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Abstract: Assessment of roadway safety in real-time is a necessary component for providing proactive
safety countermeasures to ensure the continued safety and efficiency of roadways. A framework for
utilizing data from connected vehicles and other probe sources is proposed in this study. Connected
vehicles present an opportunity to provide live fingerprinting and activity monitoring on roadways.
Taking advantage of high-resolution trajectory data streaming directly from connected vehicles,
variables are extracted and the relationship with crashes are explored utilizing statistical and machine
learning models. Hard acceleration events, in conjunction with segment miles are shown to have
strong positive correlations with historical crash outcomes as proven by OLS, Poisson and Gradient
Booster regression models. An XGBoost classification model is then trained to predict the real-time
instances of crash outcomes at 5 min temporal bins with high levels of accuracy when trained with
data including the real-time segment speed, reference speed, segment miles, a segment crash risk
factor and other variables related to the difference in speeds between consecutive segments as well as
the hour of the day. A weighted ensemble model achieved the best performance with an accuracy of
0.95. The results present evidence that the framework can capitalize on the richness of data available
via connected vehicles and is implementable as a component in Advanced Traffic Management
Systems for the analysis of safety critical situations in real-time.

Keywords: road safety data collection and analysis; road traffic safety management; intelligent
transportation systems services; driver behavior analysis; connected vehicle big data analysis

1. Introduction

Roadway crashes still present a major public health issue, as the global yearly tally
of deaths due to vehicular crashes amounts to over 1.35 million, and injuries up to 50 mil-
lion [1]. Given that the increase in traffic demand correlates positively with population
growth and economic growth, there is a valid expectation that the traffic safety problem
could worsen as countries seek to improve the economic conditions of the people. In
the United States of America alone, roadway vehicle travel accounts for up to 87% of
the 1.1 billion trips carried out daily [2]. The domain of traffic safety has over the years
investigated the relationships between several roadway factors and their contribution to
roadway crashes [3–6]. The traditional approach to safety analysis has relied historically on
physical infrastructure, crash data, manual data collection, and usually inferential statistical
modeling to evaluate the safety of the road networks [3,4]. Although this approach has seen
a lot of success over the years, there is still much to be desired regarding more proactive
approaches to traffic safety [4,7–9]. In recent years, studies have demonstrated that the
advancement of commercially available and inexpensive real-time disaggregated vehicle
data has the potential to be utilized to develop real-time crash prediction models [3,4,10],
yet what is missing is a referenceable data processing and modelling framework of how
the currently available data, and the potential variables that can be extracted from them in
their current form, can be used to develop deployable detection and prediction models of
safety critical situations, which this study seeks to provide.
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With the advancement in traffic data collection efforts, many agencies in the United
States and around the world have upgraded and updated the amount and types of traffic
data they collect. Traffic volume data on specific roadway segments and at specific locations,
which traditionally have been collected utilizing detectors and manual counting efforts,
can now be collected utilizing CCTV video feeds as well [10]. The aggregated speeds along
roadway segments can now be monitored in real time with vehicle probe data from different
sensors such as GPS, WiFi and Bluetooth devices, as well as monitored and collected from
video data, granting transportation agencies the ability to assess situations on the roadway
as they unfold [11–14].

In more recent years, the process for modeling crash data has employed the use of
modern approaches such as deep learning and machine learning methods [15,16]. This has
expanded the scope of analysis for many areas of transportation research from data col-
lection to data generation, network safety optimization and traffic safety analysis [15–20].
As data accessibility, which used to be the biggest drawback to employing these mod-
ern models, is no longer an issue, the potential for more analysis use cases within the
transportation domain has grown. Machine learning models are still not without their
disadvantages. Although they present high performance and accuracies, this comes at
the cost of their difficulty with regard to explainability [20]. The processing capacity for
these large streams of real-time data made available through CV sensors and other sensors
tend to overwhelm existing datacenter infra-structure data processing capabilities and the
inherent benefits are delayed or unenjoyed [21]. Robust ETL pipelines are necessary to
handle these large data streams in a timely manner. These disadvantages are also prevalent
in deep learning models which also require higher levels of data resolutions as well as
computational resources to train, deploy and monitor [17,19,22,23].

The benefit of short-term traffic state data for real-time traffic network assessment
spans multiple use cases, including network congestion [16], dynamic traffic signal timing,
and many more use cases [9,10,19]. The challenge with real-time safety assessment begins
with the data collection process. Unlike volume and speed that are continuous states of
traffic which can be measured at a regular time interval, crashes are discrete random events.
Roadway crashes are usually rare occurrences on the roadway network and as such, the
mechanism for their analysis usually involves compiling historical data over a lengthy
period, presenting a difficulty for real-time analysis as the causal factors that contribute
to the crash situation may not be captured in the moment due to data underreporting
and inconsistencies with the collection efforts across different transportation agencies. As
such, in the absence of crash data, many studies have moved towards relying on surrogate
safety measures that present a certain quantifiable level of risk to be estimated [24]. In this
study the temporal threshold for defining real-time is limited to 5 min bins, defined by the
availability of the data and the practical implications of the framework.

As the domain of traffic safety analysis expands with the introduction of new data
sources, as well as analysis approaches, researchers are now able to redefine their evaluation
methodologies. While most safety analysts prefer the traditional statistical approaches for
their ease of expandability, others have decided to focus on newer machine learning and
deep learning methods for the higher accuracies of their predictions [9,25,26]. The disparity
between the preferences is also reflected in the choice of variables used, as the traditional
approach relies on spatially aggregated data for macroscopic analysis and link level crash
prediction analysis. This approach limits the resolution and scope of parameters that can
be involved in the analysis process. While some agencies have adopted an approach that
involves extracting information from video feeds to remedy this situation, the scope of
effort involved in such a venture is tasking and currently impractical for real-time analysis.

To address some of these research gaps, this study proposes a framework that involves
utilizing disaggregate vehicle trajectory data from connected vehicles deployed within the
transportation network. The framework is conceptualized and presented below (Figure 1).
This framework defines a process for extracting different variables from a high-resolution
data source and exploring their potential application as useful signals for detecting potential
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safety critical situations. As the general state of traffic on our roadways is dynamic and
subject to the influence of the different actions of the roadway users, it is important to
have a framework that can capitalize on monitoring the continued changes with as wide
a footprint as possible. This has been the motivation of most transportation agencies to
establish traffic monitoring centers that utilize a network of CCTV cameras to continuously
monitor the situation of the roadway. The disadvantage of this system is that it is limited
to areas where the technology is present and real-time extraction of the necessary data is
challenging. Thus, collecting information from vehicles as they are engaged on the roadway
prior to crash occurrences, it is possible to explore the relationships between the traffic state
and the crash outcome. With validated relationships, it is possible to develop and deploy
models that can monitor the state of the transportation network in real-time and respond
to potential risks in a more proactive manner.
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Figure 1. General Proposed Framework of Safety Assessment.

This study aims to explore the microscopic traffic states at a desirable level of spatial
and temporal aggregation, to learn relationships between various variables that can be
collected in real-time and the potential for detecting a crash outcome. The research poses
and addresses the following questions, are there any variables which can be extracted from
connected vehicles that have a strong influence on roadway safety? Can these variables help
traffic safety engineers develop models that can detect or predict crashes? There is a general
lack of studies that have tried to develop such frameworks for real-time evaluation, and the
few that have done so utilized different data sources and approaches [9,10,25]. The structure
of this paper defines a usable framework to meet this challenge is as follows; Section 1
introduces the paper presenting the motivation and objective of the study. A literature
review is presented in Section 2 that explores the traditional approaches to traffic safety
analysis and the current research done exploring the potential for real-time safety analysis.
Section 3 is a materials and methods chapter that presents the different datasets utilized
in this study and the methodologies employed to first evaluate the usefulness of new
variables, and then capitalize on the potential of these variables for safety critical situation
detection. Section 4 is the results of the multistage analysis framework, followed by the
discussions on the results in Section 5 and finally the conclusions of the outcome of the
study as Section 6.
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2. Literature Review

Traffic safety studies have primarily been reliant on aggregated crash data compiled
over an extended period. This general approach to traffic safety analysis limits the scope of
involvement of influential factors since event level variables are usually not preserved in
the aggregation process. Statistical count models used in the analysis of crash counts are
usually employed during analysis where spatial aggregation at the geometric infrastructure
level allows for the involvement of static geometric factors as explanatory variables. As
such, the most employed explanatory variables include network-link level factors such as
segment length (geometric factor) and AADT (Average Annual Daily Traffic) as a traffic
state factor [4,27–29].

For studies that look to analyze crashes at the event level to preserve the unique event
level factors, the scope of analysis is usually limited to injury severity as the response vari-
able. This approach to traffic safety analysis has presented us with a wealth of information
in relation to factors such as driver characteristics and behaviors [30], as well as observable
event level factors related to the environment like weather and lighting, and how they
relate to the injury severity outcome of crashes [6,30,31].

With the wealth of new data being gathered by different sensors on our roadways,
ranging from traffic volumes from embedded sensors and videos, to averaged roadway
segment speeds from probe vehicles and videos, data is now being collected and processed
at the microscopic level to aid in the improvement of the transportation network [16,25].
One such source of data is vehicle trajectory data collected from connected vehicles de-
ployed within the transportation network. The consensus surrounding the impact of
connected vehicles on the safety of the transportation network varies with regard to level
of penetration, but usually sways towards an improvement on the overall system [32,33].
The direction of some studies looking at the potential benefit of connected vehicles are
focused on extracting useful information from connected vehicle data [34] to deploy in
the analysis of roadway events. Since connected vehicles provide a stream of continuous
data factors such as speed, heading, and the general location of the connected vehicle
within the transportation network system, this has made it possible for real time analysis
of specific situations within a wider footprint on the transportation network system where
these connected vehicles are present. Situations such as congestion management through
the detection of slowdowns on roadway segments via the analysis of connected vehicle
data are made possible as a result [25,35].

With regard to traffic safety analysis and the implementation of connected vehicle data,
studies have looked at developing surrogate safety metrics from the collective analysis of
different parameters extracted from connected vehicle data, such as hard accelerations and
hard decelerations as well as vehicular jerk [8]. These metrics have come to be collectively
known as driving volatility and have proven to be an especially useful proxy for crash
risk situations. Since volatility measures deviations from acceptable driving behavior, this
data can help guide safety analysts towards responding to instantaneous safety critical
situations on roadways.

As microscopic driving behaviors have become explorable through the development
of volatility metrics from real-time vehicle trajectory data, there have been research studies
that have explored the relationships between these metrics and crash [9,25]. However,
what is lacking in the literature is a framework for real-time analysis that combines both
an investigation of which of these volatility metrics are best suited to be used as a proxy
for crash outcomes, and models that can then utilize these metrics to predict and detect
safety critical situations to a high degree of accuracy to enable stakeholders such as traffic
engineers, law enforcement and first responders, to proactively deal with these situations
in an efficient and effective manner.

3. Materials and Methods

To develop the proposed framework, an initial process of data gathering, and pre-
processing is conducted. The first two sources of data pertaining to connected vehicle probe
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data are procured from Otonomo (San Francisco, CA, USA)—a private company founded
in 2015 that provides vehicle trajectory data from a fleet of over 50 million connected
vehicles, as well as from INRIX, also a private company founded in 2005. Whereas the
data provided by Otonomo is at a disaggregated level from individual vehicles providing
information every 3 s, INRIX aggregates traffic-related information from road sensors as
well as GPS-enabled vehicles and mobile devices provided at 5 min temporal intervals.
Real-time trajectory data from individual vehicles are thus extracted from the Otonomo
data, whereas segment level aggregated data for speed and travel time are extracted from
the INRIX data. The data is collected for the spatial boundary of the City of Saint Louis in
the state of Missouri, from the period of 1 August 2021 to 31 October 2021, amounting to
over 40 million datapoints from more than 30,000 unique vehicle IDs.

The crash data on the other hand is provided by the Missouri Department of Trans-
portation for a period of ten years from 2010 to 2019, as well as crash data that occurred
within the Saint Louis City boundary for the same period when the connected vehicle
data is gathered. With the crash data serving as the response variable, a series of both
statistical and machine learning models are deployed. Firstly, the relationships between
real-time sourceable variables that can be extracted from the connected vehicle data in
tandem with other static roadway and environmental factors, and the occurrence of crashes,
are explored. Linear regression models (OLS) including Poisson regression are utilized,
followed by a Gradient Boosted (GB) regression. This is followed up with a machine
learning classification model that utilizes the variables evaluated in the initial phase to do
incident detection (Figure 2).
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3.1. Data Pre-Processing

Before the analysis can be conducted, it is necessary to process the available data into
a usable form that can be modeled. The data pre-processing includes data cleaning as well
as transformation of the raw data inputs into other variables. Data related to connected
vehicles undergoes a series of transformations before they can be employed within the
models, beginning with the disaggregated vehicle level data from Otonomo from which
a series of different metrics are derived.

Driving volatility as a proxy for driver erratic driving behavior is utilized in this study.
Extreme instantaneous driving behavior has been proven to be correlated with crashes
by previous studies [26,34,36]. This study utilizes defined measures of hard longitudinal
accelerations and hard longitudinal decelerations, derived from the disaggregated vehicle
level data as measures of volatility. The volatilities are computed by first measuring the rate
of change of speed, by finding the difference between the current state speed and previous
state speed over the time interval between data points for every unique vehicle. A threshold
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for normal acceleration and deceleration behavior is then computed for 5 km per hour
speed bins within 2 standard deviations of the observed values. All values falling outside
the 2-sigma threshold are considered volatile events as they deviate from the threshold of
observed normal driving (Figure 3).
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With regard to the INRIX data, since segment speeds are averaged at a spatial level of
segment links, the transformation involved in the pre-process involves deriving a metric of
the difference in average speed between successive segments. This metric is described as
the delta-speed and is theorized to be a useful link level measure of traffic state that can
help indicate situations at different segments on the roadway [28].

The crash data utilized in this study is provided in two forms. The first dataset is
historical crash data with geocoded and timestamped information to provide spatial and
temporal context to the crash situation. Similarly, crashes that occurred during the data
gathering phase of the connected vehicle data are also provided with the same level of
information. In this regard, it is possible to model the relationships between the developed
real-time proxy safety measures at an aggregated roadway link level.

From the connected vehicle data, we can then extract variables such as aggregated
average segment speed, average hard acceleration values, average hard deceleration values,
as well as counts of hard acceleration and hard deceleration events. Given that the data is
streaming at a frequency of every 3 s, it is possible to define high resolution temporal bins,
but due to data availability constraints, the study settled on a 5 min temporal bin.

3.2. Historical Crash Data Analysis

Given that this study seeks to capitalize on factors that are developed from real-time
streaming data, the first step of the analysis process begins with trying to understand and
draw out any relationships between these variables and crash situations. By investigating
the intrinsic nature of both the spatial and temporal of the occurrences of these situations
and crash events, it is possible to evaluate the usefulness of these factors and justify their
deployment, either as surrogates for safety critical situations, or as useful explanatory
variables in further models.

Historical crash data also allows us to define the risk profile of individual roadway
segments by computing crash rate per million vehicle miles per year, in combination with
segment miles and AADT data. This allows the analysis to factor in the potential safety
risks of individual segments in calibrating the likelihood of the occurrence of crashes on
each segment.
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Analysis of historic crashes coupled with roadway and traffic state factors, as well
as driving volatility metrics, are done at the roadway segment level with an hour-of-day
component to account for the observed heterogeneity in traffic states through the day.
The analysis process involves the use of logistic regression models as well as Poisson
Regression models which have been employed extensively with much success for crash
count modeling, and then finally a Gradient Boosted (GB) regression, a machine learning
model, which lends itself to higher level of accuracy for the analysis process.

3.2.1. Linear Regression (OLS)

Early traffic accidents analysis deployed simple linear regression models with an as-
sumed normality of distributed errors [37]. These models are still widely used for their
simplicity and ease of explanation, usually in the investigation of newly developed ex-
planatory factors. The general form of the linear regression model for crash analysis can be
expressed as shown in Equation (1).

Y|θ ∼ Dist(θ) with θ = f (X, β, ε) (1)

where, Y is the response variable representing crash frequency of the crash dataset θ, Dist(θ)
is the model distribution, X a vector representing different explanatory variables, β a vector
of the regression coefficients, and ε is the error terms of the model.

3.2.2. Poisson Regression

The Poisson regression model is a count model more suitable for the analysis of crash
data than the OLS model since OLS are prone to make predictions that are non-integer
values. The Poisson model also has the advantage of a skewed, discrete distribution, and
the restriction of predicted values to non-negative numbers, which is consistent with the
nature of crash data since most datasets have a high zero value observation and crashes
cannot be negative in value. The Poisson model assumes that the errors follow a Poisson
distribution, and models the natural log of the response variable, ln(Y) as a linear function
of the coefficients, expressed in Equation (2).

P(ni) =
λn

i exp(−λi)
ni!

(2)

where P(ni) is the probability of a crash occurring n times on segment i per specific period,
and λi is the Poisson parameter for segment i, which is numerically equivalent to segment
i’s expected crash frequency per year, E(ni).

3.2.3. Gradient Boosted Regression

Machine learning approaches are rising in popularity due to their high performance in
safety analysis. One such approach, gradient boosting has been applied in the case of both
regression and classification models to improve their accuracies. Gradient Boosted Regres-
sion produces a predictive model in the form of an ensemble of several simple decision tree
models with the capability of handling large datasets without preprocessing, resistance to
outliers, capability to handle missing data, robustness to complex data, and resistance to
overfitting [29]. The decision tree algorithm from which the gradient boosting technique is
derived further is explained more succinctly by Zhang et al. [35]. The gradient boosting
algorithm (Equation (3)) capitalizes on an ensemble of weak decision tree predictors to
build a more robust prediction algorithm.

f (x) = ∑
n

βn g(x, γn) (3)

where x is a set of explanatory factors, f (x) is the approximation of the response variable,
g(x, γn) are single decision trees with the parameter γn indicating the split variables
β(n = 1, 2, . . . , n) are the coefficients and determine how each single tree is to be combined.



Sustainability 2022, 14, 15348 8 of 16

3.3. Microscopic Real-Time Prediction Modeling

While most safety analysis of roadway crashes are done in hindsight through the
collective aggregation of crash data and observable influencing factors, real-time event
prediction requires developing and deploying a model that continually collects and ana-
lyzes data streams with factors that are constantly available. Most factors utilized in crash
modeling can only be collected post-event, certain factors such as traffic state variables and
some static factors pertaining to the roadway and environment can and have been utilized
in recent times for real-time analysis [7,10,25]

Connected vehicle (CV) data presents an opportunity to assess and analyze the state of
traffic flow network in real-time. Averaged traffic speeds on a segment and counts of volatile
driving events, continually measured withing a brief period grants safety practitioners’
deeper insight in assessing the situation on individual roadway segments within the wider
transportation network. This study employs the XGBoost Classification algorithm to predict
the crash situation of a particular roadway segment at a particular time interval. Although
the crash data can involve multiple events occurring within the defined time interval, the
data is transformed into binary outcome of y = 0 representing no crash event and y = 1
signifying that at least one crash event has occurred.

XGBoost Classification

XGBoost is an advanced form of gradient boosting algorithm that includes regular-
ization of parameters to improve upon speed and accuracy. Although XGBoost tends to
achieve higher accuracies, this comes at the cost of intrinsic interpretability of the decision
trees. XGBoost has proven to be incredibly fast, portable, scalable, and reliable, and as such
is a preferred machine learning prediction model candidate for its ease of use [30].

4. Results
4.1. Exploratory Data Analysis

Table 1 presents the general description of the key variables employed in the modeling
phase of this study. After the pre-processing stage, microscopic volatile driving events
computed from the CV data are aggregated at the segment level.

Table 1. Description of Key Independent Variables.

Variable Description

Miles Length of roadway segment in miles
AADT Average Annual Daily Traffic Volume of roadway segment

Hard_Acc Count of hard acceleration events (95 percentile acceleration values for defined speed bins)
computed from individual vehicle longitudinal trajectories

Hard_Dec Count of hard deceleration events (95 percentile deceleration values for defined speed bins)
computed from individual vehicle longitudinal trajectories

Speed Average segment travel speed value measured from connected vehicle probes
Ref_Speed General reference observed speed from historical data for specific time of day

Delta_Speed Speed difference between successive roadway segments
Risk Per million vehicle miles per year crash rate, computed for 10 years’ worth of crashes
Hour Hour of day indicator (0–23)

Longitude Connected vehicle longitudinal geocoordinate

As the data aggregation occurs at the segment level, conflation of CV data values to
the respective segments based on spatial proximity and direction of flow is carried out. The
descriptive statistics of the final merged datasets developed from combining the segment
level data at different temporal intervals, with the crash datasets are provided in Table 2.
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Table 2. Descriptive Statistics of Variables and Crash Data.

Historical Crash Dataset Real-Time (5-min) Crash Dataset

Variable Min Max Mean Std. Min Max Mean Std.

Miles 0.30 2.95 0.60 0.35 0.30 2.95 0.54 0.31
AADT 2840 174,641 49,255.42 44,563.73 - - - -

Hard_Dec 0 822 47.63 75.02 0 36 0.07 0.20
Speed - - - - 3 99 47.57 20.10

Ref_Speed - - - - 27 85 58.67 12.55
Delta_Speed - - - - 0 79 1.75 4.18

Risk - - - - 0 17.99 1.80 2.20
Crashes 0 86 6.63 7.50 0 3 0.0004 0.02

NB: Hard_Acc dropped after correlation and VIF test.

An initial spatial exploratory analysis is done by developing an hour of day heatmap
of the different aggregated values of observed counts of hard decelerations and crashes.

Counts of hard deceleration events as well as historical crash events are spatially
conflated to roadway links based on hour of the day they occurred. The roadway segment
links are then ordered and indexed by virtue of their connectedness and direction of traffic
flow. A clear spatial and temporal relationship can be observed between these two variables
(Figure 4) strengthening the prior hypothesis that hard decelerations can serve as a suitable
surrogate for crashes, if necessary, as is consistent with the literature [8,34,38]. This relation-
ship is further explored in another study that utilized an entropy based localized bivariate
analysis to define the spatial and temporal relationship between hard decelerations and
crash hotspots, concluding on an observed positive linear relationship in 63.21 percent of
the coverage area of the study region, as well as a concave relationship in 20.37 percent and
convex relationship in 14.23 percent of the study region [39].
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4.2. Crash Data Modeling Results

The results of the initial stage of modeling for OLS, Poisson, and GB regression, as well
as model evaluation performance metrics on the historical crash dataset are provided in
Tables 3 and 4 below. Evaluation of the accuracies of each model is done through measuring
the mean absolute errors (MAE) and root mean squared errors (RMSE) on a portion of the
data held back from the modeling process, as well as a Cumulative Residual (CURE) plot as
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suggested by Hauer [40] as a means of visually and objectively determining which model
has a general overall better performance.

Table 3. Statistical Modeling Results of Historical Crash Data.

OLS Poisson

Variable Coeff. Std. Err. p-Value Coeff. Std. Err. p-Value

Intercept 1.26 0.477 0.008 ** 1.208 0.036 0.000 ***
Miles 4.80 0.258 0.000 *** 0.4998 0.011 0.000 ***

AADT −0.000002 0.000002 0.204 −0.000001 0.0000001 0.000 ***
Hard_Dec 0.035 0.001 0.000 *** 0.0025 0.000048 0.000 ***

Hour (categorical)
1 −0.1135 0.612 0.853 −0.0386 0.048 0.422
2 −0.8737 0.609 0.151 −0.2653 0.051 0.000 ***
3 −1.5124 0.608 0.013 * −0.5054 0.055 0.000 ***
4 −2.7055 0.613 0.000 * −1.1221 0.069 0.000 ***
5 −2.1288 0.617 0.001 * −0.7219 0.06 0.000 ***
6 −0.7476 0.609 0.220 −0.1114 0.048 0.022 *
7 1.0662 0.61 0.080 0.3223 0.043 0.000 ***
8 1.8489 0.621 0.003 * 0.4316 0.043 0.000 ***
9 0.286 0.615 0.642 0.1781 0.045 0.000 ***
10 0.2241 0.608 0.712 0.2041 0.044 0.000 ***
11 0.8368 0.622 0.179 0.303 0.043 0.000 ***
12 2.1159 0.616 0.001 *** 0.4746 0.042 0.000 ***
13 2.1988 0.614 0.000 *** 0.4764 0.042 0.000 ***
14 2.491 0.618 0.000 *** 0.5168 0.041 0.000 ***
15 5.6292 0.61 0.000 *** 0.8002 0.039 0.000 ***
16 5.6567 0.622 0.000 *** 0.8084 0.04 0.000 ***
17 4.9904 0.617 0.000 *** 0.7571 0.04 0.000 ***
18 2.3579 0.619 0.000 *** 0.4981 0.042 0.000 ***
19 −0.0925 0.611 0.880 0.1323 0.044 0.003 **
20 0.1592 0.616 0.796 0.1219 0.046 0.008 **
21 0.4614 0.618 0.455 0.1627 0.046 0.000 ***
22 0.7585 0.607 0.211 0.2044 0.045 0.000 ***
23 0.4025 0.612 0.511 0.103 0.046 0.026 *

NB: *** Statistically significant at α = 0.001, ** Statistically significant at α = 0.01, * Statistically significant at
α = 0.05.

Table 4. Model Evaluation.

Model R2 MAE RMSE

OLS 0.352 4.03 192.05
Poisson - 4.18 204.84

GB Regression 0.806 6.39 166.36

The results from the OLS and Poisson models show common significant variables with
consistent direction of influence of the factors (either negative or positive). As expected, the
segment length and number of volatile hard deceleration events are shown to be significant
in both models, with a positive influence on the outcome of a crash event. With a baseline
of midnight hour, there is a perceived reduction in outcome of crashes between the hours
of 3 a.m. to 5 a.m., and then an increase in the instance crash outcome for the active hours
of the day at 8 a.m., and between 12 noon to 6 p.m.

From the results, the GB model shows the best overall performance. The general
overall performance can also be decided via the visual assessment of the CURE (Cumulative
Residual) plots. It can be observed (Figure 5) that the GB regression model has the least
performance issues as influenced by outliers. Since the CURE plot is a sum of many
independent random variables, and is approximately normally distributed, about 95% of
the probability is expected to fall within two standard deviations from the mean [40].



Sustainability 2022, 14, 15348 11 of 16

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

between the hours of 3 a.m. to 5 a.m., and then an increase in the instance crash outcome 
for the active hours of the day at 8 a.m., and between 12 noon to 6 p.m. 

From the results, the GB model shows the best overall performance. The general 
overall performance can also be decided via the visual assessment of the CURE (Cumula-
tive Residual) plots. It can be observed (Figure 5) that the GB regression model has the 
least performance issues as influenced by outliers. Since the CURE plot is a sum of many 
independent random variables, and is approximately normally distributed, about 95% of 
the probability is expected to fall within two standard deviations from the mean [40] 

 
Figure 5. CURE plots of OLS, Poisson, and GB Regression models. Orange denotes upper bound-
ary, green denotes lower boundary and blue is the plot of the observed cumulative residual from 
model predictions. 

4.3. Real-Time Crash Detection Modeling Results 
As real-time detection modeling is done via a classification model, the detection ac-

curacy is measured in conjunction with precision and recall values. The dataset for the 
real-time crash detection is unbalanced with non-crash events outnumbering crash events 
by an enormous amount, which may pose issues with the validity of the model accuracy. 
This presents a challenge to the modeling process which can be overcome via several dif-
ferent strategies. The modeling process is performed on different combinations of the da-
taset utilizing data resampling techniques including random under sampling and 
SMOTE, as well as an ensemble model. 

Table 5 presents the results of the modeling outcome. With 80% of the data used in 
training and 20% held back from testing, the models are evaluated based on the perfor-
mance of accurate classification on the test data. Finally, the ROC and AUC curves of the 
modeling outcome, as well as the feature importance of the variables deployed in the final 
models are provided below (Figures 6 and 7). 

Results from XGBoost classification models show high accuracies for both sampling 
techniques. The difference in accuracy between the two sampling techniques is 1.1% with 
the SMOTE model showing an improved recall rate and F-1 score. For the ensemble mod-
els, the accuracy of the unweighted models is 0.91 whilst that of the weighted models is 
0.95, an increase of 4.4%. The ROC-AUC curves of the under sampled model show an 
AUC value of 0.95 and that for the SMOTE model shows an AUC value of 0.96. 

Figure 5. CURE plots of OLS, Poisson, and GB Regression models. Orange denotes upper bound-
ary, green denotes lower boundary and blue is the plot of the observed cumulative residual from
model predictions.

4.3. Real-Time Crash Detection Modeling Results

As real-time detection modeling is done via a classification model, the detection
accuracy is measured in conjunction with precision and recall values. The dataset for
the real-time crash detection is unbalanced with non-crash events outnumbering crash
events by an enormous amount, which may pose issues with the validity of the model
accuracy. This presents a challenge to the modeling process which can be overcome via
several different strategies. The modeling process is performed on different combinations
of the dataset utilizing data resampling techniques including random under sampling and
SMOTE, as well as an ensemble model.

Table 5 presents the results of the modeling outcome. With 80% of the data used in
training and 20% held back from testing, the models are evaluated based on the performance
of accurate classification on the test data. Finally, the ROC and AUC curves of the modeling
outcome, as well as the feature importance of the variables deployed in the final models
are provided below (Figures 6 and 7).

Table 5. XGBoost Modeling Results.

Under Sampling SMOTE Ensemble
(10 Model Average)

Weighted Ensemble
(10 Model Average)

Accuracy 0.88 0.89 0.91 0.95
Precision 0.90 0.87 - -

Recall 0.87 0.91 - -
F1-Score 0.88 0.89 - -
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Results from XGBoost classification models show high accuracies for both sampling
techniques. The difference in accuracy between the two sampling techniques is 1.1% with
the SMOTE model showing an improved recall rate and F-1 score. For the ensemble models,
the accuracy of the unweighted models is 0.91 whilst that of the weighted models is 0.95,
an increase of 4.4%. The ROC-AUC curves of the under sampled model show an AUC
value of 0.95 and that for the SMOTE model shows an AUC value of 0.96.

5. Discussion

OLS and Poisson models suggest that longer segments with higher instances of high
deceleration occurring are more prone to crashes. This much is expected as it is consistent
with general safety literature. It can also be observed that specific hours of the day have
higher susceptibility to crashes occurring, which can be explained by the various levels
traffic volumes on the roadway at different times. The crash detection models, also with
remarkably high levels of accuracy, are very dependent on the measures of average speeds
and the reference speeds of roadway segments during the time intervals. The risk profile of
each segment of roadway, developed from the historic crash information and length of the
roadway segment also rank at the mid of importance of factors employed in the modeling,
whilst the hour of day and delta speed are the lowest ranked variables.
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With the ability to collect, in real-time, vehicle trajectory information and detect
the locations where hard decelerations are occurring more frequently, it is possible to
explore where the risk for crashes to occur is highest and deploy safety countermeasures.
Predicting where crashes may occur using aggregate measures of average segment speed
information, the difference in the average speed between segments and the hour of the
day when the data is available, as well as roadway level information such as historical
crash risk and segment length (miles), is possible with the current available data sources.
Connected Vehicle data has presented the potential to provide insights that will lead to
immediate benefits with respect to roadway safety. Variables such as average speeds and
the number of occurrences of volatile driving events within a 5 min time frame have proven
very valuable in the assessment of real-time traffic safety on roadways. Augmenting the
information gleaned from the historical crash data analysis with the detection models,
a clear picture of the state of safety of the roadway network can be developed. The
XGBoost model also has the advantage of ease of use due to short training times and
transferability. The model can be retained and reinforced to fit newer dimensions of scale
and scope if necessary. This framework takes advantage of the veracity, velocity, and
volume of kinematic data streaming from connected vehicles to complement the existing
traffic management operations and is currently under evaluation for its potential use as
a viable safety component for Advanced Traffic Management Systems (Figure 8).

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 8. Real-time roadway safety management dashboard. 

6. Conclusions 
This study proposed a framework to assess the safety of roadways in real-time uti-

lizing data from various sources including connected vehicles (CV). With the trajectory 
information CVs (Connected Vehicle) provide, it is possible to extract traffic state infor-
mation such as average segment speeds, as well as information pertaining to volatile driv-
ing behavior on various roadway segments. Hard deceleration events are proven to be 
significantly correlated with crash location and a useful surrogate for observing potential 
areas of substantial risk. Speed information from various sources including CVs can also 
be aggregated at the segment level, and a combination of these factors with other roadway 
level factors such as segment length and the per million vehicle mile crash risk computed 
from historical crash data, crash detection models can be trained and deployed. 

Detection of crash event locations utilizing classification models in real-time is 
proven to be feasible for developing advanced traffic management systems that are safety 
focused. As earlier studies have proven, machine learning models have the potential to 
accommodate real-time crash prediction with relatively high accuracies [25,41]. The main 
conclusions from this study are as follows: 
1. High resolution Connected Vehicle Data can provide a source of valuable infor-

mation with regard to useful variables extracted from vehicle kinematics for safety 
modelling implications. 

Figure 8. Real-time roadway safety management dashboard.



Sustainability 2022, 14, 15348 14 of 16

6. Conclusions

This study proposed a framework to assess the safety of roadways in real-time uti-
lizing data from various sources including connected vehicles (CV). With the trajectory
information CVs (Connected Vehicle) provide, it is possible to extract traffic state informa-
tion such as average segment speeds, as well as information pertaining to volatile driving
behavior on various roadway segments. Hard deceleration events are proven to be signifi-
cantly correlated with crash location and a useful surrogate for observing potential areas
of substantial risk. Speed information from various sources including CVs can also be
aggregated at the segment level, and a combination of these factors with other roadway
level factors such as segment length and the per million vehicle mile crash risk computed
from historical crash data, crash detection models can be trained and deployed.

Detection of crash event locations utilizing classification models in real-time is proven
to be feasible for developing advanced traffic management systems that are safety focused.
As earlier studies have proven, machine learning models have the potential to accommodate
real-time crash prediction with relatively high accuracies [25,41]. The main conclusions
from this study are as follows:

1. High resolution Connected Vehicle Data can provide a source of valuable information
with regard to useful variables extracted from vehicle kinematics for safety mod-
elling implications.

2. OLS and Poisson models show that driving volatility metrics such as hard deceleration
counts are statically significant and have a positive relationship with locations of
historically high crash events.

3. XGBoost model are computationally fast, easy to train and flexible to reinforce with
new information and achieve high accuracies for crash prediction for traffic state
data collected in 5 min intervals, with accuracies of 0.88–0.95 and AUC of 0.95–0.96,
making them a great candidate model for the current framework.

4. The average real-time measured speed of the roadway segment in conjunction to the
general reference speed are crucial factors for detecting in real-time where crashes are
most likely to have occurred.

The practical implication of this study is to explore the growing potential for utilizing
variables extracted from connected vehicle data in developing and deploying a safety
analysis framework, and how it is being deployed as a traffic safety component in an ATMS.
Considering that crash data as it occurs in real-time is only validated through CCTV feeds
when available [14] and on-site reports, with the advantage of connected vehicles providing
live fingerprinting of multiple roadway links with information of the traffic state and driver
behaviors in real-time, this framework as it is being applied, helps in detecting potential
safety critical situations, and monitoring the cascading effect on network travel speeds and
congestion in locations where the infrastructure for active monitoring (such as CCTV) is
unavailable, given that proactive deployment of emergency response is crucial to resolving
safety critical issues and preventing them from escalating. The current framework with the
proposed data processing and XGBoost modeling approach results in AUC of 0.95–0.96
and accuracies from 0.88–0.95, which is a great improvement in comparison with other
studies reporting AUC of 0.77 for AdaBoost models [41] and accuracies of 0.85 for Random
Forest model [25].

As this study’s main goal is to develop a useable framework with the current existing
data, it is not without limitations. At the time of the study, the penetration rate of CVs
within the area of observation was below 2% to about 10%, given factors such as roadway
classification and time of day, and this presents an issue of sparseness with regard to data
availability in less travelled local roadway links. Although given the low penetration
rates, the amounts of data points extracted within the analysis period constituted almost
40 million points from about 30,000 vehicles, with generally observed high concentrations
on freeway links. Similarly, higher penetration levels will eventually demand a more robust
framework to stream and process the vast amounts of data produced as a result. Other
statistical summary values of driving volatilities such as the averages of accelerations and
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decelerations, as well their standard deviations can be utilized in the framework with higher
degrees or reliability when penetration levels improve. Finally, the temporal bandwidths
for data aggregation can be improved, and the influence of extreme weather conditions
which have not been accounted for in this current study are all under consideration for
future studies.
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