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Abstract: The fine classification of land cover around complex mining areas is important for environ-
mental protection and sustainable development. Although some advances have been made in the
utilization of high-resolution remote sensing imagery and classification algorithms, the following
issues still remain: (1) how the multimodal spectral–spatial and topographic features can be learned
for complex mining areas; (2) how the key features can be extracted; and (3) how the contextual
information can be captured among different features. In this study, we proposed a novel model
comprising the following three main strategies: (1) design comprising a three-stream multimodal
feature learning and post-fusion method; (2) integration of deep separable asymmetric convolution
blocks and parallel channel and spatial attention mechanisms into the DenseNet architecture; and
(3) use of a bidirectional long short-term memory (BiLSTM) network to further learn cross-channel
context features. The experiments were carried out in Wuhan City, China using ZiYuan-3 imagery.
The proposed model was found to exhibit a better performance than other models, with an overall
accuracy of 98.65% ± 0.05% and an improvement of 4.03% over the basic model. In addition, the
proposed model yielded an obviously better visual prediction map for the entire study area. Overall,
the proposed model is beneficial for multimodal feature learning and complex landscape applications.

Keywords: remote sensing; CNN; LSTM; attention mechanism; multistream; multimodal; land
cover classification

1. Introduction

The illegal over-exploitation of open pit mines can easily lead to surface subsidence
and desertification, which aggravates soil erosion and vegetation reduction. Soil erosion
and reduced vegetation can lead to changes in the surface land cover types. According to
recent studies, changes in surface land cover types have a significant impact on the surface
temperature of the region. Furthermore, changes in the surface temperature increase with
changes in the surface land cover [1]. The increase in surface temperature creates a series of
environmental problems that affect the goal of sustainable development.

Real-time monitoring of open pit mining activities is imperative. An effective approach
for monitoring the activities of open pit mines involves the detection of changes in land
cover types in and around the mine. The fine classification of the different types of land
cover in mining areas and their vicinity is of great significance for environmental protection,
sustainable development, and scientific mining. The detection of land cover is an important
method for reflecting the ecological environment [2], and it can effectively prevent the
threat of dust, environmental pollution, and vegetation damage caused by mineral resource
development. However, owing to the complex topography near the open pit mine and
damage to the land by mining activities, performing manual observations of the complex
open pit mining areas and detecting their changes in real-time are impractical [3].
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Multispectral images provide rich spectral information and have broad application
prospects in the field of remote sensing [4,5]. In recent years, with the development of
multispectral imaging technology, the coverage of remote sensing images has increased [6],
and the spatial resolution of remote sensing images has continuously improved [7,8].
However, such advancements have increased the information complexity of multispectral
remote sensing images [9–11] and has led to a reduction in the spectral differences between
different types of objects. The spectral difference within the class increases [12,13], and the
spectral–spatial information cannot be fully utilized [14,15]. Because open pit mining areas
have complex landscapes and significant three-dimensional topographic features [16,17],
the gathering of multimodal spectral–spatial and topographic information to improve the
land cover classification (LCC) accuracy of complex open pit mining areas is an issue.

Friedl and Brodley [18] used three decision tree algorithms (i.e., univariate, multivari-
ate, and mixed decision trees) to conduct LCC studies. In a prior study [19], the researchers
performed pixel- and object-based experiments on MS images acquired by the HJ-1B and
ALOS satellites using the support vector machine (SVM) and random forest (RF) algo-
rithms, respectively. Machine learning algorithms (MLAs) are effective for LCC and fine
LCC (FLCC) applications. However, MLAs generally have shortcomings when classifying
remote sensing images in complex landscapes. Due to the utilization of feature engineering
with a low representation ability, MLAs cannot fully extract image information [15]. As a
result, the corresponding classification accuracies are unsatisfactory.

In the past few years, deep learning (DL) algorithms have been widely used for
FLCC applications due to their powerful feature learning abilities [20,21], and they have
achieved good results in data mining, natural language processing, and other fields [22].
The restricted Boltzmann machine in the deep belief network (DBN) can be trained while
unsupervised to learn the features that the original data contain to the greatest extent; while
supervised, it can be fine-tuned using the back-propagation algorithm to further learn data
features, which requires little labeled data for the FLCCs of complex mining areas [23].
Li et al. [24] proposed a multi-level output-based DBN model for FLCCs in complex mining
areas. Helber et al. [25] used a deep convolutional neural network (DCNN) to perform
an LCC of Sentinel-2 satellite images. Xu et al. [26] used a multiscale DCNN to achieve
good classification results. However, the DCNN method has a deep network structure
and numerous model parameters. Accordingly, gradient disappearance and network
degradation can easily be induced. The ResNet architecture increases the network depth
through fast identity mapping [27], thereby improving the feature extraction ability and
avoiding the above-mentioned issues of the DCNN method. However, ResNet connects
the input and residual feature maps by summing them in the skip connection stage, which
may block the information flow. ResNet also generates numerous feature maps in each
layer and trains with too many parameters, leading to excessive training time. These
deficiencies can be solved by the DenseNet architecture [28], as each layer of DenseNet is
connected to all subsequent layers in the forward feedback mode, and its input includes
the output of the previous layer and the input of all layers before the current output layer.
The shallow features that are directly extracted from the original data can be directly used
by the deep layers; therefore, DenseNet enhances feature reuse, reduces the number of
parameters, and achieves stronger performance than the ordinary CNN method. Therefore,
many researchers have introduced it into the field of remote sensing. Tao et al. [29] added
a classifier at a certain interval between the input and output layers in the DenseNet
architecture to improve the feature extraction ability of the network. Li et al. [30] inputted
the features of the last dense block of DenseNet121 into the global branch of the key filter
bank to obtain global features; the authors also adopted the right branch of the key flow to
extract features from key regions, improving the classification accuracy of hyperspectral
imagery (HSI).

Multimodal data-based multistream CNNs are widely used in the field of remote
sensing. For example, Wu et al. [31] designed a dual-stream CNN to extract the features of
HSI and light detection and ranging (LiDAR) data. Hang et al. [32] designed a dual-stream
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CNN structure with mutually coupled convolutional layers to extract and fuse HSI and
LiDAR features.

Multispectral remote sensing images have spectral features that are related to differ-
ent spectral bands as well as spatial features that are related to different neighborhoods.
Making full use of the spectral spatial features simultaneously is key to improving the
classification accuracy. Xu et al. [26] used a three-dimensional CNN to mine spectral–spatial
features. To further improve the classification accuracy of the HSI, Zhao and Du [33] de-
signed a multiscale convolutional network to build an image pyramid for each spectral
band by fusing the extracted cross-scale spatial features with spectral features. Similarly,
Gao et al. [34] designed a deep cross-attention module to extract complementary informa-
tion from spectral–spatial features. Researchers also introduced making use of generative
adversarial networks (GANs) to mine spectral features. Li et al. [35] proposed a deep
translation-based change detection network (DTCDN) to automatically extract the varia-
tion area between optical and synthetic aperture radar remote sensing images. To establish
a more fluent and stable training, Zhang et al. [36] optimized the training process and loss
function for GANs and proposed a hyperspectral image classification optimization training
method based on GAN. The proposed method can obtain good training results with only a
small amount of labeled training data.

Most existing spectral–spatial fusions are based on adjacent pixel feature extraction
methods, which do not maximize the contextual information of the spatial–spectral features.
A long short-term memory (LSTM) network can establish interdependence between the
input sequences and is widely used in natural language processing, video processing,
machine translation, and other fields [37]. In the past few years, this particular network has
demonstrated excellent performance in remote sensing image processing. Xu et al. [38] de-
signed a band grouping strategy that enabled LSTM networks to better learn the contextual
information between adjacent channels of the HSI. To obtain combined spectral–spatial
results, researchers have proposed a spectral–spatial LSTM model. Zhou et al. [39] designed
a spectral–spatial LSTM to extract the spectral–spatial features of the HSI, which captured
the dependencies of adjacent spectral–spatial neighborhoods. Liu et al. [12] proposed a
spectral–spatial bidirectional LSTM (BiLSTM) network to simultaneously extract spectral–
spatial features using recursive and convolution operators. Similarly, Yin et al. [40] used a
3D CNN to extract spatial features and a band grouping strategy-based BiLSTM to extract
spectral features.

Although DCNNs have a strong feature extraction ability, their ability to extract
key features in a complex landscape is not strong enough. The attention mechanism can
focus on the different aspects of each output of the inputs, thereby improving its ability
to extract the most relevant information. Chen et al. [41] proposed a framework based
on global context spatial attention and the DenseNet architecture to extract multiscale
global scene features. Some researchers are beginning to determine the effects of different
attention mechanisms on key feature extraction. Chen et al. [42] proposed generative
adversarial networks based on the joint mechanism of channel and spatial attention for land
cover classification, which assigns higher weights to more important features and reduces
the interference of invalid features. Tong et al. [43] proposed a channel attention-based
DenseNet method for scene classification. The channel attention mechanism adaptively
strengthens the weights of the important feature channels and suppresses the secondary
feature channels. To represent the importance weights of different local regions of each
image, Sumbul and Demİr [44] proposed a novel multi-attention strategy-based BiLSTM
network to define a global descriptor for each image.

In summary, three issues exist in the FLCCs of complex mining areas: (1) how the
multimodal spectral–spatial and topographic features can be learned, (2) how the key
features can be extracted, and (3) how the contextual information can be captured among
different features. To improve the classification accuracy of FLCCs in complex mining
areas, this study proposed a three-stream, double attention network (3S-A2 DenseNet-
BiLSTM). This network comprises three strategies: (1) A three-stream multimodal feature
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learning and post-fusion method. Briefly, the multispectral imagery and topographic data
were first fed into subsequent DL networks. Thereafter, the low-level spectral–spatial
features were fused with the extracted multimodal deep features; (2) An integration of deep
separable asymmetric convolution blocks (ACB-DS), parallel channel, and spatial attention
mechanisms into the DenseNet architecture for key feature extraction; and (3) the use of
the BiLSTM network to further learn the cross-channel context features from the outputs of
the A2 DenseNet. The proposed model was tested in Wuhan City, China, using Ziyuan-3
(ZY-3) stereo satellite imagery.

The remainder of this paper is organized as follows: Section 2 introduces the study
area and data sources; Section 3 describes the proposed network structure, feature fusion
strategy, parameter optimization, and evaluation indicators; Section 4 presents the analysis
of the experimental results, including the experimental equipment, parameter optimization
results, and accuracy evaluation; Section 5 discusses the effectiveness of the model and
compares it with models used in previous research; and Section 6 presents the conclusions.

2. Study Area and Remote Sensing Datasets

In this study, the same research area was adopted as previous studies [7,23,24], which
is located in the Wulongquan mining area, covering an area of 109.4 km2 in the Jiangxia
District, Wuhan City, Hubei Province, China. The area is a large ore production base and
the mining resources in this area are distributed in contiguous and concentrated areas.
Different complex open pit mining areas and agricultural development landscapes exist at
different phenological stages.

At present, commonly used satellite images include Sentinel-3, Landsat, Sentinel-2,
and HJ-1A [45]; however, ZY-3 satellite images are widely used in FLCCs due to their
higher spatial resolution. According to prior studies, the higher the spatial resolution is
in multispectral satellites, the more accurate the classification of land cover types in the
region [46]. Figure 1 shows a satellite image captured by the ZY-3 satellite on 20 June
2012. As the front- and back-facing cameras had a resolution of 3.6 m, the digital elevation
model (DEM) data had a resolution of 10 m. The nadir-looking panchromatic camera had
a resolution of 2.1 m, and the multispectral camera had a resolution of 5.8 m. We used
multispectral imagery from an optical satellite in this study as the type of satellite images
(that is, the ZY-3 satellite). The four bands of blue visible light, green visible light, red
visible light, and near-infrared light, which were fused to form the multispectral imagery
by Gram–Schmidt spectral sharpening; a fused multispectral imagery with a resolution of
2.1 m was obtained. Subsequently, the DEM was resampled to a 2.1 m resolution to match
the multispectral imagery.
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In this study, a two-level land cover classification system was designed [47] using
twenty-eight field survey samples, including seven first-level and twenty second-level land
covers, as shown in Table 1. The second-level land cover type is a detailed classification of
the first-level land cover type. The FLCC was based on the second-level land cover type.
The design of the two-level land cover classification system is conducive to the classification
of land cover on a fine scale.

Table 1. The two-level land cover classification system [47].

First-Level Land Cover Type Second-Level Land Cover Type Description

Mining land
Open pit

Ore processing site
Dumping ground

An ore deposit formed by stripping the soil and
rock covering the upper part of the ore body

A factory that processes ore
A place where mining wastes are discharged in a

centralized manner

Farmland

Paddy
Greenhouse

Green dry land
Fallow land

Cultivated land for planting rice
Facilities that can transmit light and keep warm,

which are used to cultivate plants
Cultivated land not planted with rice

Uncultivated land

Woodland

Woodland
Shrubbery

Coerced forest
Nursery

Tall macrophanerophytes
Low vegetation

Vegetation with restricted growth
Economic trees artificially cultivated in nurseries

and orchards

Waters Pond and stream
Mine pit pond

Natural waters
A place where groundwater is discharged

during mining

Road
Dark road

Light gray road
Bright road

Asphalt driveway
Dirt road

Cement road

Residential land
Blue roof

White roof
Red roof

Urban land
Land for rural residents
Other construction land

Unused land Bare surface land

Based on our previous studies [7,23,24,47,48], the training, validation, and test sets
were constructed using data polygons. Each class of the training set contained 2000 samples,
and there were 40,000 in total. Each class of the validation set had 500 samples, 10,000 in
total; the test set had the same number of samples. The sample proportion of the training,
validation, and test sets was at a ratio of 4:1:1, respectively. The training set was used to fit
and train multiple classification models. To identify the model with the best performance,
each trained model was used to predict the validation set, and we selected the model with
the best classification effect. The test set was used to evaluate the model’s accuracy.

3. Methods

3.1. Description of the Proposed 3S-A2 DenseNet-BiLSTM

As shown in Figure 2, the neighborhoods of the N × N pixels were first extracted
from the multispectral image and topographic data, respectively, and the neighborhood
size was subjectively determined according to the actual situation. Thereafter, these pixel
neighborhoods were inputted into the A2 DenseNet-BiLSTM network using an asymmetric
separable convolution block and double attention mechanism to extract the cross-channel
and context-dependent information. The two branches adopted a parameter sharing
method to learn network weights and extract similar features at the same location of differ-
ent input data, that is, the deep spectral–spatial and topographic features. Subsequently,
the low-level spectral–spatial features extracted from the multispectral images were fused
with the depth features and inputted into Softmax for classification. By comparing the
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prediction results with the real labels, the batch size loss was calculated according to the
loss function. Finally, a back-propagation algorithm was used to optimize the model.
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Figure 2. The algorithm flow chart of the 3S-A2 DenseNet-BiLSTM.

3.2. A2 DenseNet for Key Feature Extraction

The A2 DenseNet (Figure 3a) network includes the ACB-DS block (Figure 3c), dense
block (Figure 3d), convolution block, and transition layer. The dense connection mechanism
of DenseNet connects each layer in the dense block, and the input of each layer is the output
of all previous layers. If the dense block has L layers, the number of connections can reach
L(L+1)

2 . The nonlinear transformation function is HL(·), and the output of the L layer is XL.
For a standard CNN, the output of the L layer is given by:

XL = HL(XL−1) (1)
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For the dense block, the output of its L layer is given by:

XL = HL([X0, X1, ···, XL−1]) (2)

The deeper the layers of input data and gradient information transfer, the easier the
occurrence of the network in the gradient disappearance phenomenon. Such a dense
connection mechanism allows for a more effective transfer of features and gradients and
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alleviates the problem of gradient disappearance caused by the network being too deep.
This mechanism has a regularizing effect that reduces the computational parameters in the
network and alleviates the overfitting phenomenon [43].

As shown in Figure 3a, each dense block in DenseNet is followed by a transition layer
that consists of a 1 × 1 convolution and average pooling operation. The 1 × 1 convolution
can reduce the number of output feature maps and fix the number of channels in output
feature maps to reduce the image dimensions, reduce the number of parameters in the
network, and reduce the model complexity.

The HL(·) structure of the classic DenseNet comprises BN, ReLU, and convolution,
with a kernel of 3 × 3. In this study, ACB-DS (Figure 3c) was used to replace the orig-
inal convolution, which included ACB and deep separable (DS) convolution. For ACB
(Figure 3b), the output feature map is the sum of the input images after 3 × 3, 1 × 3,
and 3 × 1 convolutions, which are equivalently fused into a square convolution kernel
to replace a single convolution block. ACB strengthens the feature representation and
feature extraction capabilities of the convolution layer, making the extracted features more
discriminative and feature extraction more effective [49].

The channel attention (Figure 4a) and spatial attention (Figure 4b) mechanisms were
introduced into the dense block (Figure 3c). These mechanisms were embedded in a
parallel form, where the channel attention was implemented by a squeeze-and-excitation
net (SENet). An SENet focuses on the inter-channel relationship and explicitly models the
inter-channel interdependence to adaptively recalibrate the channel feature response [50].
This network includes two main operations: squeezing and excitation. For the squeeze
operation, an adaptive average pooling operation was performed on the spatial dimension.
During the compression of the spatial dimension, the average value of the corresponding
dimension can be obtained, which can suppress unnecessary features. According to the
structure in Figure 4a, the size of the original feature map is H ×W × C, denoted as uc,
where H and W denote the spatial dimension of the feature map and C is the number
of channels. The squeeze operation compresses the feature map H ×W × C into a one-
dimensional feature vector of 1× 1× C, denoted as zc, which is obtained as follows:

zc = Fsqueeze(uc) =
∑H

i=1 ∑W
j=1 uc(i, j)

H ×W
(3)

For the excitation operation, a multilayer perceptron was first used to learn the channel
weight, which had two layers: a fully connected (FC) layer with the activation function
of ReLU (represented by δ) and a FC layer with a sigmoid function (represented by σ).
Additionally, s denotes the output weight matrix, g denotes the first FC layer, and Fexcitation
denotes the second FC layer. The relations among them are expressed as follows:

s = Fexcitaion(zc) = σ(W2δ(W1zc)) (4)

The obtained weight was multiplied by the original feature map to obtain the final
weighted feature map; this was performed to learn the features that were useful for the
current task.

The spatial attention mechanism (Figure 4b) can cause the network to focus more on
the spatial location of important features. First, the maximum pooling and average pooling
operations were performed on the input feature map (represented by F) of H ×W × C.
Thereafter, the two feature maps were cascaded according to the channel. Finally, the
convolution operation f with activation function σ was conducted as follows:

M(F) = σ( f (AvgPool(F), MaxPool(F))) (5)

The spatial attention mechanism can enhance the spatial structure features and spatial
neighborhood-related information [51]. The channel and spatial attention branches were
merged and fused. The fused feature map has more discriminative spectral–spatial features.
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3.3. BiLSTM for Extraction of Cross-Channel Context Features

LSTM is a special recurrent neural network (RNN). Back-propagation and long-term
dependencies easily lead to RNN gradient disappearance and explosion. Use of an LSTM
introduces a gate mechanism and memory unit to improve RNN [52].

Ct denotes the memory unit of the LSTM and memorizes all sequence information up
to time t, C̃t denotes the update value of the memory cell, xt denotes the input information
at time t, b denotes the offset value, W denotes the weights between the LSTM nodes, and
ht denotes the hidden layer output. The forget gate ft controls the forgetting of historical
information, the input gate it controls the stored information, and the output gate ot controls
the output information. The mathematical illustrations of the LSTM information flow are
given by:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(6)

it = σ(Wi·[ht−1, xt] + bi) (7)

C̃t = tanh(WC·[ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot = σ(Wo·[ht−1, xt] + bo) (10)

ht = ot ∗ tanh(Ct) (11)

In this study, the feature map X ∈ RH×W×C extracted by the A2 DenseNet (H ×W is
the feature map size and C is the number of channels) was flattened and fully connected to
obtain a one-dimensional feature vector. The feature sequence corresponding to each spec-
tral band was inputted into the BiLSTM (Figure 5). Accordingly, the [1, C] group sequence{

X(1), X(2), ···, X(C)
}

was employed as the input of the BiLSTM module to extract the
context information across channels. The use of BiLSTM can not only establish the forward
correlation between the input sequences, but also learn the dependency between them in
the backward sequence to fully extract the context information between different channels.
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3.4. Three-Stream Multimodal Feature Learning and Post-Fusion Strategy

The multispectral data included four channels with a neighborhood size of 16 × 16 × 4,
and the topographic data included three channels with an input size of 16 × 16 × 3.
Based on the multispectral imagery and DEM data, six types of spectral–spatial and
topographic features were extracted (Table 2), and the feature dimension was 106. The
topographic data included the DEM, slope, and aspect. There were 103 low-level spectral–
spatial features. Based on the A2 DenseNet-BiLSTM results for the deep features from the
multispectral imagery and topographic data branches, a post-fusion was conducted with
low-level features.

Table 2. Low-level multimodal features.

Feature Parameter Type Feature Parameter Name Number

Spectral features Spectral bands 4

Principal component features First and second principal components of spectral bands 2

Vegetation index Normalized vegetation index eliminating, with the
difference between the two channel reflectors 1

Filter features
Gaussian low-pass, mean, and standard deviation filtering

in the spectral band with a core size of 3 × 3, 5 × 5, and
7 × 7 pixels

36

Texture features

Gray level co-occurrence matrix texture in the spectral band,
including the contrast, correlation, angular second moment,

homogeneity and entropy. Core size 3 × 3, 5 × 5, and
7 × 7 pixels

60

Topographic features DEM, slope, aspect 3

3.5. Model Construction and Parameter Optimization

This study sought to design three groups of comparative experiments and one group
of the overall experiment.
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Comparative Experiment 1: Feature fusion method based on multispectral images,
topographic data, and two DenseNet branches.

Comparative Experiment 2: Feature fusion method based on multispectral images,
topographic data, and two A2 DenseNet branches.

Comparative Experiment 3: Feature fusion method based on multispectral images,
topographic data, and two A2 DenseNet-BiLSTM branches.

Overall Experiment: The proposed 3S-A2 DenseNet-BiLSTM. The three-stream feature
fusion methods are based on multispectral images, topographic data, and low-level spectral–
spatial features. In addition, there are two A2 DenseNet-BiLSTM branches.

For the four sets of comparative experiments, a total of 4 types of parameters were
optimized in this study, as shown in Table 3. Some parameters were optimized by the
trial-and-error method and included a batch size of 64, input size of 16 × 16, dense block
number of three, BiLSTM layer of two, and A2 DenseNet growth rate of 32.

Table 3. Parameter optimization scheme.

Comparative Experiment 1 Other Experiments

DenseNet depth

DenseNet121 ACB-DS 1, 2, 3, 4

DenseNet161 Convergent epoch 1–200

DenseNet169 Fully connected layer 1, 2, 3

DenseNet201

Convergent epoch 1–200

Fully connected layer 1, 2, 3

3.6. Accuracy Assessment Metrics

In this study, four accuracy evaluation metrics, namely the overall accuracy (OA),
kappa, F1-score, and F1-measure, were selected to evaluate the performance of the proposed
models. The F1-measure was used to assess the accuracy of each land cover type. The
F1-score was the average value of all F1-measures.

4. Results
4.1. Results of Parameter Optimization

The four sets of models ran on a machine with the Centos 7 operating system and two
NVIDIA 1080Ti GPUs with 11 GB of memory.

Five sets of experiments were repeated five times on the training and validation
sets, each with 200 iterations. The results were averaged, and 12 sets of parameters
(Table 3) were optimized for each set of experiments. The optimization results of the
four experimental groups are shown in Figure 6. The Overall Experiment achieved the
best effect when the numbers of the ACB-DS blocks and FC layers in the dense block
were set to 1, and when DenseNet121 was used. The corresponding average validation
accuracy reached 98.85% ± 0.08%. Comparative Experiment 1 achieved the best effect
when DenseNet201 was used, and the numbers of the ACB-DS blocks and FC layers were 4
and 1, respectively. The average validation accuracy of Comparative Experiment 1 reached
93.70% ± 1.23%. Comparative Experiment 2 achieved the best effect when using the
same parameter combination as that of the Overall Experiment. The average validation
accuracy reached 97.71% ± 0.09%. Comparative Experiment 3 also achieved the best
effect when using the same parameter combination as that of the Overall Experiment. The
corresponding accuracy was 97.69% ± 0.27%.

As shown in Figure 7, as the epoch increased, the training and validation accuracies of
the four sets of experiments displayed an upward trend, and the losses gradually decreased
in a small range.
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For the Overall Experiment (Figure 7a), the model converged at an epoch of 175 and
the OA reached 98.65%. Comparative Experiment 1 (Figure 7b) converged at an epoch of
178, and the OA was 89.10%. Comparative Experiment 2 (Figure 7c) converged at 160, and
the OA was 94.83%. Comparative experiment 3 (Figure 7d) converged at 174, with an OA
of 97.70%.

After the introduction of the ACB-DS block into DenseNet, the convergence speed
of the network was markedly accelerated. Although the training speed of the network
decreased after the addition of the BiLSTM module and low-level spectral–spatial features,
it remained smaller than the convergence rounds presented in Figure 7b. The Overall
Experiment conducted on the proposed network also converged at a relatively fast speed.
Other comparative experiments have one or two step-by-step increases in both the training
and validation accuracy curves, and the network may jump out of the local optima. The
training and validation accuracy curve trends of the Overall Experiment were relatively flat,
and local optimization was not easily achieved. The ACB-DS block significantly reduced
the computational parameters. Furthermore, the proposed network does not introduce too
many redundant modules. The addition of ACB-DS blocks and low-level spectral–spatial
features can effectively reduce the starting point of the training and validation loss curves
and result in a smoother curve trend.

Overall, although the 3S-A2 DenseNet-BiLSTM model proposed in this study has a
markedly more complex structure and a deeper network than DenseNet, it still rapidly
converges. The training and validation losses decreased more smoothly than the remain-
ing three sets of comparative experiments, and the training and validation accuracies of
the remaining experiments displayed a very steep upward trend. Therefore, the 3S-A2

DenseNet-BiLSTM model had a better performance and more stable properties.

4.2. Results of Accuracy Assessment

The different experiments had different performances in terms of the F1-score, kappa,
and OA; the results are presented in Table 4. For the four groups of experiments, the OA val-
ues appeared in the order of 98.65% ± 0.05% (Overall Experiment), 97.70% ± 0.08% (Com-
parative Experiment 3), 97.14% ± 0.28% (Comparative Experiment 2), and 94.83% ± 0.04%
(Comparative Experiment 1). The same trend was observed for the other metrics. The
experimental results show that the 3S-A2 DenseNet-BiLSTM method is effective for FLCCs
in complex mining areas.

Table 4. The average and standard deviation values of the four groups of experiments on the metrics
of F1-score, kappa, and OA (%).

Experiment F1-Score Kappa OA

Comparative Experiment 1 94.82 ± 0.04 94.56 ± 0.04 94.83 ± 0.04
Comparative Experiment 2 97.13 ± 0.29 96.99 ± 0.30 97.14 ± 0.28
Comparative Experiment 3 97.69 ± 0.08 97.57 ± 0.08 97.70 ± 0.08

Overall Experiment 98.65 ± 0.05 98.65 ± 0.05 98.65 ± 0.05

Compared with Comparative Experiment 1, after the introduction of the ACB-DS
block and parallel attention mechanism in Comparative Experiment 2, the F1-score, kappa,
and OA increased by 2.43%, 2.43%, and 2.31%. Compared with Comparative Experiment 2,
after the introduction of the BiLSTM module in Comparative Experiment 3, the F1-score,
kappa, and OA were increased by 0.56%, 0.58%, and 0.56%, respectively. Compared with
Comparative Experiment 3, after introducing the low-level spectral–spatial feature and
three-stream feature fusion strategy into the Overall Experiment, the F1-score, kappa, and
OA increased by 1.08%, 1.08%, and 0.95%, respectively. The superior performance of the
proposed model has been demonstrated. Our previous study [24] concluded that statistical
testing depends on the size of the test set. Owing to the small sample size of the test
set in this study, a statistical test was not performed. Test sets with different sizes and
corresponding statistical tests will be investigated in future studies.
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As shown in Table 5, the classification accuracies of each land cover type reached a
high level. In fact, even the average F1-measures of woodland, white roof, fallow land, and
shrubbery, with the worst classification effects, were above 87%.

Table 5. Average and standard deviation values of the F1-measures for the four groups of experiments (%).

Class Overall
Experiment

Comparative
Experiment 1

Comparative
Experiment 2

Comparative
Experiment 3

Open pit 99.75 ± 0.22 95.80 ± 0.20 97.90 ± 1.02 97.90 ± 0.50
Ore processing site 99.45 ± 0.09 92.92 ± 0.28 97.35 ± 1.17 98.20 ± 0.20
Dumping ground 99.70 ± 0.17 96.90 ± 0.10 99.20 ± 0.14 99.20 ± 0.00

Paddy 99.75 ± 0.09 96.20 ± 0.20 98.75 ± 0.70 99.00 ± 0.20
Greenhouse 100.00 ± 0.00 100.00 ± 0.00 99.55 ± 0.09 100.00 ± 0.00

Green dry land 99.35 ± 0.22 93.20 ± 2.00 96.85 ± 1.19 96.90 ± 0.10
Fallow land 96.90 ± 0.59 87.70 ± 0.10 91.80 ± 2.78 94.00 ± 0.60
Woodland 95.30 ± 0.30 90.80 ± 0.20 92.20 ± 1.07 93.00 ± 0.20
Shrubbery 92.35 ± 0.52 80.30 ± 0.70 86.90 ± 2.34 89.70 ± 0.10

Coerced forest 99.55 ± 0.09 96.20 ± 0.00 99.00 ± 0.45 99.00 ± 0.00
Nursery 98.20 ± 0.62 90.70 ± 2.10 96.85 ± 1.36 98.40 ± 0.20

Pond and stream 99.15 ± 0.41 95.40 ± 0.20 98.35 ± 0.57 99.10 ± 0.10
Mine pit pond 100.00 ± 0.00 99.90 ± 0.10 99.85 ± 0.09 99.80 ± 0.00

Dark road 100.00 ± 0.00 100.00 ± 0.00 99.70 ± 0.17 100.00 ± 0.00
Light gray road 99.70 ± 0.17 97.10 ± 0.50 98.50 ± 0.71 98.80 ± 0.20

Bright road 99.95 ± 0.09 98.70 ± 0.50 98.75 ± 0.80 99.60 ± 0.20
Blue roof 99.80 ± 0.00 99.10 ± 0.10 99.75 ± 0.09 99.70 ± 0.10

White roof 94.85 ± 0.43 91.80 ± 0.40 94.50 ± 1.68 93.40 ± 0.20
Red roof 99.75 ± 0.09 97.40 ± 0.40 99.55 ± 0.26 99.50 ± 0.10

Bare surface land 99.55 ± 0.17 96.50 ± 0.30 97.15 ± 2.17 98.70 ± 0.10

In Comparative Experiment 1, the F1-measures of most classes exceeded 94%, with
seven exceptions: woodland, white roof, fallow land, green dry land, shrubbery, nursery,
and ore processing sites. Among them, fallow land and shrubbery had the lowest F1-
measures (lower than 90%). However, the accuracies for dark road and greenhouse in
Comparative Experiment 1 reached 100%.

In Comparative Experiment 2, the F1-measures of most classes exceeded 97%, with
only six exceptions: woodland, white roof, fallow land, green dry land, nursery, and
shrubbery. Generally, the F1-measures of most classes in Comparative Experiment 2 were
higher than those of Comparative Experiment 1. Only dark road, greenhouse, and mine
pit pond lagged behind Comparative Experiment 1, with accuracy decreases of 0.30%,
0.45%, and 0.05%, respectively. Furthermore, the F1-measures of the other 17 classes were
0.05–6.60% higher than that of Comparative Experiment 1.

In Comparative Experiment 3, the F1-measures of most classes exceeded 97%, with
only five exceptions. The accuracy of woodland, white roof, fallow land, and green dry
land was still greater than 93%, and only shrubbery had an accuracy of 89.70%. Dark
roads and greenhouses were correctly classified. Generally, most types of F1-measures in
Comparative Experiment 3 were higher than those in Comparative Experiment 2. Blue
roof, white roof, red roof, and mine pit pond lagged by accuracy decreases of only 0.05%,
1.10%, 0.05%, and 0.05%, respectively.

The 3S-A2 DenseNet-BiLSTM method had the best classification effect for almost all
20 types, except for Comparative Experiment 3, which had the best classification effect for
nurseries (with a narrow margin of 0.20%). In the Overall Experiment, the F1-measures
of most classes exceeded 98%, and the classifier could correctly identify all dark roads,
greenhouses, and mine pit ponds, leading to the same conclusion as in Section 4.1: the 3S-A2

DenseNet-BiLSTM model has a significant effect on the FLCCs of complex mining areas.
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4.3. Results of Visual Prediction

The four sub-images in Figure 8 clearly show the performances of the four experimen-
tal groups. These images comprise 20 different colors that represent 20 secondary land
cover classes. Compared with the real image (Figure 1), the four prediction maps were
found to be visually accurate. In particular, the visual prediction maps of Comparative
Experiment 1 and the Overall Experiment show that the results of the visual prediction
are quite different, ultimately confirming the results presented in Table 5. The best algo-
rithm (Figure 8b) is not only better than the worst algorithm (Figure 8a), but is also better
by a large gap. Ultimately, the 3S-A2 DenseNet-BiLSTM model can be proven to have a
superior performance.
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According to Figure 8d, the 3S-A2 DenseNet-BiLSTM model obtained better classi-
fication results than the other three models. In particular, the open pit, light gray road,
green dryland, ore processing site, all-dark road, greenhouse, and mine pit ponds features
were correctly classified. The four groups of experiments had some classification errors for
woodland, fallow land, nursery, and shrubbery. Notably, the features of these four types of
ground objects might be similar; that is, the spectral–spatial and topographic differences
are small. The reasons for this analysis are as follows.

(1) Compared with Comparative Experiment 1, Comparative Experiment 2 introduces a
parallel channel, spatial attention mechanism, and ACB-DS block, which proves the
accuracy of 20 classes of land cover on a large scale for the first iteration.

(2) Compared with Comparative Experiment 2, Comparative Experiment 3 adds BiL-
STM based on A2 DenseNet, allowing the model to extract correlation information
among the spectral channels. Therefore, the classification accuracy of fallow land,
woodland, and shrubbery with similar spectral features was markedly improved for
the second iteration.

(3) Compared with Comparative Experiment 3, Comparative Experiment 4 introduces
106 dimensional low-level features and a multistream post-fusion strategy based on
A2 DenseNet-BiLSTM. The features that were manually extracted cover the shortage
of depth features extracted by the depth model in detail and have a higher resolution.
Therefore, the accuracy of the 20 land cover classes was improved to a certain extent.
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5. Discussion

5.1. Effectiveness of the Proposed 3S-A2 DenseNet-BiLSTM Model

According to the results presented in Section 4, the 3S-A2 DenseNet-BiLSTM model
has the best FLCC performance for complex mining areas relative to the remaining three
classification models proposed in this study.

Many studies have confirmed the effectiveness of the various network modules and
fusion strategies introduced in this study. For the ACB-DS module, Lo et al. [53] proposed
an efficient dense module with an ACB and dilated convolution structure, which was
2.7 times faster than the comparison network. According to Wang et al. [54], the spatial
symmetry of existing convolutional blocks limits the ability of the network to learn the
spatial location of features. Thus, a multiscale, spatially asymmetric recalibration network
was designed to extract feature maps with spatial asymmetry. Zhu et al. [55] used ACB to
reduce the number of floating-point operations and parameters in the hyperspectral image
classification process, and simultaneously solved the problem where traditional convolution
blocks could not capture features with arbitrary sizes and shapes. Wang et al. [56] designed
a spectral and spatial SENet for channel and spatial attention mechanisms, which was
used to model the interdependencies between channels and spaces to recalibrate feature
responses, with good performance in HSI classification. Roy et al. [57] and Roy et al. [58]
used parallel spatial and channel SENet modules to extract richer spatial and channel
features. Zhang et al. [59] introduced SENet after each convolutional layer to construct
a channel-feature reweighted DenseNet. According to Zhang et al. [60], the convolution
operation would ignore the influence of feature points far away from the current region and
thus used SENet for feature point channel recalibration. For the multistream feature fusion
strategy, Liu et al. [61] used a two-stream CNN to extract the spectral–spatial information
of HSI and a cascade network to extract the spatial information of multispectral imagery,
forming an effective three-stream network. Ge et al. [62] utilized a multistream 2D CNN to
extract features from multi-source datasets. Based on the above studies, the modules and
strategies used in the 3S-A2 DenseNet-BiLSTM method are important for improving the
accuracy of the FLCCs. The detailed analyses were as follows:

(1) 3S-A2 DenseNet-BiLSTM can learn the joint representation of low-level spectral–
spatial, deep spectral–spatial, and deep topographic features. It can also capture
the complete information of different emphases of the same object landscape under
different imaging methods that cannot be perceived by a single form of data.

(2) Compared with the classic DenseNet method, the A2 DenseNet module used the
ACB-DS block and a double attention mechanism to extract more discriminative
features. Simultaneously, the number of parameter calculations was reduced, and
the speed of network convergence was accelerated. As the spatial regions of various
ground objects are not always symmetrical, traditional symmetric convolution was
not suitable for extracting the features of irregularly shaped land covers. However,
the ACB-DS method solved the problem well, and was able to extract richer and more
detailed spatial information.

(3) BiLSTM was used to model the contextual features of correlations across different
channels. It supplemented the global features extracted by A2 DenseNet and out-
putted more abundant spectral–spatial and topographic features, respectively.

(4) A multistream post-fusion strategy was used to further fuse the low-level spectral–
spatial features and multimodal deep features extracted by the A2 DenseNet-BiLSTM
model. This strategy took full advantage of the spectral, spatial, and topographic
information to obtain joint representations.

This study had some limitations in the broadest context:

(1) The model training time was too long. During the performance of the FLCC experi-
ments, each model training process took approximately 30 h, which is unfavorable
for the real-time monitoring of mining activities. A large amount of time hinders
the process of industrializing the research. To assess the complexity of the model,
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both the performance of the model and the difficulty of training must be considered.
On the one hand, the model must be as accurate as possible, which requires it to
have a higher expression ability; therefore, it is easier to achieve this goal using a
model with a higher complexity. On the other hand, if the complexity of the deep
model is too high, it will increase the difficulty of training, thus wasting computing
resources. Therefore, reducing the training time as much as possible without reducing
the expression ability of the deep model requires further research.

(2) An insufficient sample size was employed. For the data used for model training, only
2000 sample points were used for each class of land cover. For more complex deep
models, the nonglobal features of the training data can be learned by the model. How-
ever, in the field of remote sensing, it is usually difficult and costly to obtain labeled
data; thus, reducing the complexity of the model without reducing its classification
accuracy requires further research.

(3) The generalization performance is unknown. Normally, many illegal mining activities
may be carried out at night; however, the current study only monitored mining
activities during the day. The performance of the model on remote sensing satellite
images at night still requires further transfer learning research.

5.2. Effects of Different Models

To validate the performance of the proposed model, comparisons were made based
on the results of previous studies [7,23,24] (Table 6), including traditional MLAs (i.e., RF,
SVM, and feature subset-based SVM (FS-SVM)) and some DL methods, such as multilevel
output-based DBN (DBN-ML), DBN-RF, and CNN.

Table 6. Accuracy evaluation results of the 13 classification models on the ZY-3 dataset (%).

Model F1-Score Kappa OA Description

3S-A2 DenseNet-BiLSTM 98.65 ± 0.05 98.65 ± 0.05 98.65 ± 0.05 The proposed network

Single-scale CNN [7] 93.76 ± 0.76 Multimodal and single-scale
kernel-based multistream CNN

3M-CNN [7] 95.11 ± 0.48 Multimodal and multiscale
kernel-based multistream CNN

3M-CNN-Magnify [7] 96.60 ± 0.22
Multimodal and multiscale

kernel-based multistream CNN with
the selected parameter value

DBN-ML [24] 95.07 94.84 95.10 Multi-level output-based deep
belief network

RF [23] 88.85 ± 0.22 88.31 ± 0.22 88.90 ± 0.20 Random forest

SVM [23] 77.79 ± 0.54 76.72 ± 0.55 77.88 ± 0.53 Support vector machine

FS-SVM [23] 91.75 ± 0.57 91.34 ± 0.60 91.77 ± 0.57 SVM with feature fusion method

DBN-S [23] 94.22 ± 0.67 93.93 ± 0.70 94.23 ± 0.67 DBN with Softmax classifier

DBN-RF [23] 94.05 ± 0.34 93.76 ± 0.36 94.07 ± 0.34 DBN with feature fusion method

DBN-SVM [23] 94.72 ± 0.35 94.46 ± 0.37 94.74 ± 0.35 DBN with SVM classifier

CNN [24] 90.15 ± 1.66 89.68 ± 1.75 90.20 ± 1.64 VGG network

DCNN [24] 95.00 94.76 95.02 VGG with deformable convolutions

For the models based on MLAs, the OA values decreased for RF (88.90%± 0.20%) [23],
SVM (77.88% ± 0.53%) [23], and FS-SVM (91.77% ± 0.57%) [23]. Kwan et al. [63] demon-
strated that SVM can achieve better LCC results, and Goldblatt et al. [64] found that the
RF model using Landsat 8 satellite data performed better than when using Landsat 7 data.
However, when the normalized vegetation and building indices were added to the Landsat
7 data, the performance improvement of the SVM was the most significant.
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The DL-based models have been demonstrated to be significantly better than tradi-
tional MLAs. The order of OA values observed was: multimodal remote sensing data and
multiscale kernel-based multistream CNN with the selected value of parameter k (3M-CNN-
Magnify) (96.60%) [7]; multimodal remote sensing data and multiscale kernel-based multi-
stream CNN (3M-CNN) (95.11%) [7]; DBN-ML (95.10%) [24]; DCNN (95.02%) [24]; DBN-
SVM (94.74% ± 0.35%) [24]; DBN-S (94.23% ± 0.67%) [23]; DBN-RF (94.07% ± 0.34%) [23];
single-scale CNN(93.76% ± 0.76%) [7]; and CNN (90.20% ± 1.64%) [24]. Compared with
the best MLA of FS-SVM, all deep models had better classification performances. Among
them, the best model, 3M-CNN-Magnify, had an improved OA of 4.83%. Other studies
involving DL-based models have reached similar conclusions. For example, Zhao et al. [65]
proved that CNN can effectively handle rice mapping in complex landscape areas. Several
researchers have also proposed DBN-based models. For example, Li et al. [66] proposed a
multilabel electrical signal classification method based on DBN-RF, which had better classi-
fication accuracies and recognition efficiencies than the naive Bayes, k-nearest neighbor
(KNN), SVM, and RF models. By comparing DBN-S with the classical KNN and SVM
algorithms, Jiang et al. [67] found that the proposed hybrid algorithm can achieve more
satisfactory results. Wang et al. [68] demonstrated that the SVM algorithm outperformed
single classification methods that used DBN, SVM, and maximum likelihood estimation.
Meanwhile, Li et al. [24] revealed that DBN-ML can produce better results in multiscale
feature extraction for complex surface conditions while effectively solving the overfitting
problem of the DBN models.

The proposed 3S-A2 DenseNet-BiLSTM not only achieved the highest classification
accuracy among the comparison models as demonstrated in Figure 9, but also achieved the
visual effect closest to the real satellite image (Figure 1), especially for the open pit, bare
surface land, and other classes. As shown in Figure 9a–c, they have been misclassified to
varying degrees. DBN-S and DBN-SVM also misclassified dark roads as bare surface land
and open pits. Notably, none of the models were suitable for the classification of fallow
land, woodland, and shrubbery. The reasons for this are summarized as follows:

(1) Open pit, bare surface land, fallow land, woodland, and shrubbery have relatively
similar spectral features, but neither the DBN-based model nor the 3M-CNN-Magnify
considers the contextual correlation among spectral bands. Accordingly, it is impos-
sible to distinguish between land covers with similar spectral features and visually
similar colors.

(2) The DBN-based model classifies dark roads into land covers that are similar to this
class in terms of geographical space. Although they do not have similar spectral
features, the dark road passes through bare surface land and open pits. 3M-CNN-
Magnify uses a multiscale kernel-based convolution block, which can select different
convolution kernel sizes according to the multi-size data input, making full use of
spatial neighborhood information. The proposed 3S-A2 DenseNet-BiLSTM model
introduces an ACB-DS block, which can extract the features of irregularly shaped land
covers, making the extracted spatial features more abundant. However, DBN-S and
DBN-SVM do not have a structure that is more conducive to the extraction of spatial
features; thus, they cannot distinguish land covers with strong spatial correlation.

(3) All models confuse the three classes of land cover: fallow land, woodland, and
shrubbery; this may be due to the small spectral differences between them. Moreover,
it is difficult to perform visual distinction; however, their height difference is large.
Therefore, the model can only extract the discriminative features according to the
topographic height difference of the DEM data. However, the 3S-A2 DenseNet-
BiLSTM model only extracts the neighborhood size of topographic data instead of a
complete image, which may weaken the advantage of topographic information.

In summary, the proposed 3S-A2 DenseNet-BiLSTM model yielded better performance
for the FLCCs of complex mining areas.
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6. Conclusions

In this study, a three-stream double attention network, 3S-A2 DenseNet-BiLSTM, was
proposed for the FLCC of complex mining areas.

Four sets of experiments were performed, and the proposed model was proven to
have the best classification performance. Compared with the basic model, the proposed
model had an overall accuracy of 98.65% ± 0.05% and obtained better results on the
visual prediction map, with an increase in accuracy of 4.03%. Accordingly, the proposed
model facilitates the study of complex landscapes. The following conclusions were drawn:
(1) the three-stream multimodal feature learning and post-fusion method was effective
for learning and fusing low-level spectral–spatial, deep spectral–spatial, and topographic
features; (2) integrating ACB-DS blocks into DenseNet can extract richer spatial information;
(3) the double attention mechanism can adaptively select more important features; and
(4) BiLSTM can extract cross-channel context features.

In conclusion, the proposed 3S-A2 DenseNet-BiLSTM model was determined to be
effective for the FLCC of complex mining areas. In the future, we will apply the main study
area algorithm to other auxiliary study areas and carry out temporal and spatial transfer
learning of the proposed model with the newest remote sensing data and different remote
sensing satellite imagery such as Sentinel-3, Landsat, Sentinel-2, HJ-1A, and Gaofen-7 to
test the generalization capability of the model. Meanwhile, we will attempt to use the
proposed model for the fine classification of other complex geographic environments, as
well as build related large remote sensing datasets.
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