to rising metal
extraction costs and the severe health implications of lead levels from increased lead particle
air emissions. Hydrometallurgical lead recycling involves acidic solution reduction and wet
processing techniques to recover Pb salt in the lead paste [106]. Conversely, a new family
of liquids known as deep eutectic solvents (DESs) has begun to evolve, demonstrating
significant solubility of Pb salts yet possessing few related risks [107]. New procedures
have been researched in recent years, including the atomic calcination method, direct
membrane electrolysis, and electrokinetic separation, and they have shown significant cost
reductions over traditional recycling processes while significantly minimizing auxiliary
contamination [108]. The thermal decomposition approach allows for more significant
self-sustaining lead recovery, while the electrowinning method reduces the number of
stages in the recycling method [109].

Like Pb acid batteries, Li-ion battery components must be discarded or recycled safely.
LiCoO2, LiFePO4, and LiMnO4 are the most used cathodes in Li-ion batteries. When these
cathodes react with acids or bases, heavy metals are produced, which, if not properly
disposed of, might damage the environment by raising the pH level [106]. Similarly, anode
material like graphite produces CO when ignited. Electrolytes such as LiPF6 and LiBF4 in
ethylene carbonate or propylene carbonate are corrosive and toxic, and release CO upon
combustion [106]. Supercapacitor components disposal is unsafe in the same way that
battery materials are. While hydrogen–oxygen fuel cells are a greener technology that
does not generate CO2, a few catalysts used to speed up the electrochemical process are
hazardous and may release CO2 indirectly. Similarly, when phosphoric acid fuel cells are
burned, they produce phosphoric oxide and hazardous gases. Still, many EECS devices are
burnt after they get disposed, which will contaminate the environment with a lot of debris
or microscopic particles. Some EECS devices are deposited in the land alongside solid waste
generated trash, perhaps necessitating stringent impermeable actions; otherwise, major
degradation of the topsoil is highly likely. Another common practice involves crushing
discarded primary cells and combining them with cement in a specific ratio before using
the mixed concrete to pave roads or combine with construction materials. There are a
variety of procedures for separating and refining EECS components, including solvent
extraction, leaching, curing, and wet recovery; however, due to the high amounts of dust
and toxic chemicals released, these approaches have a significant impact on the atmosphere
in the outlying towns [110]. To control these harmful outflows into the air, a shift towards
biometallurgy is required. Battery metal extraction using bacteria and their metabolites
via bioleaching, biosorption, and bioaccumulation is still being perfected, but studies
suggest that it is both eco-friendly and cost effective. For example, Thiobacillus ferrooxidans
bacteria was used for extracting Fe ions and Co2+ from spent batteries involving a series
of biochemical process like bioleaching [111]. The Fe3+/Fe2+ couples influence the redox
potential, which is a significant factor in bioleaching. The redox potentials can be controlled
by adjusting the O2 supply or using reductants [111].

Leaching agents are a combination of oxidants and strong acids. Bioleaching is a viable
strategy that incorporates redox, acid, and secondary metabolite processes, reported by
several researchers. Acid or proteins in microbes are used for the conversion of insoluble
metal species into soluble forms. The microorganisms acquire energy by puncturing and
collapsing LIB waste during this process. For instance, with sulfur as the energy source,
Thiobacillus thiooxidans produces sulfuric acid, which helps to dissolve metals from elec-
trodes [112]. The biologically active acids work similarly to the chemical leaching process.
At first, the biogenic acids dissolve into protons, which target the metallic oxygen sur-
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faces, followed by leaching of metal from the parent component, forming H+ ions, O2, and
H2O [112]. Limitations of this technique include the varying pH and solid-to-liquid ratio
(pulp density), which inhibits the microbe’s efficiency at bioleaching. Bioleaching of battery
components by mesophilic bacteria requires an acidic pH (~1 to 3) and temperature (30 to
35 ◦C) [112]. The fluctuation in pH, which affects the microbe’s ability to bioleach, is one
of the limitations of this approach. Due to the obvious alkaline characteristics of wasted
EECS and hazardous chemicals, the effectiveness of bioleaching reduces dramatically when
the solid concentration is higher than liquid (i.e., pulp density is higher). Pulp density
employed so far for bacterial bioleaching of battery metals is ~10% [111]. Another non-
contact leaching technique is the redoxolysis process, which can occur even if no bacteria
are present in proximity to the metal ores. Extracellular biofilms grow during redoxoly-
sis, aiding the attachment of bacteria to metal surfaces and the transmission of electrons
between bacteria and minerals [113]. Maintaining particle sizes below 100 nm will help
reduce shear stress and the mass transfer area for successful bioleaching [113]. The common
microbes used for bioleaching of battery materials are A. ferrooxidans, A. thiooxidans, and
Leptospirillum ferrooxidans. Like bacteria, fungi such as Penicillium chrysogenum and Penicil-
lium simplicissimum are also used for bioleaching of LIBs [114]. The advantage of fungal
bioleaching is that there is no acidic pH requirement, as the process takes place at neutral
or alkaline pH and minimal pulp density (~2%) [114]. However, this process requires
primary carbon nutrients, which can be taken from food or agro wastes to supplement the
leaching process. The overall kinetics and speed of leaching can be enhanced by adjusting
the temperature, redox potential, growth nutrients, O2 supply, and pH [114].

Sustainable clean batteries are created using organic electrode and electrolyte materials.
There has been a significant increase in the development of organic electrode materials for
batteries being regarded as delivering completely ecological and clean energy production.
It is not the goal of this review to provide a thorough analysis of organic materials for
batteries. From a utility-oriented design perspective, developments in carbonyl-based
polymers, composites, and flexible electrodes are discussed. Compounds that undergo re-
duction reactions such as 1,2-diones, vinylene carbonates, PEO-based, aromatic carbonates,
and phenenthraquinones are utilized to provide solid intrinsic characteristics like ionic
conductivity in batteries [115–119]. However, the repeatability and recycling of organic
electrolytes are challenging. When utilized for a prolonged time, the aging electrolytes in
spent batteries diffuse across the entire electrode structure and might even get trapped. The
electrolyte is maintained with constant cycling to create solid electrolyte interphases (SEI)
on the surface of the electrode, which results in complex byproducts in the solution [106].
Most scientific studies and industrial battery recycling processes typically concentrate on
cathode reprocessing and overlook the opportunities for leaking and overused electrolytes
due to the intricate aspect of formulation and distribution, resulting in unfathomable loss
and toxicity [106]. The flammability of organic electrolytes is also well recognized. This
problem is solved by aqueous electrolytes. In comparison to organic electrolytes, one kind,
water in salt electrolytes, has a larger electrochemical window and better ionic conductiv-
ity [7]. This may be a good substitute for risk-free batteries. Solid electrolytes are gradually
becoming recognized as a potential replacement. Solid state batteries provide benefits,
such as safety and the prevention of dendritic growth, in spite of their allegedly poorer
conductivity [106,120–122].

The type and material of the cathode used affects battery energy density significantly,
and cathodes often cost 25% of the price of the batteries [74]. Because it has a large energy
density, cobalt is one material that is frequently utilized as the cathode in LIBs. Its maximum
temperature is constrained, and thermal runaway is a possibility. Because it is a heavy
metal, disposing of batteries raises a lot of environmental issues. Companies like Tesla are
refocusing on LiFePO4 and Mn to create cobalt-free batteries [74]. Due to its abundance
and significant redox potential, sulfur is a preferred cathode material. Due to its poor
conductivity on its own, sulfur is frequently combined with other conductive substances,
such as graphene and CNT, to address this problem. Nevertheless, a considerable volume
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expansion issue due to the shuttling effect also exists. Air has also been investigated as
a cathode alternative when paired with other materials [73,81,123–126]. The air cathode
consists of three layers: (i) gas diffusion layer, (ii) conductive, and (iii) catalyst layer. The
concept underlying this is to employ atmospheric air’s oxygen in the chemical reaction.
Air has a large theoretical capacity, similar to sulfur [81]. The shortcomings of air vary
depending on the material it is partnered with. The volumetric capacity of the cell is
often inversely correlated with the total surface area of the electrode. Pore size has been
discovered to be significantly crucial in air batteries, though, as the metal oxide compounds
precipitate and can block smaller pores [81]. Na-ion batteries, Mg-ion batteries and Zn-ion
batteries are currently being researched and have high theoretical capacity; however, anodic
corrosion is challenging to deal with. Additionally, the dendrite structures are a serious
problem because of unstable SEI [115,127–130]. This can also happen in other battery
compositions, but because Mg and Zn are ionically insulating, the anode can no longer
generate or absorb ions, therefore leaving the cell worthless. In this case, a less reactive
anode–electrolyte combination might be more useful [128–130].

3.3. Waste to Energy Materials

Municipal solid waste, agricultural and food waste, industrial waste, and hazardous
waste are the four basic categories of waste produced. Each waste’s risk evaluation,
processing, and conversion processes are unique. Municipal solid wastes are anticipated
to grow to 3.40 billion tons by 2050, and carbon from MSW is likely to be employed
increasingly in batteries [131]. Carbon-based compounds are generated from municipal
solid waste, food, and agricultural waste using thermochemical or biochemical conversion.
These carbon structures are often utilized in batteries. The conversion methods involve
pyrolysis, gasification, and incineration, which all require high temperature and may release
toxic gases depending on the feedstock. Flue gas treatment plants with multiple filters
possibly reduce the toxicity of the emitted gas. Further, the coarse carbon soot and ash are
used in the cement industry as a secondary raw material [132].

Industries account for nearly 21% of all waste produced globally. Because of the
shutdown of industries, 5.88 million metric tons of solid garbage were created during the
pandemic in 2020, which was less than in previous years [133]. Concurrently, it is vital to
discover a feasible utilization for this waste while also avoiding contamination. As a result,
the use of industrial waste utilized in EECS will be discussed in the subsequent section.

Disposed tire waste.
Landfills are created due to the accumulation of waste tires, leading to the loss of pre-

cious land space. In addition, because they contain vulcanized rubber, sulfur, antiozonants,
and antioxidants, the tires are non-biodegradable. Various techniques such as crumbling,
re-treading, grinding, gasification, and pyrolysis have recently been used for recycling
tires. Pyrolysis has fewer environmental effects and ideal efficiency owing to the lack of
oxygen and a decomposition temperature below 400 ◦C [134]. Further, pyrolysis of tires
yields pyro oil, pyro char, and pyro gas. Activated carbon was derived from pyro char by
chemical activation processes and used as electrocatalysts, electrodes in supercapacitors,
LIBs, and fuel cells because of the high electrical conductivity, surface area, porosity, and
delocalized π electrons. Zhao et al. used steam-based activation for modifying pyro char,
suitable for supercapacitor electrodes [135]. Naskar et al. employed pyrolysis to obtain
carbon from rubber tires and demonstrated its usage in LIBs with a reversible capacity and
coulombic efficiency of 390 mAh g−1 and ~100% [136]. Sharma et al. used tire-derived
carbon in LIBs and reported a specific capacity of ~880 mAh g−1 after 100 cycles with 80%
capacity retention [137].

Karthikeyan et al. prepared MWCNT using a ferrocene catalyst and hydrocarbon
tire oil via spray pyrolysis. The precursor (hydrocarbon oil) flow was maintained at
20 mL min−1 at 950 ◦C. This waste tire oil may be turned into precious carbon nanotubes
for use in a variety of applications such as batteries, solar cells, and EMI shielding [138].

Printed circuit board waste.



Sustainability 2022, 14, 16001 13 of 27

Metals like tin, Cu, and Fe can be recovered from waste printed circuit boards (PCB) via
hydrometallurgy, mechanical separation, and activation processes. Gao et al. used zeolite
as a catalyst for separating useful metals from pyrolysis products. The group designed a
tubular furnace, gas collector, condenser, stainless steel reactor, and a heat controller for
performing the extraction process. The recovered metals can possibly be used in batteries
after several acid and filtering steps [139]. Similarly, using acid and proton activation
processes, Cu- and Co-based metals can be recovered from waste PCBs [140]. Not only may
the lost components in PCBs be recovered, but so can the spent water used to manufacture
PCBs, which includes Cu2+, Zn2+, and Pb. Zn ions may be removed from water using a
Di(2-ethylhexyl) phosphoric acid (D2EHPA) polymer, retaining Cu ions in the solution.
According to an ion-exchange isotherm, the D2EHPA XAD-4 resin shows better Zn ion
selectivity than the Cu ion [141]. Carbonaceous materials are recovered from waste PCBs
when processed at a temperature of ~1300 ◦C in argon (inert) atmosphere [142].

Red mud and rust waste.
Red mud is a kind of manufacturing alkaline waste with 50% Fe-based oxides pro-

duced during the processing of bauxite ore. The bauxite leftovers are generated in massive
quantities every year, and there have been several massive environmental catastrophes
relating to red mud. Gourav et al. studied the electrochemical performance of mechanically
processed red mud as an electrode in a supercapacitor. The obtained red mud waste was
ground into fine powders of various sizes using a ball mill. The red mud was composed of
Fe2O3, SiO2, Al2O3, trace amounts of TiO2, and Mn, Mg, and Na oxides. The ball-milled
red mud was then used as electrode material in a supercapacitor. The highest specific
capacitance was 72 Fg−1 at a scan rate of 200 mV s−1. The effect of both capacitive and
intramolecular mechanisms determines the overall energy stored in electrodes. In fact,
the storage process was revealed to be diffusion controlled [143]. An iron-air battery has
just been redesigned for long-term energy storage. It can work as a reversible rust battery,
absorbing oxygen from the air during discharge, converting metallic iron to rust, and vice
versa during charging. The development of a clean recycling method from scrap rusts
to marketable electrodes using ammonium bicarbonate was also reported in LIBs with
LiFePO4 cathodes. [144,145].

Leather waste.
The leather manufacturing industry produces untanned and tanned leather waste in

vast amounts. This leather waste was employed as a precursor for the chemical activation
of porous carbon electrode architectures via the addition of KOH and heat treatment.
Niketha et al. prepared carbon material for supercapacitor electrodes from waste leather
via carbonization and KOH activation. It was revealed that the increase in activation
temperature increased the surface area and porosity, leading to enhanced N2 adsorption.
The electrodes are made up of 95 wt% carbon recovered from waste leather and 5 wt%
nafion (to improve ionic conductivity), all of which are coated in nickel foam. Ag/AgCl and
platinum were used as a reference and counter electrode. The overall specific capacitance
achieved was 1960 Fg−1 in 1 M KCl electrolyte [146]. Similarly, many researchers recovered
porous carbon from leather waste, activated with KOH and used in supercapacitors [147].
Interestingly, Soni et al. prepared low-cost Fe–N–C based catalysts as an alternate to Pt
catalysts in alkaline fuel cells and Zn air battery systems. The waste footwear leather was
pyrolyzed with FeCl3 at 900 ◦C to obtain N, S, and Fe combined porous carbon. The fuel
cell with this porous carbon cathode showed a power density of 50 mW cm−2 and OCV
of 0.92 V. Similarly, the Zn air battery with the prepared porous carbon exhibited a power
density of 174 mW cm−2 [148]. These findings suggest that leather scrap may be used in
electrochemical energy storage systems, which reveals significant improvements in cell
performance comparable to commercial carbons.

Silica and steel waste.
Quartz and silicon containing materials are frequently used in modern manufacturing.

While a vast volume of silicon waste is produced each year, recycling it for value-added
applications has remained unproductive [149]. Wu et al. used block Si and quartz sand
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waste andrefined it to prepare Si/SiO2 composite anodes for LIBs. Initially, the Si waste
was ground and heated to 650 ◦C to remove organic moieties, followed by HCl and HF
etching to remove surface impurities. After multiple washes and filtration, the obtained
Si/SiO2 composite was used as an anode material for LIBs. The prepared anode exhibited
a capacity of ~993 mAh g−1 after 400 cycles with complete capacity retention. The high
capacity is because of prelithiated Si/SiO2 compounds, which allow the whole cell to have
an increased energy density (459.4 Wh kg−1) over conventional graphite electrodes [149].

3.4. Underpinning Renewables for EECS

Solar power has the most possibility to satisfy future power consumption demand,
achieving emissions reduction objectives among the various renewable energy technologies
accessible. According to Creutzig et al., solar has the potential to offset 30–50% of the
world’s electricity consumption by 2050, owing to a considerable decrease in renewable
energy setup’s initial investment over the years and predicted developments in the up-
coming years due to science and technology progressions [150]. On the other hand, these
energy-generating methods are changeable and necessitate flexible substrates for effective
interaction with the developing grid system. Integration of power grids, renewables, and a
transmission network with low carbon emissions might be viable alternatives to compen-
sate for the existing energy demand. Solar and fuel cell/batteries integration are critical
options for a sustainable future. Solar–hydrogen hybrid systems involving photovoltaic
powered electrolysis used for hydrogen production have lots of scope in the future. Unfor-
tunately, solar generation hybrid system efficiency is a poor match for the effectiveness of
hydrogen derived from fossil fuels. For instance, a recently developed proton exchange
membrane electrolyzer with solar power had an efficiency of 31%. However, the authors
highlight the commercial scalability, infrastructure, and cost difficulties of developing such
hybrid systems [151].

3.5. Policies and Regulations

Administrators and policymakers have already begun to examine the adverse effects
of GHG and have taken measures to mitigate them (SGD goals). Several nations committed
to achieving zero CO2 emission targets by 2050 at the UN Climate Action Summit in 2019.
These are lofty ambitions, and achieving them will need a significant energy renaissance.

Hydrogen is one of the key solutions for the energy crisis and for creating a sustainable
market. Recently, 13 international organizations formed a council for hydrogen energy for
the following reasons:

(i) Several feedstocks and techniques may be used to manufacture hydrogen, with varied
prices.

(ii) Hydrogen may be utilized in a variety of applications.
(iii) Fuel cells can offer several benefits to the entire electricity requirement of countries.
(iv) Hydrogen technology may be expensive, but there are several inexpensive supple-

mentary approaches that have been recently developed.

The UK’s 2017 white paper summarizes the possibilities and challenges of using
hydrogen as fuel. The demand for hydrogen is predicted to grow on a worldwide scale by
2070, with transportation, industries, and energy being the primary consumers [152].

The European Commission’s (EC) strategy has developed different ways to improve
hydrogen energy production and investments. They also support the development of green
hydrogen [153]. The New Green Deal was initiated by the EC in three phases: 2020 to 2025,
2025 to 2030, and 2030 to 2050. Some of the initiatives are:

(i) Minimizing the expenses associated with producing hydrogen using industrial tech-
nologies that emit less carbon dioxide.

(ii) Making use of every available collaboration with practical facilities that already exist
to spread hydrogen’s possibilities logistically.
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(iii) Lowering the cost of producing renewable power, which includes lowering the price
of producing hydrogen thanks to manufacturing methods using minimal carbon
dioxide emissions.

(iv) Maturing green hydrogen technology and making it viable in the long term (beyond 2030).
(v) Subsidizing blue hydrogen investments via pilot projects andnational and EU funding.
(vi) Reducing the cost of electrolyzers and membranes.

The International Hydrogen Council had 81 companies as members in 2021, up from
13 in 2017. The Council’s goals are to pinpoint the current obstacles that must be solved with
the aid of the governments and to develop the practical application of hydrogen in several
required fields [152–154]. The assessment of cost-effective improvements, both current and
future, as well as a more accurate price for both green and blue hydrogen, should be the
main emphasis of future development. Subsidies of up to USD 61 million, USD 466 million,
and USD 100 million, respectively, were allotted for the construction of hydrogen fueling
stations in Japan, Germany, and California [153]. Fuel distributors may be encouraged to
establish a long-term hydrogen fueling infrastructure through rules and incentives for low-
carbon hydrogen generation. The Hydrogen Program Plan, published by the United States
Department of Energy in 2020, offers policy direction for developing, implementing, and
validating hydrogen production and associated technologies while eliminating regulatory
and commercial impediments and achieving diverse commercial routes.

4. Proposed Perspective

In the last decades, computational chemistry and calculations such as Monte Carlo
techniques, first principles calculations, molecular dynamics, molecular simulations, and
quantum mechanics were used to predict the properties of new materials and design [155].
DFT calculations and computational tools have resulted in the creation of several databases
such as the Inorganic Crystal Structure Database (ICSD), Materials Project, MaterialGo,
Electronic Structure Project, Harvard Clean Energy Project, and Open Quantum Materials
Database [156]. However, owing to the increased need for coding and poor scalability of
computations, there are still numerous obstacles in identifying adequate descriptors or
models, limiting their efficacy in studying complicated real components. Furthermore,
substantial volumes of material data files are frequently overlooked in databases. As a
result, it is critical to speed material discovery by developing a new study design.

Artificial intelligence (AI) is a recently used tool for material discovery. Furthermore,
data science has become a research hotspot, integrating AI with big data [157]. Further,
data visualization tools, Power BI, and presentation tools play a vital role in analyzing
the collected data and branching. Machine learning (ML), an essential component of
AI, can discover mathematical laws hidden in large amounts of data to create consistent,
repeatable values and outcomes [157]. ML may also connect tiny and big temporal and
dimension scales. It ensures incredible precision by being able to forecast different materials
or attributes quickly. ML methods such as deep neural networks, support vector machines
(SVM), partial least squares regression (PLS), logistic regression (LR), and random forest
(RF) can be used to predict the EECS material attributes [157]. The developed ML model
should consist of descriptive, predictive, and prescriptive AI in order to extract information
from available data sources, analyze and predict the pattern, and provide improvement
criteria, respectively [157,158].

The development of ML for rechargeable batteries has been considerably aided by
the research studies listed below. The cohesive energy and diffusion barrier of an olivine-
type LiMXO4 were predicted in 2014 by Jalem et al. [159] by combining density functional
theory (DFT) with the partial least squares (PLS) algorithm. Using the DFT and PLS ap-
proaches, they chose 15 solid electrolyte combinations for lithium-ion batteries and then
used Bayesian optimization to determine which compounds were the best conductors.
With only 30% of the total DFT-based assessments, the approach can, 90% of the time,
locate the perfect combination. Based on their ability to avoid metal dendrites in the Li
anode, Ahmad et al. [160] performed a computational evaluation of more than 12,000 inor-
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ganic solids in 2018. Twenty interfaces with six solid electrolytes were predicted by ML
models to be resistant to dendrites. In order to construct a high-performance solid elec-
trolyte interphase, Arghya et al. [161] combined semi-supervised procedural deep learning
models with laboratory testing in 2019. ML is an appropriate computational approach
for rechargeable battery materials because it can more rapidly and precisely discover the
structure connections of these materials. Each potential characteristic set is evaluated using
a trained machine learning model, such as Support Vector Machine (SVM) or Artificial
Neural Networks (ANN). Several potential feature subgroups are kept and used to con-
struct the list of feature subsets until the chosen feature subset satisfies the repetition end
conditions. Wu et al. [162] chose 23 key descriptors containing essential characteristics like
impurity level. With a root mean square error (RMSE) of 0.15 eV, a Gaussian kernels ridge
regression (GKRR) model was created to forecast FCC solute transport barriers. Recently,
the LSSVM model was utilized to predict the electrical properties of a ternary mixture at
different temperatures and atmospheric pressure, with 179 samples, which had an R2 of
0.999. According to relevant research, the average melting point has the biggest influence
on the electrical conductivity of the ternary combination [163].

Recently, Chenmali et al. used deep feedforward neural networks for estimating
the state of charge (SOC). They used DNN, which can bypass fillers and map the cur-
rent, voltage, and temperature-varied SOC. The DNN may train itself with additional
parameters using learning techniques like gradient descent [164]. Similarly, battery degra-
dation performance was predicted using a Gaussian regression ML model with the help
of impedance spectroscopy. Regarding fuel cells, Zhongliang et al. [165] used Fisher dis-
criminant analysis (FDA) to identify individual cell voltages of PEMFC. Similarly, SVM
and ANN were also used to determine the catalyst’s activity, voltage, and redox charac-
teristics [166]. Although SOFCs and PEMFCs have significant variances, the diagnostic
approach and the electrochemical issues are indicative [167]. For ML-based techniques,
the system’s physical properties and scientific relationships are not essential [168]. Since
the state of health (SOH) of a fuel cell system may be determined by identifying patterns
from simple sensor inputs, machine learning (ML) can be a useful option for real-time
application in SOH evaluation [169]. The essential problem, from the laboratory concept to
the industrial application of ML-based techniques, is how to achieve high accuracy using
inexpensive sensors, followed by the reliability and resilience of the diagnostic model [169].

However, all these studies used theoretical data sets and minimal experimental mea-
surements. In real-time scenarios, a much bigger training set is necessary. The gap between
the laboratory and industry is because of the changes in material properties and device
performance when operated on a large scale [170]. Previously, Chellappan et al. reported
high-throughput solution processable hybrid materials, supported by ML optimization,
and identified the suitable hybrid materials for high electrical conductivity [158]. The group
proposed a high-throughput semi-automated synthesis and electrical testing method for
identifying the best hybrid materials with the ML algorithm. This platform uses Bayesian
optimization for focused data sampling, which was then applied to generate the best
material for organic photovoltaics. The same concept can be applied in batteries and fuel
cells [158].

As an example, the key design prototype for optimizing materials in PEMFC and
battery cathodes is illustrated [158]. The initial step in ML design is to assess the descriptors.
The descriptors for fuel cells used here are membrane thickness, catalyst type, membrane
porosity, and hydrogen partial pressure [171,172]. Many additional characteristics, such as
fuel-to-oxygen ratio, feed materials, temperature, etc., might also be considered depending
on the case condition [171]. The next step is to assign the target properties relative to the
descriptors, as shown in Figure 7, such as voltage (OCV), Ohmic potential, and electrical
conductivity. The third step is the hardest, as it involves mathematical optimization and
screening [172]. The screening strategy involves generating all conceivable target properties
in the model space, followed by material testing utilizing high throughput (HT) materials
development, and then optimizing using the created ML models [172]. In our proposed
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HT design [158], we recommend employing ML enabled thickness estimation to measure
surface thickness, cyclic voltammetry to analyze electrocatalytic performance, a surface
probe analyzer to detect pore size, and a pressure sensor to monitor hydrogen pressure [173].
The datasets gathered during the design of HT experiments will be utilized for ML model
construction and validation (Step 4). Because closed-loop ML is more exact and accurate
than open-loop ML, forecasted data sets will be integrated into the input process following
the loop iteration (Step 5) [158,174].
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Like the design of experiments for fuel cells, a prototype with different descriptors for
selecting cathodes in a battery is shown in Figure 8 [175–178]. The descriptors used here are
porosity, mass loading, binder-to-solvent ratio, and composited material properties. The
outcomes are electrical conductivity and voltage (OCV). Other descriptors and outcomes
are stated in Figure 8.

As various research has demonstrated the simplicity with which carbon compounds
may be extracted from trash, we propose a perspective to investigate their qualities and
performance using machine learning [179]. It is important to value both sustainability and
performance, which is possible with carbon materials, and it is one of the viable options. As
an example, a methodology for utilizing waste resources and involving both experimental
and theoretical datasets for machine learning is described [158,179]. Machine learning
(ML) leverages real-world insights gained from raw data to solve complex problems fast.
There are several publications and research work about sustainability and recycling, but
there is no standard set of protocols to follow. Thus, we propose to use machine learning
algorithms to predict the best recycled materials compatible with fuel cells and batteries
from both available data sets and experimental data, allowing computers to uncover
a variety of deep insights while being specifically educated on various opportunities
and developing a standard protocol [158,170]. ML is growing rapidly, fueled mostly by
advances in processing technology and accelerated materials development. For instance,
we have illustrated a development protocol for an alternative sustainable, low-cost/high-
performance electrochemical energy storage device suitable for commercial use, which will
involve optimizing several interdependent material parameters and operating conditions
using high throughput accelerated materials fabrication and machine learning. The overall
proposed workflow is shown in Figure 9 [158,169,180].
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Initially, the process parameters, descriptors, and outcomes should be identified. There
are five steps, of which Step 1 to Step 4 undergo closed-loop repetition until convergence.

Step 1 is to collect and segregate carbon resources.
Step 2 is to identify and optimize the morphological and surface features using syn-

thesis methods.
Step 3 is to utilize high throughput experiments for analyzing the spectral and micro-

scopic features of thousands of samples.
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Step 4 is to use the ML algorithm to study the traits and pattern, with closed-loop
optimization from Step 1 to Step 4.

Once the suitable and promising material is identified, Step 5 is to build and test the
EECS device.

Researchers claim it is easier to do reverse materials design; that is, to use ML for
identifying materials with datasets as a first step and then optimize using experimental
studies. From our viewpoint, the AI technologies are not completely reliable for new mate-
rial discoveries with available databases in the field of EECS. For instance, the performance
of LiFePO4 cathodes in LIBs significantly varies from 90 to 170 mAh g−1, and yet different
work that reports the same method of preparation, mass loading, and similar particle
sizes shows that the performance characteristics are not analogous to each other. The
realm of applying ML to EECS technology is new and started only a decade ago; therefore,
complete reliance on databases has the possibility for definitive errors. Further, if the first
step of reverse materials design is itself an error, the process of continuing the assessment
remains ineffective.

Bayesian optimization and sampling algorithms are specifically suited for small ma-
terials science problems where data is collected in a high throughput fashion, which is
perfectly suited to the viewpoint. The Bayesian optimization (BO) algorithm explores the
relationship between the input process parameters and the measured material descriptors.
The application of ML to these advanced algorithms in a closed loop will allow us to map
the correlation between the input process variables and the output material characteristics.
This will accelerate the identification of optimal process conditions to fabricate the most
suitable EECS electrodes with higher electrical conductivity and mechanical stability.

We also suggest involving descriptive AI, which analyzes the target properties’ un-
derlying ability to construct an exact data model, enhancing the integrity of data sets. A
well-organized digital twin can generate varied data (e.g., malfunctions, inconsistencies,
data under specific circumstances) that are seldom encountered in the actual world. Trust-
worthy data increase the complexity of training datasets, which empowers the AI system
and increases the reliability and scalability of ML techniques.

The fundamental feature is the digital twin, which is utilized to perform initial training
and test the impacts of ML-based refinements. The suggested architecture eliminates the
hazards of error and/or inaccurate suggestions by retraining the AI engine on the digital
twin by experimental datasets rather than only relying on theoretical datasets. Furthermore,
because the training dataset is limited, it is not guaranteed that developing early findings
acquired in the framework will convert to a correct implementation due to technical
intricacy. As a result, the high-fidelity digital twin is utilized to assess the AI engine’s
proposed operations in preparation, evaluating risk and estimating efficacy.

5. Conclusions

Computational chemistry has matured as a method for supplementing and assisting a
series of experiments for the prediction and development of novel materials and databases.
Although it has been generally projected that machine learning will enhance and revo-
lutionize the EECS sector, realistic implementation remains a challenge. It is difficult to
analyze all real-time problems due to complex non-linear features and insufficient datasets.
To overcome these issues, it is critical to develop established standard algorithms that are
applicable to all systems. Experiment datasets for real-time applications may be easily
created using a high throughput synthesis and characterization platform. We insist on
the use of sustainable materials and processes in EECS systems, particularly in terms of
materials recycling and transforming waste to energy materials. Perhaps electrospun fibers
and nanomaterials are advantages owing to their tunable properties. For instance, carbon
compounds generated from waste with varied characteristics can be used as a sustainable
resource for EECS. Nevertheless, various processes and parameter controls exist for creat-
ing and determining the best-performing materials. Standardization of methodologies is,
therefore, necessary to provide opportunities in the EECS commercial market. As a result,
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accelerated material synthesis and characterizing platforms with machine learning might
aid in the identification of the most sustainable materials and processes.
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