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Abstract: This study developed a reinforcement learning-based energy management agent that
controls the fine dust concentration by controlling facilities such as blowers and air conditioners
to efficiently manage the fine dust concentration in the station. To this end, we formulated an
optimization problem based on the Markov decision-making process and developed a model for
predicting the concentration of fine dust in the station by training an artificial neural network (ANN)
based on supervised learning to develop the transfer function. In addition to the prediction model,
the optimal policy for controlling the blower and air conditioner according to the current state was
obtained based on the ANN to which the Deep Q-Network (DQN) algorithm was applied. In the
case study, it is confirmed that the ANN and DQN of the predictive model were trained based
on the actual data of Nam-Gwangju Station to converge to the optimal policy. The comparison
between the proposed method and conventional method shows that the proposed method can
use less power consumption but achieved better performance on reducing fine dust concentration
than the conventional method. In addition, by increasing the value of the ratio that represents the
compensation due to the fine dust reduction, the learned agent achieved more reduction on the fine
dust concentration by increasing the power consumption of the blower and air conditioner.

Keywords: Deep Q-network; energy management; particulate matter; reinforcement learning;
supervised learning

1. Introduction

Fine dust is an air pollutant designated by the International Cancer Institute under
the World Health Organization (WHO) as a group 1 carcinogen that has been confirmed
to cause cancer in humans [1]. Fine dust can be divided into fine dust with a diameter of
less than 10 µm (PM 10) and ultra-fine dust (PM 2.5) with a diameter of less than 2.5 µm
according to its size, and the accumulation of ultra-fine dust can rapidly deteriorate indoor
air quality [2]. In particular, in the case of urban railway stations, various pollutants such
as wear particles from the railway, congestion of users, scattering by train wind, and
maintenance work of tunnels exist together [3,4]. Therefore, it is vulnerable to air pollution
including fine dust due to its difficulty in ventilation. To this end, it is possible to reduce the
concentration of fine dust by using a blower or air conditioner to simultaneously circulate
the air inside and outside the station through the filter [5]. In this regard, studies [6,7] to
predict the concentration of fine dust in stations and research [8] on the establishment of a
reduction control system are being actively conducted in order to manage the concentration
of fine dust in stations.

However, the change in fine dust concentration depends on the control of the blower
and air conditioner depending on the depth, congestion, and structure of each station [9].
Considering this, it is necessary to directly model the interaction between the fine dust
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reduction facility and the environment. These problems can be solved by applying machine
learning (ML) that can find optimal policies without directly building an interaction model
with the environment. In this condition, the power cost increases as the air conditioner
and blower are controlled to reduce fine dust, so a ML-based energy management agent is
needed to consider the power cost and the resulting fine dust reduction. Here, we refer the
controller that manages the fine dust with blowers and air conditioners as “the agent”, as it
refers to the learner and decision maker based on RL [10].

Machine learning (ML) means “an algorithm that can perform requested tasks by
using and analyzing data to perform specific tasks” [11]. ML can be largely divided into
supervised learning, which uses given data and labels to predict unknown states or values,
unsupervised learning, which finds useful patterns in the data itself, and reinforcement
learning (RL), which maximizes the long-term benefits of agents’ interactions with the
environment [12]. Among them, supervised learning mainly generates predictive models,
and RL is used to find optimal policies in control problems.

There have been several research that predict the fine dust concentrations in various
places, as summarized in Table 1. In [13], PM 10 concentration level has been predicted
based on the 9 years of data in Ankara, Turkey with ML algorithms including LASSO,
SVR and ANN. In [14], long-term spatially continuous monthly PM 2.5 level has been
predicted through ML algorithms with aerosol optical depth (AOD) data derived from
satellite images. On the other hand, there have been research on comparing several
ML and statistical models for predicting indoor air quality [15] or evaluating different
ML approaches such as Multiple Additive Regression Trees (MART), Deep Feedforward
Neural Network (DFNN) and Long Short-Term Memory (LSTM) when forecasting PM
2.5 concentration levels [16]. In [17], several learning algorithms including Support Vector
Machine (SVM), AdaBoost (AdB) and Multilayer Perceptron (MLP) are used to forecast CO2
levels. Similarly, Artificial Neural Network (ANN), Random Forest (RF), SVM and LSTM
models are applied to predict air quality in [18,19]. In [20], a hybrid deep learning model
that combines Convolution Neural Network (CNN) and LSTM is developed to predict the
PM 2.5 concentration level to be used in the early warning and control management.

Table 1. Machine learning-based literature summary.

Reference Subject Algorithm

[13] Bozdag et al., 2020 PM 10 level prediction LASSO, SVR, ANN
[14] Xu et al., 2018 PM 2.5 level prediction SVM, LASSO, RF
[15] Wei et al., 2019 Air quality control ANN

[16] Karimian et al., 2019 PM 2.5 level prediction MART, DFNN, LSTM
[17] Taheri et al., 2021 CO2 level prediction SVM, AdB, MLP
[18] Kang et al., 2018 Air quality prediction ANN, RF

[19] Janarthanan et al., 2021 Air quality prediction SVR, LSTM
[20] Du et al., 2019 PM 2.5 level prediction CNN, LSTM

[21] Kwon et al., 2021 PM 2.5, PM 10 level control DQN

The recent works have provided state-of-the-art techniques on forecasting fine dust
concentration, but the research area has not been extended to combine the fine dust concen-
tration prediction model to an agent that controls the fine dust level with energy facilities
such as blowers and air conditioners. To this end, we need to adopt not only the supervised
learning for the prediction model, but also the RL for training the agent.

RL has the advantage of finding optimal policies in situations where the agent’s
behavior and its interaction with a given environment are unknown [12]. Therefore, if ML
is used to construct fine dust management problems in stations where uncertainty exists,
we can find optimal policies directly using uncertainty without modeling as a separate
probability distribution.

In this regard, ref. [21] established an energy management agent based on RL as a
previous study. In order to build an agent, a linear transition function and a compensation
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function were developed by selecting an element in a linear relationship with the concen-
tration of fine dust in history as a component of the current state, and based on this, an
agent based on the Deep-Q network (DQN) algorithm was developed. However, when
developing the transfer kernel, based on the assumption that it is linear, elements that do
not form a linear relationship were excluded from the current state. Accordingly, there was
a problem in that the accuracy of the transfer kernel for predicting the concentration of
fine dust in the station decreased. As a summary, here are the drawbacks of the previous
research:

• Most previous works focused on predicting the fine dust concentration level or air
quality with various, but it does not consider the control problem to resolve the issue

• Though there was a paper that developed an RL-based agent, it considered linear
mapping in the fine dust concentration, which has limited accuracy

In this study, to solve this problem, we propose a method to learn an artificial neural
network (ANN) based on supervised learning instead of a linear transfer kernel and use
it as a transfer kernel and connect it with the existing DQN-based agent model. The
contribution of the paper is as follows:

• Developing a RL-based agent that controls the fine dust concentration in the railway
station using DQN method

• Developing artificial neural network (ANN) that predicts the changes in fine dust
concentration in the stations to train the agent with a small amount of data

• Combining ANN prediction model and DQN agent to train the agent with offline learning

To this end, in Section 2, system modeling based on the Markov decision-making
process was constructed. In Section 3, a model for predicting changes in the concentration of
fine dust in stations according to the control of fine dust reduction facilities was developed
using an ANN based on supervised learning. In Section 4, the DQN-based agent was
developed using the ANN developed in Section 3 as a transfer kernel, and the optimal
policy was obtained through this. In Section 5, the performance of the agent learned
through a case study was analyzed based on the actual data of Nam-Gwangju Station, and
in Section 6, the conclusion of this study was described.

2. System Modeling Based on Markov Decision Process

In order to build a RL-based energy management agent, we first assumed Markov
properties, and based on this, we constructed a system modeling based on the Markov
Decision Process [10]. The Markov decision process can be configured by defining State,
Action, Transition kernel, Reward, and Discount factor. Depending on the system, each can
be defined as follows.

First, the state can be defined by time (t), the concentration of fine dust inside and
outside the station (I(1)t , I(2)t ; O(1)

t , O(2)
t ), humidity (Hi

t,H
o
t ), and temperature (Ti

t ,To
t ). In

this case, the fine dust concentration can be expressed as a concentration of fine dust (PM
2.5) with a diameter of less than 2.5 µm and a concentration of fine dust with a diameter of
less than 10 µm. That is, the state at time can be expressed as Equation (1):

st =
{

t, I(1)t , I(2)t , O(1)
t , O(2)

t , Hi
t, Ho

t , Ti
t , To

t

}
(1)

Next, the action is a choice made based on a policy in a given state, where it refers
to the power usage of the blower and the air conditioner. Assuming there are a total of
K blowers and L air conditioners, the behavior at time is as Equation (2), where v and w
indicate the power usage of the blower and air conditioner, respectively.

at =
{

v(1)t , · · · , v(K)t , w(1)
t , · · · , w(L)

t

}
(2)

Here, each action can be a discrete value or a continuous value depending on the
control method.
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Next, the transition kernel means the probability of moving to the next state st+1 when
an action at is performed in the current state st. By the Markov property, as in Equation (3),
the probability of moving to st can be expressed as a conditional probability for the current
state st, meaning that it is not affected by any previous state [22].

Pr
(

st+1

∣∣∣{sτ}t
τ=1

)
= Pr(st+1|st) (3)

Since it cannot be operated in practice, trial and error cannot be carried out to find the
optimal policy of the blower and air conditioner like the general RL method. Therefore,
based on the existing data, an artificial neural network was constructed to predict the
concentration of fine dust in the station according to the control of the blower and air
conditioner, and this was used as a transfer kernel. More details on this are described
in Section 3.

Reward refers to the reward obtained when an action at is taken in a state st. The
reward rt at time t is expressed as a function of st and at. In this paper, the power consump-
tion of the blower and air conditioner and the reduction in the concentration of fine dust in
the station are considered as reward. When the electricity price at time t is given by pt, the
total electricity cost ct is as in Equation (4):

ct = pt

(
K

∑
k=1

v(k)t +
L

∑
l=1

w(l)
t

)
(4)

Then, the amount of reduction in PM 2.5 and PM 10 fine dust concentrations due to the
control of the blower and air conditioner through the use of power above can be expressed
as ∆(1)

t = i(1)t − i(1)t−1, ∆(2)
t = i(2)t − i(2)t−1 respectively. As a result, the reward function can be

expressed as Equation (5):

rt(st, at) = ρ
(

∆(1)
t + ∆(2)

t

)
− ct (5)

In this case, ρ represents the ratio between the reward due to the reduction in the
concentration of fine dust and the total power cost; the larger the value of ρ, the larger the
reward is, due to the reduction in the concentration of fine dust.

Lastly, the discount factor γ means the ratio between the present reward and the future
reward and is determined as a value in the range (0, 1). As the value become smaller, it
implies that the present reward is considered more valuable than the value of the future
reward. In this paper, because finite time is considered, it is set to γ = 1.

3. Model for Predicting the Concentration of Fine Dust

As discussed above, a supervised learning-based prediction model using an ANN was
developed to predict the change in the concentration of fine dust in the station according to
the control of the blower and air conditioner.

The ANN of the predictive model takes the elements and actions of the current state
as input values, and fine dust concentrations (PM 2.5, PM 10) in the station of the next
time as output values. In this case, if the input vector value in the k-th layer is Xk and
the output vector value in the subsequent (k + 1)-th layer is Yk+1, Yk+1 can be calculated
as follows [23].

Yk+1 = σ
(

XT
k Wk + bk

)
(6)

Here, Wk and bk denote a weight matrix and a bias value between the k-th layer and
the (k + 1)-th layer, respectively, and σ(·) denotes an activation function of the (k + 1)-th
layer. In supervised learning, the forward propagation algorithm is performed through the
process of Equation (6), and the final predicted value Y is output from the last output layer,
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and this is compared with the actual value O. In this case, the loss function l is defined as
the following mean-squared error (MSE) value [24].

l = ‖Y−O‖2
2 (7)

After the loss function is calculated as in Equation (7), a backward propagation
algorithm is then performed to update the weights. In order to improve prediction accuracy,
the value of l must be minimized, so each element wi of the weight matrix is updated using
gradient descent. That is, the value of wi in the (n + 1)-th iterative learning can be calculated
as in Equation (8).

wn+1
i = wn

i − α
∂l

∂wn
i

(8)

Therefore, each element of the weight matrix is updated in a direction to decrease the
value of the loss function l, and through iterative learning, the value of the loss function
l approaches the minimum value. This means that the difference between the predicted
value of the ANN model and the actual value is minimized.

4. Development of Energy Management Agent
4.1. Deep Q-Network Based Agent Development

Based on the reward function and discount factor defined in Section 2, the objective
function is to find the optimal policy π for controlling the blower and air conditioner that
maximizes the expected total discounted reward, as indicated in Equation (9).

J(π) = maxπEπ

[
T

∑
t=1

γtrt

]
(9)

Specifically, when the discount factor is considered, the optimal policy can be defined
as a policy that maximizes the average of the sum of the reward rt for each time period
from time t = 1 to t = T. The above optimization problem can be transformed into the
following problem by parameterizing the policy π as a parameter θ.

J(θ) = maxθEπθ

[
T

∑
t=1

γtrt

]
(10)

That is, instead of directly obtaining the optimal policy, by parameterization, the policy
can be obtained by expressing the policy as a parameter theta and finding the optimal θ.
Since this paper uses the Deep-Q Network (DQN) algorithm based on ANN, the parameter
θ refers to the weight matrix of the Q-network [25]. In the DQN algorithm, the ANN
predicts the approximate value Q(st, at) of the Q function for each action at with respect to
the input value st.

Q(st, at) = Eπθ

[
T

∑
τ=t

γ(τ−t)rτ(sτ , aτ)|st, at

]
(11)

Q(s) in Equation (11) means the expected value of the total reward after executing the
action at in the state st at time t. Therefore, based on the above value, the optimal policy π
can be defined as selecting an action that maximizes the expected value of the total reward.

π : at = arg max
a′

Q
(
st, a′

)
(12)

Meanwhile, the Q function satisfies the Bellman equation in Equation (13) [26].

Q∗(st, at) = rt(st, at) + γEst+1

[
max
at+1

Q∗(st+1, at+1)

∣∣∣∣st, at

]
(13)
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As the predicted value of the Q-network that predicts the Q function value is more
accurate, the difference between the left side and the right side of Equation (13) decreases.
Therefore, it is possible to construct a Q-network that predicts the Q function value by
finding the optimal parameter θ value to minimize the loss function of Equation (14) below.

L(θ) = Est ,at ,st+1

[(
rt + γmax

at+1
Q
(
st+1, at+1; θ′

)
−Q(st, at; θ)

)2
]

(14)

The parameters θ and θ′ mean the parameters of the train network and the target
network, respectively, and in the algorithm applied in this paper, the fixed target network
method was applied to solve the problem of convergence instability during the optimization
process [27]. This is a method in which the parameter θ′ of the target network is fixed at θ−

value instead of being applied every time during repeated learning like the parameter theta
of the Train network when updating, and θ− is updated once in every N0 updates. Since
the parameter θ′ on the right side is fixed while the value of the left side of Equation (13) is
updated to reduce the value of the loss function, convergence occurs more stably.

To minimize Equation (14), the optimal parameter θ can be obtained by applying
the gradient descent method. The gradient obtained by partial differentiation of the loss
function with respect to the parameter θ is as follows.

∇L(θ) = Est ,at ,st+1

[
−2
(

rt + γmax
at+1

Q
(
st+1, at+1; θ−

)
−Q(st, at; θ)

)
∇θQ(st, at; θ)

]
(15)

Since it is difficult to obtain the expected value for all {st, at, st+1} combinations,
instead, as in Equation (16), a trajectory is constructed through sampling based on the
current policy, and the average value is calculated for the approximate value of the slope.

∇L̂(θ) =
(
− 2
|ψ|

)
∑
t∈ψ

[(
rt + γmax

at+1
Q
(
st+1, at+1; θ−

)
−Q(st, at; θ)

)
∇θQ(st, at; θ)

]
(16)

In this case, the ε-greedy method was applied to ensure sufficient exploration at the
beginning of the algorithm. The ε-greedy method selects the optimal action defined in
Equation (13) with a probability of (1− ε), and selects a random action with a probability
of ε [10]. The value of ε decreases as the iterative learning progresses, so the final policy
follows Equation (13). In addition, the experience replay method was applied [28]. First, the
experience replay method stores the sampling result in the memory Φ = {(st, at, st+1, rt)},
and when calculating the loss function, randomly selects the samples stored in the memory
Φ to create mini-batch Ψ and calculates Equation (14). This makes it possible to efficiently
obtain the slope of the loss function by utilizing the previous sample without the need to
make a new sample each time the µ is updated.

4.2. DQN-Based Energy Management Agent Using ANN Prediction Model

Finally, we develop the DQN-based energy management agent, which works as an
agent to determine the control of energy facilities based on the given state information.
Here, the agent is trained through the process shown in Figure 1, which utilizes the fine
dust concentration prediction model developed in Section 3 as a transition function.

First, for the current state st given at time t, the action at is determined through
the DQN algorithm. Next, st and at are used as input values of the station’s fine dust
concentration prediction model. This value again becomes the input value of DQN at time
t + 1. The whole process that combines ANN prediction model and DQN-based energy
management agent is depicted in Figure 2 as a flowchart.
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Figure 2. Flowchart of the process combining ANN prediction model and DQN-based energy
management agent.

Finally, the blower and air conditioner control algorithm using the fine dust concentration
prediction model in the station and the DQN method is shown in Algorithm 1 (DQN-based
energy management agent optimal operation algorithm using ANN prediction model).
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Algorithm 1: Machine learning-based optimal control of energy management agent

1 Hyperparameter: Discounting factor γ = 1, learning rate η > 0, ε-greedy
coefficient κ ∈ (0, 1), mini-batch size |∅|, target network update interval N0, maximum
number of iterations for ANN NE, maximum number of iterations for DQN NQ

2 Inputs: Exploration time horizon T
3 Initialize: Initial parameter of prediction ANN W0, ε-greedy probability

κ ∈ (0, 1], Replay memory Φ = ∅, initial n = 0, initial θ′, initial target network
parameters θ− = θ′

4 (1) Concentration of fine dust prediction ANN
5 while nE ≤ NE do
6 for t = 0, · · · , T do
7 Compute prediction of concentration of fine dust Yt+1 with Equation (6) using

the data st, at as inputs
8 Compute ` by Equation (7) with measured data Qt+1.
9 Update W by Equation (8)

10 end
11 Update iteration index: nE ← nE + 1
12 end
13 (2) Deep Q-Network Training
14 while nQ ≤ NQ do
15 for t = 0, · · · , T do
16 Select a random action at with probability ε; otherwise,

a∗t = argmaxat Q(st, at; θ′)
17 Compute st+1 by using st and at as inputs of the prediction ANN.
18 Compute rt with Equation (5).
19 Store the tuple (st, at, st+1, rt) in Φ
20 Select a random mini-batch ∅ with size |∅| form Φ.
21 Compute the gradient estimate of loss function based on Equation (15).
22 Parameter updates: θ′ ← θ′ − η∇̂L(θ′)
23 if t/N0 is integer then
24 target network parameter update θ− ← θ′ .
25 end
26 Update ε : ε = κε.
27 end
28 Update iteration index: nQ ← nQ + 1
29 end

5. Case Study

In order to prove the effectiveness of the algorithm presented in Algorithm 1, a case
study was conducted based on the data of Nam-Gwangju Station as in the case study in [8].
First, the definition of Equation (1) was used for the current state. Next, in the case of action,
it was assumed that three operation modes could be selected for three blowers (K = 3)
and two operation modes could be selected for two air conditioners (L = 2). Accordingly,
the total number of selectable actions was set to 32 × 22 = 108. Accordingly, the ANN
input nodes of the fine dust prediction model in the station consisted of a total of 14 nodes
including 9 nodes for current state and 5 nodes for actions, and output nodes composed of
2 nodes; in the case of DQN, there are 9 input nodes and 5 output nodes. The ANN required
for the predictive model and DQN was constructed using Python and Keras packages and
then trained [29]. Table 2 shows the hyperparameter settings of the predictive model and
DQN. Based on the algorithm presented in Algorithm 1, the prediction model and DQN
algorithm were applied using Tensorflow and Keras based on Python.
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Table 2. Hyperparameters of predictive model and DQN.

Model Hyperparameter Value

Prediction ANN

Number of nodes in hidden layers (32, 16)
Mini-batch size 64

Number of iterations 300
Loss function MSE

Optimizer ADAM

DQN

Number of nodes in hidden layers (256, 128)
Activation function ReLU

Learning rate 0.001
Optimizer ADAM

Mini-batch size 64
Number of iterations 5000

Learning was conducted using data for a month, which updated every 15 min
(T = 2880). In order to compare the results according to the change in the ρ value, which
represents the ratio between the compensation due to the reduction in fine dust concentra-
tion and the total power cost, the results were compared by setting the ρ value to 1 in Case
1 and the ρ value to 5 in Case 2. In Case 3, we have adopted conventional control methods
based on the thresholds of fine dust concentrations; if PM 2.5 or PM 10 concentrations
exceed 24 µg/m3, the agent will turn on three blowers. When the concentrations exceed
48 µg/m3, the agent will additionally operate two air conditioners.

The learning results conducted using the ANN are as follows: Figures 3 and 4 show the
changes in the logarithmic value of the total reward and loss function during the learning
process for each case. As can be seen from the two figures, as the learning progresses, the
value of the loss function converges to 0 and it can be seen that the total reward increases.
This means that as we update the parameters of DQN so that the value of the loss function
decreases, the predicted value of the Q function of DQN becomes more accurate. Then, for
each state, the value of the total reward also increases because it follows the policy that
determines the action to maximize the Q value. This means that it converges to the optimal
policy through RL using the DQN method.
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Subsequently, based on the learned ANN model, a simulation was conducted based
on data for 3 days. As a result, the changes in the concentrations of PM 2.5 and PM 10 in
the station for Cases 1, 2 and 3 were shown in Figures 5 and 6. As seen in both figures,
Case 1 and 2 with proposed method achieve better performance on decreasing both PM
2.5 and PM 10 concentration compared to Case 3. In addition, it can be seen that Case 2
maintains a lower concentration of fine dust in the station compared to Case 1, because
by setting the ρ value of Case 2 larger, the reward for the reduction of fine dust is made
larger. This can be confirmed by the fact that the power consumption of Case 2 is larger
than that of Case 1 in Figure 7, which shows the power consumption according to the
control of the blower and air conditioner. This is because, as the ρ value of Case 2 is set to
be larger, the blower and air conditioner are controlled in a direction to further reduce fine
dust by increasing the power consumption. Moreover, we can see in Figure 7 that Case 3
has smaller power consumption than Case 1 but has larger consumption than Case 2. It
implies that the control policy of Case 3 cannot use energy facilities efficiently, whereas
Case 1 and 2 construct a model-free policy with a data-driven method that gives better
performance with less power consumptions.
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To observe the result with more detail, Table 3 shows the average, minimum and
maximum value of PM 2.5, PM 10 concentration levels and total power consumption of
three cases. We can see that Case 2 has a least fine dust concentrations on minimum,
maximum and average values, even though it has more power consumption compared to
other cases. When comparing Case 1 and Case 3, Case 1 has smaller fine dust concentrations,
even though it uses less average power than Case 3, which proves the effectiveness of the
proposed method.

Table 3. Minimum, maximum and average values of fine dust concentration and total power
consumption for three cases.

Category Value Case 1 Case 2 Case 3

PM 2.5
concentration

Minimum 14.85 7.64 20.38
Maximum 54.37 38.67 68.91
Average 35.25 24.56 43.27

PM 10
concentration

Minimum 14.06 6.76 19.03
Maximum 51.97 36.77 64.65
Average 33.49 23.08 40.44

Total power
consumption

Minimum 10 20 0
Maximum 184 242 234
Average 72 130 102



Sustainability 2022, 14, 15550 12 of 13

6. Conclusions

In this paper, we developed a RL-based energy management agent to control PM 2.5
and PM 10 concentrations in stations using supervised learning of ANN and DQN al-
gorithm. To this end, a Markov decision-making model was constructed in which the
concentration of fine dust in the station and the time, temperature, and humidity that
change it were set as the current state, and the control of the blower and air conditioner
as an action. In order to predict the change in the concentration of fine dust in the station
according to the control of the blower and air conditioner, an artificial neural network
based on supervised learning was constructed and learned and used as a transfer kernel.
Then, after constructing an artificial neural network based on the DQN algorithm to control
the blower and air conditioner according to the current state, we developed an agent that
controls the blower and air conditioner according to the optimal policy according to the
current state.

In the case study, using actual data measured at Nam-Gwangju Station, the agent
showed better performance by reducing the fine dust concentration while using the power
efficiently than the conventional method. In addition, as the ratio between compensation for
fine dust reduction and total electricity cost increases, the power consumption of blowers
and air conditioners increases to further reduce the fine dust concentration in the station.
It implies that we can adjust the level of operations by setting the value for fine dust
concentration reduction. We believe the contribution of this paper leads to one more step
toward the sustainable power system, with the development of new control techniques for
the air-quality control facilities that efficiently manage the fine dust concentration in the
station while minimizing the power consumed from the facilities. Existing future research
directions open up on adding an energy storage for reducing more on operation cost and
improving the performance by training multiple DQNs on each time period. As a way of
improving the performance of RL, state-of-the-art algorithms such as Aquila Optimizer
(AO) [30], Smell Agent Optimization (SAO) [31], African Vultures Optimization Algorithm
(AVOA) [32] and Chameleon Swarm Algorithm (CSA) [33] can be applied.

Author Contributions: Methodology, J.-H.H.; Software, S.-M.H.; Writing—original draft, K.-B.K.
and J.-y.P.; Project administration, H.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by a grant from R&D Program (Virtualization-based railway
station smart energy management and performance evaluation technology development, PK2203E1)
of the Korea Railroad Research Institute.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yeo, M.J.; Kim, Y.P. Trends of the PM10 Concentrations and High PM10 Concentration Cases in Korea. J. Korean Soc. Atmos.

Environ. 2019, 35, 249–264. [CrossRef]
2. Back, J.-M.; Yee, S.-W.; Lee, B.-H.; Kang, D.-H.; Yeo, M.-S.; Kim, K.-W. A Study on the Relationship between the Indoor and

Outdoor Particulate Matter Concentration by Infiltration in the Winter. J. Arch. Inst. Korea Plan. Des. 2015, 31, 137–144. [CrossRef]
3. Querol, X.; Moreno, T.; Karanasiou, A.; Reche, C.; Alastuey, A.; Viana, M.; Font, O.; Gil, J.; de Miguel, E.; Capdevila, M. Variability

of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Meas. Tech. 2012, 12, 5055–5076. [CrossRef]
4. Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M.; Amato, F.; Alastuey, A.;

et al. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos.
Environ. 2014, 92, 461–468. [CrossRef]

5. Lim, H.; Yin, T.; Kwon, Y. A Study on the Optimization of the Particulate Matter Reduction Device in Underground Subway
Station. In Proceedings of the Spring Conference of the Korean Institute of Industrial Engineers, Gwangju, Republic of Korea,
10 April 2019; p. 3786.

http://doi.org/10.5572/KOSAE.2019.35.2.249
http://doi.org/10.5659/jaik_pd.2015.31.9.137
http://doi.org/10.5194/acp-12-5055-2012
http://doi.org/10.1016/j.atmosenv.2014.04.043


Sustainability 2022, 14, 15550 13 of 13

6. Park, S.; Lee, Y.; Yoon, Y.; Oh, M.; Kim, M.; Kwon, S. Prediction of Particulate Matter (PM) using Machine Learning. In Proceedings
of the Korea Society for Railway Conference, Jeju, Republic of Korea, 3 May 2018; pp. 499–500.

7. Kim, Y.; Kim, B.; Ahn, S. Application of spatiotemporal transformer model to improve prediction performance of particulate
matter concentration. J. Intell. Inform. Syst. 2022, 28, 329–352.

8. Kim, J.; Lee, K.; Bae, J. Construction of real-time Measurement and Device of reducing fine dust in Urban Railway. In Proceedings
of the Korea Society for Railway Conference, Online, 7 July 2020; pp. 101–102.

9. Lee, Y.; Kim, Y.; Lee, H.; Kim, Y.J.; Kim, B.H. Analysis of the Correlation between the Concentration of PM 2.5 in the Out-side
Atmosphere and the Concentration of PM 2.5 in the Subway Station. J. Korean Soc. Atmos. 2022, 38, 1–12. [CrossRef]

10. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2017.
11. Kim, M.S. Research & Trends for Converged AI Technology based on Unsupervised Reinforcement Learning. J. Korean Soc. Comp.

Inform. 2020, 28.
12. Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M. Machine Learning: An Artificial Intelligence Approach, 1983rd ed.; Springer:

Berlin/Heidelberg, Germany, 2013.
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