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Abstract: The importance of sustainable building maintenance is growing as part of the Sustainable
Building concept. The integration and implementation of new technologies such as the Internet of
Things (IoT), smart sensors, and information and communication technology (ICT) into building
facilities generate a large amount of data that will be utilized to better manage the sustainable
building maintenance and staff. Anomaly prediction models assist facility managers in informing
operators to perform scheduled maintenance and visualizing predicted facility anomalies on building
information models (BIM). This study proposes a Machine Learning (ML) anomaly prediction model
for sustainable building facility maintenance using an IoT sensor network and a BIM model. The
suggested framework shows the data management technique of the anomaly prediction model in the
3D building model. The case study demonstrated the framework’s competence to predict anomalies
in the heating ventilation air conditioning (HVAC) system. Furthermore, data collected from various
simulated conditions of the building facilities was utilized to monitor and forecast anomalies in the
3D model of the fan coil. The faults were then predicted using a classification model, and the results
of the models are introduced. Finally, the IoT data from the building facility and the predicted values
of the ML models are visualized in the building facility’s BIM model and the real-time monitoring
dashboard, respectively.

Keywords: Internet of things (IoT); sustainable buildings maintenance; management; smart buildings;
artificial intelligence

1. Introduction

The environmental impact of buildings is astonishing. Every year, building construc-
tion consumes 25% of world wood harvest, 40% of materials entering the global economy,
3 billion tons of raw materials transformed into foundations, walls, pipes, and panels,
and 50% of copper utilized in the United States [1]. Building construction accounts for
half of the worldwide output of greenhouse gases and acid rain agents. Buildings, as a
critical component of a habitat, have an influence on their local and surrounding areas,
which can have unintended consequences for people and the community. Addressing the
sustainability in building can significantly reduce these negative effects [2].

In Europe, the building maintenance industry accounts for the same amount of build-
ing production as the new construction market. Due to the aging buildings, the maintenance
industry grows at a rate of 1.5 percent each year [3]. The size and expansion of the existing
market needs a greater focus on sustainable building maintenance [4].

Sustainable buildings may ensure that their constructions and services are suitable for
living, working, and other daily activities [5]. Building maintenance is essential to ensuring
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the building’s long-term sustainability [6]. Maintenance is defined by BS 3811:1984 and
ISO 15686-1 as “a collection of operations required to keep an item in, or restore it to, an
acceptable condition” [7].

Another facet of enhancing quality is a construction component’s “repairability” [8].
In terms of sustainability, there will be a significant preference for repairing rather than
replacing components. This repairability has shown to be a barrier to achieving a lengthy
life duration for a number of ostensibly “low-maintenance” items. Those items have a
minimal maintenance requirement during their lifetime, but if a failure occurs by accident,
this defect often cannot, or only at a very high price, be repaired. As a result, a fatal
problem might lead to fill replacement or demolition, resulting in the waste of high-
quality components. Paying attention to repair possibilities in a timely manner would
have extended the component’s life. In this regard, the accessibility of components for
maintenance operations should also be addressed [9].

Facility managers (FM) rely on real-time accurate data to execute maintenance tasks
and deliver correct information to senior managers [10]. However, the operations of
inspecting buildings, analyzing maintenance, and collecting data are time-consuming
and labor-intensive [11]. Furthermore, the budget and resources provided for building
maintenance are restricted, and maintenance workers claim that their budget and resources
are insufficient and fall short of their requirements [12]. This trade-off affects the quality
and relevance of maintenance operations and inspections, resulting in inadequate facility
maintenance and quality management policies [13].

Present building facility maintenance procedures are mostly centered on corrective
maintenance: delayed operations are done in response to a user complaint or an unforeseen
breakdown [14]. Due to a shortage of funds and human resources, preventive maintenance
is limited to the bare minimum of obligatory inspections in key facilities [15]. Furthermore,
predictive maintenance is built on applying data analytics tools to analyze operating data
supplied via sensors [16].

Sensing technologies, identification and recognition technologies, hardware, software
and cloud platforms, communication technologies and networks, software and algorithms,
position technologies, data processing solutions, power and energy storage, and security
mechanisms etc., are examples of IoT enabling tools and technologies [17]. According to [18],
IoT is defined as “interconnection of sensing and actuating devices enables information
sharing across platforms via a unified framework, resulting in the development of a
common operational picture for allowing novel applications”. IoT is mainly based on
standard protocols and technologies, and IoT devices that are a significant component.
Intelligent gadgets, smart mobile devices, single board computers, and other sorts of
sensors and actuators are examples of typical IoT devices [19].

Previous works proposed IoT and BIM integrated platform based on open standards
by demonstrating the utility of such system in real-life case studies [20]. Another study
presents a platform composed of IoT and BIM that acquires real-time data and performs
analytics during the working processes of on-site assembly of pre-fabricated constructions
using radio frequency identification (RFID) technology [21]. The recorded data is trans-
ferred to the cloud in real-time to be processed and analyzed providing decision support
for the site managers and workers involved. IoT based real time warning system is also
integrated in the underground construction of China (Wuhan) [22]. The system informs
managers about warning in real time and prevents passengers of the Yangtze Riverbed
Metro from accidents and improves the safety management in underground construction.
Research presented in a cloud-based building management platform for green buildings
was also proposed [23]. The research objective is to realize building operation management
through the use of cloud computing and IoT technology. Cloud servers are used for data
storage, processing, and hosting. The software is in charge of visualization interfaces and
modularization services. Hardware development creates devices and objects that link the
network. The building facility maintenance management based on IoT and BIM platform
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includes several functions such as automatic diagnostics, monitoring, controlling, data
processing, management, and service customization in the following articles [24,25].

ML techniques are applied in the construction as data-driven approach to predict life
cycle cost of the buildings [26]. Some works used ML technique specifically Deep learning
models to predict HVAC failures, to forecast building occupants’ complaints or thermal
comfortability [27], Other works used artificial neural networks models such as Multi-layer
Perceptron (MLP) and Autoregressive Integrated Moving Average (ARIMA) [28]. Similarly,
statistical models such as linear and nonlinear regression were applied in HVAC units for
problem identification and diagnostics [29].

Despite the potential benefits of the works listed above, none has addressed the
integration of IoT and ML models into BIM models presenting predicted building facility
anomalies within the building’s 3D model.

To assist BIM and to develop sustainable building facility maintenance, this article
offers an ML-based anomaly prediction system and an IoT wireless sensor node. In the
system’s application layer, ML and IoT integrated BIM is developed for Facility Managers
to monitor HVAC system components that identifies anomalies using ML models. The
specific goal of this article is to find the best ML models and data management approaches
for IoT facilities to connect with BIM that are suited for FM. The BIM model user interface
(UI), which is linked with the IoT and ML model results, provides information about fan
coil sensors data and real-time condition to the building 3D model.

2. Machine Learning based Framework

The proposed system classifies and predicts anomalies of building facility using ML
methods and visualizes building facility data on the monitoring dashboard in real time.
Figure 1 summarizes the anomaly prediction framework of the building facilities. ML
based building facility anomaly prediction framework composed of different integrated
parts: data acquisition from building facilities; communication layers, ML and deployment
and integration on the BIM model.
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Figure 1. ML-based building facility anomaly prediction framework.

On the framework, generated sensor data of the building facility is driven to the ML
models to predict building facility anomalies. The framework’s application layer that
is deployment and integration, displays IoT data and ML prediction results, as well as
integrating the BIM model, to enable facility managers and operators to execute on-time
building facility maintenance. Maintenance department can receive anomaly warnings and
remotely monitor the location of the building facilities via the dashboard.

2.1. Utilized Components to Identify Anomalies of Indoor Facilities

The proposed framework requires number of specific sensors that is connected to
the development board RPIZCT4V3T2 and then to the fan coil (FC), which is wirelessly
connected to the gateway. The data coming from sensors are acquired and stored on the
Raspberry Pi 3B local memory database (PostgreSQL) and on the cloud with wireless
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communication in different sampling frequencies. The database provides raw data to
the ML models and the results of the ML and specific data from the database such as
temperatures and power consumptions will be visualized on the dashboard of the BIM
model. The communication and hardware block diagram of the systems is depicted in
Figure 2.
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Figure 2. The connectivity block diagram of the proposed system.

Node-Red is installed on the Raspberry Pi 3B system allows to access all sensor vari-
ables through serial protocols and display them on its own customized dashboard. A topic
is assigned to each sensor, which is responsible for publishing a message to the Raspberry Pi
local server, which will function as a receiver (subscriber) via the (Message Queue Telemetry
Transport) MQTT protocol. Furthermore, DNSmasq open-access software is installed on
the Raspberry Pi 3B to make the board as a router and to create a communication bridge
between the sensor board and global network components through Internet Protocol (IP)
addresses. The DNSmasq provides the possibility to configure the SSID, password, and
IP address on the Raspberry Pi 3B that makes the system visible on the network to the
publisher and subscriber.

The PostgreSQL database is used to store sensor data locally on the Raspberry Pi 3B.
PostgreSQL obtains an IP address with a specified port number when the Raspberry Pi 3B
is powered on and waits for Node-Red to deliver the data to be gathered. The functional
flowchart of the system is shown in Figure 3.

In the flowchart, PostgreSQL assigns the incoming data to the associated tables. MQTT,
PostgreSQL, and Node-Red later use the same credentials to execute in the background
and connect to the network, obtaining the IP address via DNSmasq. Communication is
established between the RPIZCT4V3T2 sensor board and the Raspberry Pi 3B through
the MQTT protocol on the specified port of the server, which receives all subscribed topic
data from publishers via the TCP protocol and enables publishing devices access to the
port. Simultaneously, Node-Red begins on port 1880 with the same IP address to control
and monitor data flow of the server and database. The BIM dashboard receives machine
learning predictive data and sensor node data in CSV format using a data-driven approach
or directly from PostgreSQL through TCP/IP communication. As a result, sensor data will
be shown on the Raspberry Pi 3B dashboard and via MQTT on the internet, and PostgreSQL
can be monitored and seen from any device linked to the same network by opening the IP
address followed by the port number.



Sustainability 2022, 14, 681 5 of 17Sustainability 2021, 13, x FOR PEER REVIEW 5 of 18 
 

 

 160 
Figure 3. Functional flowchart of the framework. 161 

In the flowchart, PostgreSQL assigns the incoming data to the associated tables. 162 
MQTT, PostgreSQL, and Node-Red later use the same credentials to execute in the back- 163 
ground and connect to the network, obtaining the IP address via DNSmasq. Communica- 164 
tion is established between the RPIZCT4V3T2 sensor board and the Raspberry Pi 3B 165 
through the MQTT protocol on the specified port of the server, which receives all sub- 166 
scribed topic data from publishers via the TCP protocol and enables publishing devices 167 
access to the port. Simultaneously, Node-Red begins on port 1880 with the same IP ad- 168 
dress to control and monitor data flow of the server and database. The BIM dashboard 169 
receives machine learning predictive data and sensor node data in CSV format using a 170 
data-driven approach or directly from PostgreSQL through TCP/IP communication. As a 171 
result, sensor data will be shown on the Raspberry Pi 3B dashboard and via MQTT on the 172 
internet, and PostgreSQL can be monitored and seen from any device linked to the same 173 
network by opening the IP address followed by the port number. 174 

The FC is equipped with DS18B20 and RTD PT100 sensors to measure the tempera- 175 
ture of various sections of the FC, to measure the current sensor SCT-013-000, and to mon- 176 
itor the voltage 77DE-06-09 sensor. The measurement settings and ranges of the sensors 177 
vary depending on the internal elements of the fan coil. Taking these features into account, 178 
specific sensors and sensor board including all connected sensors for this study is shown 179 
in Table 1.  180 

Figure 3. Functional flowchart of the framework.

The FC is equipped with DS18B20 and RTD PT100 sensors to measure the temperature
of various sections of the FC, to measure the current sensor SCT-013-000, and to monitor
the voltage 77DE-06-09 sensor. The measurement settings and ranges of the sensors vary
depending on the internal elements of the fan coil. Taking these features into account,
specific sensors and sensor board including all connected sensors for this study is shown in
Table 1.

Table 1. Utilized sensors specifications and allocations.

Building
facility

Sensor Node
Sensor Name Variable Operating

Range Accuracy Unit Sensor
Allocation

RPIZCT4V3T2

Current
SCT-013-000 i1, i2, i3 0−100 A ±3 A Motor

current
Voltage

77DE-06-09 v1, v2, v3 0–230 (50Hz) ±5 V motor
voltage

Temperature
DS18B20 T1 0–90 ◦C ±0.5 ◦C Delivery

pipe
Temperature

DS18B20 T2 0–90 ◦C ±0.5 ◦C Return
pipe

Temperature
DS18B20 T3 0–90 ◦C ±0.5 ◦C Air intake

Temperature
DS18B20 T4 0–90 ◦C ±0.5 ◦C Air outlet

Temperature
RTD(PT100) T5 −200–550 ◦C ±0.05 ◦C Motor case

The sensors presented in Table 1 were connected to the fan coil type FC83M-2014/1
at three different speeds and placed around the room to collect data for the ML tools and
display real-time conditions on the dashboard. Temperature sensors T1, T2, and T4 on the
FC, which are connected to the RPIZCT4V3T2 integrated system, monitor the condition
temperature in the 0–90 ◦C range. T3 is in charge of monitoring the air temperature in
the 0–50 ◦C range, whereas T5 is linked to the motor case and measures in the 0–200 ◦C
range. Voltage sensors (v1,v2,v3) and current sensors (i1,i2,i3) are responsible to monitor
the behavior of the motor.
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The RPIZCT4V3T2 sensor node attached to the FC supports sensors described in
Table 1 and contains a Raspberry Pi zero W to store data locally and sends measured data
over Wi-Fi. A simplified block diagram of the RPIZCT4V3T2 board is presented in Figure 4.
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Figure 4. Simplified block diagram of RPIZCT4V3T2-piZero.

The RPIZCT4V3T2 board has an Arduino microcontroller (MCU) that is connected to
two types of temperature sensors as well as current/voltage sensors that are linked to the
MCU through an amplifier and an analog to digital converter (ADC). The MCU receives
all raw data from sensors, computes required values such as Real Power, Power Factor,
etc., and sends the final computation to the Raspberry pi Zero W through the universal
asynchronous receiver-transmitter (UART) serial port; the Raspberry pi Zero W supports
Wi-Fi, and the board connects to the server Rpi3B via IP address.

The board RPIZCT4V3T2 measures current using adjusted burden resistor. It is
connected directly to the ADC and Vref/2. The burden resistor can be calculated with the
equation as follows:

R =

(
Vre f ∗ Nturns

)
(

2
√

2 ∗ Irms

) , (1)

where, R is burden resistor value in Ohm; Vre f is ADC max voltage range; Nturns is number
of CT sensor (2000) turns; Irms is maximum current.

The voltage line has a divider as well as an amplifier. When utilizing an ac/ac adapter,
the amplifier gain is set to 1 and the signal amplitude is decreased using a divider. Figure 5
depicts current and voltage connection schematics to the ADC of the MCU.
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Figure 5. (A) Current sensor with burden resistor connected to the ADC through amplifier; (B) Voltage
sensor with voltage divider connected to the ADC through amplifier.

The RPIZCT4V3T2 board typically reads current I(t) and voltage V(t) values instan-
taneously at a given time t. Thus, the signals are used in ADC are in the discrete-time
domain. Hence t being the iterative time sample. Instantaneous values I(t) and V(t) are
used and are adopted to their Root Mean Square (RMS) values. Given that the ADC has
direct access to the I(t) and V(t), the RMS value of the current and voltage and formulas
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to compute the power is given and described in Table 2. The equations described in Table 2
is performed in hardware level either in MCU or RPIZCT4V3T2 board.

Table 2. Formulation of computed values.

Computed values Formulation Description

Current (Irms ) Irms =

√(
1
N

t=N
∑ I2

[k]

)
where N is the number of sample

acquired by the ADCVoltage (Vrms ) Vrms =

√(
1
N

t=N
∑ V2

[k]

)
Estimated Power (EP) Pest = Vest ∗ Irms where Vest is usually 230 V or 120 V

Real Power(RP) RP = 1
N

t=N
∑ V[k]∗ I[k]

Computation is performed in
RPIZCT4V3T2 board

Apparent Power(AP) AP = Vrms ∗ Irms
Computation is performed in MCUPower Factor(PF) PF = cos(ϕ) = RP

AP
Reactive Power(RP) Q =

√
(AP2 − RP2)

In the next chapters, methods applied for ML models and data preparation are de-
scribed.

2.2. Machine Learning Models

This subsection discusses how Machine learning models were used to monitor the
condition of the building’s facilities. To commence, a correlation analysis was conducted to
determine which variables are significant. The building facility’s most closely correlated
variables were then loaded into an ML tool to implement prediction analyses. To optimize
the efficiency and output of ML, relevant characteristics were extracted from a dataset of
building facilities using initial data preparation procedures.

2.2.1. Data Preprocessing

Data preprocessing which is also known as data preparation improves data quality
and allows for the extraction of advanced analytics. Data obtained from building facilities
sensors is typically inaccurate, biased, and noisy. Raw data feature extraction can enhance
the efficiency and accuracy of ML operations. Provided raw data must be cleaned and
integrated [30–32], feature scaled, extracted, and selected before it can be used in ML.

Feature scaling often known as data standardization which refers to the standardiza-
tion of a data set’s range of features, which entails altering the values of numerical columns
recorded on multiple scales to a formal common scale without affecting the ranges of the
values or losing information. Data normalization entails rescaling data dimensions and
avoiding over-weighting values that contributes to the overall quality of a data set [33]. As
scaling intervals, [0,1] and [1,1] are commonly employed, as indicated in equations:

interval[0, 1] =
originalvalue−min(allvalues)

max(allvalues)−min(allvalues)
, (2)

Feature extraction takes into account a raw data that is made up of irrelevant and/or
duplicate features that might have a significant impact on the trading activity’s success.
Authors [34] offer several feature selections such as multicollinearity, correlation coef-
ficients, and Variance Inflation Factors (VIF) to increase the performance of ML model
outputs. According to the authors [35], correlation coefficients, such as Pearson’s for a
linear correlation, or rank-based approaches for a nonlinear correlation, are the most widely
employed methodologies for numerical input and output models. If the data coming from
building facilities and predicting factors is numerical, the approaches used in the current
framework are correlation coefficients. The multicollinearity feature selection approach
is used to predict categorical variables of building facilities. Conditional data variables
received from building facilities were analyzed using a correlation matrix, and the easiest
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method to discover collinearity is to examine the predictors’ correlation matrix. A signifi-
cant absolute value element in this matrix denotes a pair of strongly linked variables, and
thus a collinearity problem in the data. Correlation analysis of building facility was used to
assess the significance of the relationship between predictors X and response Y. Correlation
analyses provide insight into the linearity of paired variables. As a parameter of the linear
dependency, the correlation coefficients between two random variables are generated for
all model variables [36]. The sample estimate of the correlation coefficient rxy is calculated
for two variables, X and Y, in the dataset as follows:

rXY =
cov(XY)

σXσY
, (3)

Where σX and σY are the standart deviations of X and Y.

rXY =


0, i f X and Y are linearly uncorrelated

1, i f X and Y have per f ect linear positive relationship
−1, i f X and Y have per f ect negative linear relationship

, (4)

Data transformation is another process of converting a numerical format to a categori-
cal format and removing unnecessary data [37] that used in this research.

To improve the efficiency and output of ML, the aforementioned data preparation
approaches were used to extract significant features from a dataset of building facilities.
Acquired features and variables were then provided to the ML processes.

2.2.2. Auto Classification Model to Predict Qualitative Variables

To identify the optimal ML model for detection building facility anomalies, the Au-
tomatic machine learning (AutoML) method is applied. H2O AutoML is an open source,
user-friendly machine learning platform that was created for both advanced and intermedi-
ate machine learning users. According to recent research, H2O AutoML [38] outperforms
other competing automatic ML tools. The authors of [39] evaluated AutoML’s robustness
and efficiency in comparison to other automated models such as TPOT [40] and AutoK-
eras [41]. The authors [42] tested the tool’s resilience using fuzzy, clean, and noisy data
sets. Similar research [43] have assessed the efficiency of the AutoML method in accor-
dance with other tools, such as auto-sklearn [44] and Auto-WEKA [45] using open source
datasets. To produce a large number of ML models in a short period of time, AutoML is the
fastest tool to train H2O machine learning algorithms. On tabular datasets, H2O AutoML
allows supervised training of regression, binary classification, and multi-class classification
models. H2O AutoML platform is available in different programming tools such as Python,
R, Java, and Scala, as well as via a web interface. R is considered in this research to perform
ML-based classification analyses.

Generalized Linear Models (GLM), Distributed Random Forests (DRF), XGBoost,
Gradient Boosting Machines (GBM), and Deep Learning are the H2O AutoML platform
essential models. H2O AutoML platform selects one of the three alternative models. It can
deploy only one of the base models or their hyperparameter-optimized variants. It may
also select a Best Of Family Stacked Ensemble model, which contains one model from each
category, and the All Models Stacked Ensemble pipeline.

The evaluation metrics used for the classification models are listed and described in
Table 3.
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Table 3. Evaluation metrics of the linear regression and classification models.

Type of models Model metrics Formulation Description

Classification model

AUCPR (Area Under the
Precision-Recall Curve)

This model metric is used to evaluate how well a binary
classification model is able to distinguish between precision recall
pairs or points. These values are obtained using different thresholds
on a probabilistic or other continuous-output classifier. AUCPR is an
average of the precision-recall weighted by the probability of a given
threshold.

AUC (Area Under the ROC Curve)

This model metric is used to evaluate how well a binary
classification model is able to distinguish between true positives and
false positives. An AUC of 1 indicates a perfect classifier, while an
AUC of 0.5 indicates a poor classifier, whose performance is no
better than random guessing.

Accuracy Accuracy =
(

correctly predicted
observations

) Accuracy is the number of correct predictions made as a ratio of all
predictions made.

Log loss Logloss = − 1
N

N
∑

i=1
wi(yi ln(pi) + (1− yi) ln(1− pi)

The logarithmic loss metric can be used to evaluate the performance
of a binomial or multinomial classifier. In the equation, N is the total
number of observations; w is the per row user-defined weight; C is
the total number of classes; p is the predicted value; y is the actual
target value.

MSE MSE = 1
N

N
∑

i=1
(yi − ŷ)2

The mean squared error (MSE) metric measures the average of the
squares of the errors or deviations. MSE takes the distances from the
points to the regression line (these distances are the “errors”) and
squaring them to remove any negative signs. MSE incorporates both
the variance and the bias of the predictor.

RMSE RMSE =

√
1
N

N
∑

i=1
(yi − ŷ)2

The root mean square error (RMSE) metric evaluates how well a
model can predict a continuous value. The RMSE units are the same
as the predicted target, which is useful for understanding if the size
of the error is of concern or not. The smaller the RMSE, the better the
model’s performance. In the equation, N is the total number of
observations; yi is the actual target value ŷ is the predicted target
value.

Variable importance VAR = 1
N

N
∑

i=0
(yi − y)2

Variable importance’s represent the statistical significance of each
variable in the data in terms of its affect on the model. Variables are
listed in order of most to least importance. The percentage values
represent the percentage of importance across all variables, scaled to
100%. The method of computing each variable’s importance
depends on the algorithm.



Sustainability 2022, 14, 681 10 of 17

3. Deployment and Integration of IoT and Machine Learning Data on the BIM Model

The BIM model of the experimental building and the FC utilized in this study were
both created using the Autodesk Revit software. Navisworks from Autodesk is used
to integrate IoT sensor data and ML predicted results with a BIM model. Users can
benefit from Navisworks to open and merge 3D models, navigate around them in real-
time, and evaluate the model using a variety of features such as comments, redlining,
viewpoint, and measurements. Interference detection, 4D time simulation, photorealistic
rendering, and data management are among the plugins that enhance the program. In
this study, Navisworks iConstruct plugin is used to manage IoT and ML data to the
BIM model through Excel sheet files and/or PostgreSQL data sources, allowing users to
expand the information in the BIM model. Schematic diagram of the data management
and transformation into the BIM model is depicted in Figure 6.
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Figure 6. IoT and ML data integration diagram into the BIM model.

The integration of sensors and ML model results started with a static data on the excel
sheet, which was then imported into Navisworks through the iConstruct external plugins.
To link data to the BIM model, Data Links tab is configured. To link the data users must
first identify an attribute that connects both the BIM model’s information and an external
data source. Once a relationship is established, Data Links can be mapped for additional
information between the two data sets and propagate onto the user-defined data tab. The
user-defined tab then displays the external information and attributes. iConstruct allows
users to customize the color of the fan-coil based on the values of the variables.

Second possibility is to visualize external data in real time on the BIM model. In order
to integrate sensor data in real time through a PostgreSQL database, a node-red flow is
created to transmit coming sensor data.

After that in Navisworks PostgreSQL database is configured using Data tools settings
then PostgreSQL Ansi 64 driver is installed to fill Navisworks columns with a corresponding
columns of the sensor variable database.

Thus, an ML-based framework for the maintenance of building facilities that visualize
anomalies on the BIM is ready to conduct an experiment in a real case.

To show the reliability and applicability of the framework, the experiment was con-
ducted at the Politecnico di Torino’s DISEG laboratory. The experimental laboratory room
is located in the building’s basement. One of the fan coil units (FCU) of the room that
is positioned under the windows is used as a facilities building. The FCU is a part of
the HVAC system. It uses a coil and a fan to heat or cool the building’s rooms which is
considered one of the important indoor facilities. For this study, FC83M-2014/1 FC with
four speeds was used. The FC has a motor that produces 1100 RPM in an anti-clockwise
direction. Furthermore, FC has a cooling and heating battery as well as filters that must
be checked on a regular basis. Technical specifications of the FCU used for this study is
provided in Table 4.
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Table 4. FC specifications used in case study.

FC 83M-2014/1
technical

specifications

Metrics name Operating
Range Unit

Working range of voltage/frequency 230-240/50 V/Hz
Ampere 0.23 A

Number of velocity 4
Power consumption 14/53 W

Revolutions per minute (RPM) 1100 Min−1

Expanded framework of the experimental setup including data acquisition, machine
learning specifications and building 3D model integration is demonstrated in Figure 7. On
the framework, building facility specifically FC 83M-2014/1 is equipped with sensors and
collects data locally and on the server. On the framework, the building facility fan coil (FC)
is equipped with sensors that interact with the local server and the gateway cloud server
through TCP/IP and MQTT protocols, performing data gathering and storing essential data
for anomaly prediction models. Data collection from sensors is acquired with a memory
of ~30GB that means a proposed system able to collect data from installed sensors for
26 days with a sampling frequency of 1 Hz. Furthermore, the collected data is sent into the
online condition monitoring dashboard. Data preprocessing allows for the extraction of
meaningful features from a dataset and their transfer to ML models.
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Figure 7. Expanded ML-based anomaly prediction framework for the experiment.

Figure 8 depicts the FC, which has been equipped with RPIZCT4V3T2 board and
sensors and is ready to conduct an experiment.

The experiment was divided into two parts: the first was to collect balanced (nor-
mal) conditional data from the FC motor, and the second was to simulate an unbalanced
condition by attaching 15g of mass to one of the FC motor’s blades. The experiment was
conducted three times at three different speeds. Throughout the experiment, all essential
raw data was collected and saved on the database for later analysis. The collected dataset
from the experiment is labeled according to the condition of the FC. The labeled sensor
dataset is then trained and tested using Automatic ML classification models and the best
performed model is selected for deployment on the application. The classification model
results such as balanced, unbalanced or off conditions of the FC is presented on the BIM
model of the construction.

In the next chapter the results of the experiment, building facility sensors’ data within
the ML results integrated into BIM model are introduced.
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Figure 8. Sensors allocation on the FC components: (A) FC equipped with sensors; (B) Connecting
and measuring diagram of the current and voltage of the FC motor; (C) T5 sensor connected to the
motor case; (D) T2 return pipe sensor; (E) T1 delivery pipe sensor; (F) T3 air intake sensor; (G) T4 air
outlet sensor.

4. Results

H2O AutoML is used to detect anomaly from the data coming from sensors. Data
acquired from sensors are trained in an H2O.ai cluster using R studio with a version
3.34.0.3. The AutoML function in H2O automates the process of building a large number
of models and finds the most suitable model for a given dataset. Some H2O models yield
varying significance for one-hot (binary indicator) encoded categorical columns (e.g., Deep
Learning, XGBoost). For the variable significance of categorical columns, a summary of
the variable importance across all one-hot encoded features must be compared across all
model types and produce a single variable importance for the original categorical feature.
The models and variables are ordered by their proximity. The multinomial distribution
approach was used to train the dataset as it was categorical.

As the main metrics of the predictive models were used error metrics to evaluate the
best performed models. Table 5 demonstrates the results of the best ML models that have
been used to classify different conditions of the fan coil. According to the table “Deep
learning grid 3 AutoML model 3” is the best performed model for our dataset. The deep
learning model parameters are three class classification model, multinomial distribution,
6.053 weights/biases and mini-batch size is 1. The results of the model: RMSE is 0.096372
and MSE is 0.009287 which is very good multinomial classifier. However, training time is
slightly higher respect to the other models.

The H2OAutoML leaderboard displays the model results together with correspond-
ing metrics. The H2OAutoML leaderboard graph displays 5-fold cross-validated met-
rics. Figure 9 depicts the variable significance of the Deep learning model produced by
H2OAutoML. According to the plot, Real power (RP1) is the most influenced variable to
the model.
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Table 5. Metrics results of the different automatic ML models used to predict anomalies of the FC
motor.

Model_id Mean per
Class Error Logloss RMSE MSE Training Time

(ms)

DeepLearning_grid__3_AutoML_20211105_090506_model_1 0.008263 0.115798 0.096372 0.009287 11,425
StackedEnsemble_BestOfFamily_AutoML_20211105 0.010678 0.08707 0.106898 0.011427 228
GBM_grid__1_AutoML_20211105_090506_model_2 0.012162 0.052030 0.108987 0.011878 125

StackedEnsemble_AllModels_AutoML_20211105 0.012628 0.151789 0.163482 0.026726 348
DRF_1_AutoML_20211105_090506 0.014111 0.062486 0.119899 0.014376 76
XRT_1_AutoML_20211105_090506 0.014111 0.072696 0.133769 0.017894 67
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The confusion matrix in Table 6 represents the measurements of the highest performing
model that is predicted class with actual class, indicating that the model identified anomaly
with 0.0065 error and only three points out of 463 are misclassified for the provided dataset.

Table 6. Confusion Matrix of the DeepLearning_grid__3_AutoML_20211105_090506_model_1: Row
labels: Actual class; Column labels: Predicted class.

Balanced Off Unbalanced Error Rate

Balanced 168 0 3 0.0175 =3/171
Off 0 154 0 0.0000 =0/154

Unbalanced 0 0 138 0.0000 =0/138
Totals 168 154 141 0.0065 =3/463

The results of AutoML that classifies different conditions and anomalies of the FC
motor in real time are deployed on the BIM model. To understand the behavior of the
balanced, off, and unbalanced condition of the FC motor a real time data of the Real Power
in three speeds is depicted in Figure 10.
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Finally, Figure 11 demonstrates an application developed on the Autodesk Navisworks
that integrates ML results within the BIM model. In the application, the fan coil color
changes according to the results of ML data. The color is “Blue” if the fan coil motor is
under the balanced condition, “red” if the FC motor is under the unbalanced condition and
“Grey” if the FC is turned off.
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Moreover, Node-red dashboard displays all coming data from sensors in real time as
shown in Figure 12.
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5. Discussion

Cloud based IoT and analytical platforms such as Google clouds, Microsoft Azure, IBM
Watson, AWS from Amazon, Thingworx, Thingspeak give a possibility easily acquiring IoT
data to perform analytics, however, most of the important services such as data storage,
extra AI tool usability for prediction analyses are not free and there is no integration tools
with a custom based BIM models.

A proposed ML-based framework for building facility monitoring system would
enhance the building’s maintenance plan by assisting facility managers in evaluating
the monitored building conditions within the 3D model. As a result, facility managers
may benefit from the proposed framework to solve sustainable maintenance issues in the
following: Facility managers may plan and schedule maintenance work in advance by
using indoor facility anomaly or failure signals; Data visualization and anomaly data on
the dashboard provide the potential of minimizing the danger of devastating failures and
reducing unexpected forced outages of building components; ML-based anticipated and
real-time data from sensors allow for more accurate maintenance; The use of ML predicted
results for room components inside the BIM model simplifies maintenance operations;
Finally, identifying the location of the failed component in real time is simple.

Thus, the research presented in this paper attempts to solve the gaps in the following
studies: lack of ML framework to develop sustainable building facility maintenance [26], a
lack of automation [46], and a need of a data collecting system [47].

However, there are significant limits towards this work, which are as follows:
The framework is quite limited in terms of ML-based building facility maintenance.

Investigations are required to conduct sizable research by connecting more building fa-
cilities such as sprinkler systems, water pipes, drains, wires, ducts, cables, fire services
equipment, and so on, as well as evaluating the system’s integration with facility managers
and clients to assess its reliability, repeatability, robustness, and ease of use.

More building facility sensors, such as an oxide gas sensor, a particle dust sensor, etc.,
as well as facility management sensors, including a motion sensor, occupancy sensor, and
so on, may be added to the system and evaluated using the proposed framework.

6. Conclusions

In this research an ML framework for the sustainable maintenance of the building facil-
ities is introduced. The proposed framework addresses the gap in maintenance procedures
by assisting FM teams in taking early action and avoiding unforeseen failures without
the requirement for costly extensive site inspections of the installations. The framework
is composed by three main parts: (i) an IoT architecture to collect real-time data from the
building, (ii) an ML algorithm to analyze the data and support the maintenance activity, and
(iii) a BIM to provide a virtual representation of the building and visualize the maintenance
activity.

To prove the applicability and reliability of the framework the experiment has been
conducted on the indoor facility FC that is equipped with sensors and sensor node that
continuously sends data to server database. On the edge of the framework, the ML model
predicts anomalies of the unbalanced condition of the FC.

To classify different conditions including balanced, unbalanced, and turned off condi-
tions, automatic ML platform tool AutoML H2O is used and according to the multinomial
classification models, the “Deep learning grid 3 AutoML model 3” is the best performed
model for our case study. The results of the best performed Deep Learning model: RMSE
0.096372 and MSE 0.009287 which means very good classifier. However, training time is
slightly higher respect to other models. Finally, in the application layer of the framework,
IoT data and ML results are integrated with a BIM model. In the 3D model of the BIM, the
fan coil color changes according to the anomaly prediction results.

Future research will concentrate on transferring IoT sensor data and ML anomaly
information to the three-dimensional BIM models that will be merged with virtual real-
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ity (VR), augmented reality (AR), and mixed reality (MR) technologies and visualizing
anomalies on the Digital Twin of BIM model.

A proposed ML framework might serve as a starting point for developing collaborative
BIM systems based on AR/MR/VR. For example, to enable information flow in facility
management, create a framework based on ML, BIM, mixed reality, and a cloud platform.

Such systems are valuable to facility managers because they provide quick remote
access to 3D models of buildings and allow them to analyze a scenario before making
decisions about building facility operations.
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