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Abstract: The exponential growth of the human population requires an increasing application
of nitrogen (N) fertilizers, causing environmental pollution. Biochar (B) amended soil has been
suggested as a sustainable agricultural practice to improve crop yield and mitigate agricultural
pollutants’ contamination. Evaluating the effect of fertilization on Brassica crops, in combination
with spectral analysis, may specify changes in the chemical composition of the vegetable as a result
of N fertilization. This study characterized cauliflower tissues treated with N fertilizer and biochar,
employing Fourier Transform Infrared spectroscopy. The experiment was conducted in cauliflower
mesocosms treated with two doses of N fertilizer (130 and 260 kg N ha−1) with or without B.
Attenuated total reflectance fractions were used to characterize fractions of curds, leaves, stems,
and roots in the infrared using a Fourier transform. Principal component analysis was performed
to classify the main differences among cauliflower tissues concerning treatments. FTIR spectra of
Brassica oleracea L. var. botrytis tissues were related to nitrogen-based agricultural practices. The
specific molecules associated with functional groups in cauliflower tissues were phenols, amides,
proteins, amines, and glucosinolates. Biochar amended soil resulted in higher peaks that correspond
to the stretching of phenols and proteins. The application of sustainable nitrogen fertilizers might
influence the absorption bands characteristic of cauliflower’s typical metabolites. The research allows
the identification of Brassicaceae’s functional molecules with a potential agronomic application.

Keywords: FTIR for spectral analysis; Brassica oleracea L. botrytis; biochar; nitrogen fertilization;
sustainability; plant metabolites

1. Introduction

Vegetables are a fundamental food in human nutrition, providing essential dietary
vitamins, minerals, carbohydrates, protein, and fiber [1], and also natural anti-cancer
phytochemicals, known as glucosinolates [2]. Cauliflower (Brassica oleracea L. var. botrytis)
is one of the essential varieties of B. oleracea, cultivated worldwide for its nutritional
content [3].

Nitrogen (N) fertilizers are essential for the biosynthesis of plant metabolites and to
ensure a strong crop yield, but usually, the application of agrochemicals takes place in
higher quantities that the plants require [4–6]. Excess nitrogen is released into the soil
through leaching, agricultural runoff, and/or air convections causing widespread and
prolonged environmental contaminations [7]. Studies show that about 50% of N fertilizers
are dispersed by volatilization and 5–10% by leaching phenomena [8].

Nitrogen losses cause various forms of environmental contamination in the air and
surface-ground water bodies. Nitrate leaching determines the loss of groundwater qual-
ity [9] and the toxicity of drinking water [10].
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New green strategies have been developed to control the release of agricultural ni-
trogenous pollutants and reduce the application of N fertilizers [11], such as organic
waste [12–14].

Biochar is a carbonaceous material produced from the pyrolysis of biological waste—
like wood, wastes of agricultural biomass, and manures—in the absence of oxygen at high
temperatures [15]. Biochar-amended soil has been reported to improve soil quality and
fertility, with a consequent increase in crop yield [11]. Biochar application in soil raises soil
pH, improves cation exchange capacity, and retains nutrients [7,16–20]. In addition, recent
studies highlight the benefits of biochar in climatic aspects [21–24], for the remediation of
inorganic pollutants [25], soil amendment [26], wastewater treatment [27], and nutrient
recovery [28]. Biochar can also be engineered to enhance adsorption [29]. However, the
potential of biochar is widely dependent on the crop species and its type. It has been
tested to enhance the Chinese cabbage biomass (Brassica chinensis) by 111–750%, depending
on the quantity applied and the composition of the substrate [30]. Recent studies have
proven the biochar capability of increasing Brassica oleracea L. yields, while at the same time
avoiding the N and P leaching losses caused by nitrogen fertilization adopted by farmers.
The biochar application resulted in mitigating the ammonium, and phosphorous leaching
losses by 20–30% and 29–32%, respectively [31]. Another scientific work evaluated wood
biochar on two genotypes of cabbage. The results proved that the mesoporous structures
of the amended biochar (with its diverse functional groups) is a sustainable strategy that
can increase growth and the efficiency of nitrogen use by regulating nitrogen-metabolizing
enzymes, lowering tissue nitrate levels, and improving concentrations of minerals and
the overall nutritional quality of cabbage [32]. However, the effect of biochar application
in soils treated with N agrochemicals on chemical compounds in plant tissues of Brassica
oleracea L. var. botrytis has not been studied at all.

In recent decades, new sensing technologies have been proposed in the agricultural
field [33,34]. Specifically, attenuated total reflectance−Fourier transform infrared spec-
troscopy (ATR-FTIR) has been applied to examine the physicochemical property of soil
treated by fertilizers and improvers [35–37], the crops biochemical composition [38], the
agri-food quality [39,40], and the micro-organisms characterization [41]. In addition, ATR-
FTIR has gained popularity among food and agriculture scientists as a promising non-
destructive, and fast technique for detecting the molecular structure of various biopolymers,
such as protein, carbohydrates, and lipids, in vegetables like Brassicaceae [42,43].

In particular, the first analyses in Brassicaceae were developed for Brassica napus
and Brassica rapa [44], Brassica carinata and Brassica juncea using near-infrared reflectance
spectroscopy [45]. Of course, the nutritional properties of Brassicaceae, both in content and
type of metabolites, differ in response to agronomic factors [46].

In light of this, the main goal of this work was to characterize the chemical composition
of different plant tissues of Brassica oleracea L. var. botrytis plants, in biochar-amended soils
with different nitrogen doses, by attenuated total reflectance in the infrared with Fourier
transform (ATR-FTIR).

2. Materials and Methods
2.1. Plant Material and Experimental Design

The study was performed in co-operation with ReAgri S.r.l. (Massafra, Taranto, Italy)
between October 2020 and February 2021. The study was performed in a greenhouse over
a natural photoperiod. Brassica oleracea L. var. botrytis seedlings (Akara, Syngenta) were
transplanted into pots three weeks post sowing (three replicate pots per treatment). The
pot size was 40 cm × 37 cm, and there were a total of fifteen pots in the experimental
agronomic area. As shown in Figure 1, plants were covered with plastic sheeting to prevent
the addition of rain.
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Figure 2. Agronomic design showing the five experimental lines. 

Figure 1. Greenhouse experiment with three cauliflower plants per treatment. The plastic cloth was
used to prevent the addition of rainwater.

The agricultural practice of synthetic nitrogen fertilization has provided (a) a standard
application dose (130 kg N ha−1), defined as normal dose (ND), and (b) a high application
dose (260 kg N ha−1), defined as high dose (HD) [47], in comparison with biochar-amended
soils (ND+B and HD+B, respectively). Control plants were not fertilized (Figure 2). Calcium
nitrate-based fertilizer (14.4% N) was applied to the soil layer between 0 and 30 cm [48]. In
biochar-amended soils, 3% of the total volume of wood biochar was mixed with the soil, as
recommended on the label (800–900 ◦C, Syngasmart, Rieti, Italy). The chemical properties
of the biochar were: total N = 0.5%; total K = 0.4%; total P = 0.3%; total Ca = 1.1%; total
Na = 0.2%; total Mg = 0.2%; organic carbon content = 68.40 mg/kg; pH = 11.3; electrical
conductivity = 5.0 dS/m.

For the pot experiment, fertilizer application was dived into two phases [49]. In
particular, the practice was carried out during the flowering induction phase (about 8 weeks
after the transplantation stage) and the inflorescence enlargement phase (about 20 weeks
after the transplantation stage). B was amended with e 15 cm soil layer, before transplanting.
The plants were harvested when the curds reached the market size.
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2.2. Sample Preparation and Spectral Measurements

At the harvesting stage of the cauliflower curd, four vegetative tissues (roots, stems,
leaves, and curds) were sampled for the analyses. The second leaf of each plant, starting
from the curd, was collected for analysis. To avoid problems caused by humidity content
on FTIR spectra, each fraction was dried in an oven at 60 ◦C. All fractions were the same
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weight [50]. The samples were ground into powder in a mortar and characterized by ATR-
FTIR using a Nicolet Summit FTIR Spectrometer (ThermoFisher Scientific, Waltham, MA,
USA) equipped with an Everest ATR with a diamond crystal plate and a DTGS KBr detector.
The IR absorption spectra of the samples were recorded from 4000 to 400 cm−1 with a
spectral resolution of 4 cm−1 and 32 scans per sample [51]. The background was measured
with the same settings against air. The sample spectra were obtained by spreading the
sample on the surface of the crystal.

2.3. Data Analysis

The spectral data were examined using the OMNIC software (ThermoFisher, Waltham,
MA, USA), which analyzed the entire region (3700–400 cm−1). For spectral analysis, the
OriginPro 8.5 program was utilized. The analysis was carried out by comparing the FTIR
spectral peaks. To further classify the spectra and highlight the distribution of cauliflower
tissues, the principal component analysis (PCA), a multivariate statistic method, was
performed using the OriginPro 2022 software.

The principal component analysis provided qualitative information on the significant
spectral components, where dominant variables determine the differences among the
samples. The analysis is used to extract a small set of important principal components
(PCs) of a correlation matrix that explain, easier than original data, the most variability
of a dataset. The principal component analysis is constructive in its interpretation of
FTIR spectra.

3. Results and Discussion

Fourier transform infrared spectroscopy (FTIR) is a technique used for the rapid,
precise, and non-destructive characterization of marketable food compounds [49]. Brassica
oleracea L. var. botrytis is a cruciferous that contains molecules and antioxidants such as
glucosinolates, vitamins, flavonoids, phenolics, and sulforaphane. As shown in Figure 3,
the FTIR spectra were acquired for each cauliflower tissue, corresponding to soil treated
with a normal dose and a high dose of inorganic fertilizer (ND and HD, respectively),
with and without biochar (ND+B and HD+B). All spectra presented similar profiles with
different absorbances across the spectrum (Tables 1–4).

Table 1. Fourier transform infrared spectroscopy of cauliflower leaves from different treatments. The
absorbance values are shown in brackets; n/d: band not detected.

Vibration Wavenumber (cm−1)

Treatments
C ND ND+B HD HD+B

O-H 3300 (0.39) 3264 (0.17) 3260 (0.19) 3270 (0.23) 3277 (0.22)
C-H 2919 (0.19) 2917 (0.23) 2918 (0.25) 2919 (0.28) 2917 (0.25)
C=O 1735 (0.14) n/d n/d n/d n/d
C=N 1606 (0.22) 1586 (0.28) 1587 (0.31) 1594 (0.35) 1598 (0.32)
N-O n/d n/d n/d n/d n/d

C=N-O 1413 (0.21) 1401 (0.27) 1403 (0.3) 1405 (0.33) 1397 (0.33)
C-O 1242 (0.2) 1241 (0.22) 1241 (0.23) 1241 (0.26) 1241 (0.25)
S=O 1012 (0.45) 1016 (0.37) 1016 (0.41) 1009 (0.45) 1023 (0.39)

C—Control; ND—Normal Dose; ND+B—Normal Dose and Biochar; HD—High Dose; HD+B—High Dose and
Biochar.
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Table 2. Fourier transform infrared spectroscopy of cauliflower curds in different treatments. The
absorbance values are shown in brackets; n/d: band not detected.

Vibration Wavenumber (cm−1)

Treatments
C ND ND+B HD HD+B

O-H 3278 (0.19) 3277 (0.22) 3279 (0.18) 3280 (0.18) 3276 (0.16)
C-H 2919 (0.18) 2922 (0.2) 2920 (0.18) 2919 (0.18) 2919 (0.16)
C=O nd nd nd nd nd
C=N 1601 (0.21) 1621 (0.24) 1625 (0.22) 1617 (0.21) 1618 (0.17)
N-O n/d n/d 1535 (0.2) n/d n/d

C=N-O 1400 (0.21) 1402 (0.24) 1401 (0.2) 1376 (0.2) 1401 (0.17)
C-O 1238 (0.2) 1238 (0.22) 1233 (0.19) 1236 (0.19) 1236 (0.17)
S=O 1023 (0.34) 1016 (0.38) 1023 (0.26) 1027 (0.27) 1019 (0.22)

C—Control; ND—Normal Dose; ND+B—Normal Dose and Biochar; HD—High Dose; HD+B—High Dose and
Biochar.

Table 3. Fourier transform infrared spectroscopy of cauliflower stems from different treatments. The
absorbance values are shown in brackets; n/d: band not detected.

Vibration Wavenumber (cm−1)

Treatments
C ND ND+B HD HD+B

O-H 3285 (0.14) 3285 (0.15) 3293 (0.09) 3298 (0.08) 3321 (0.13)
C-H 2924 (0.14) 2920 (0.15) 2919 (0.08) 2920 (0.08) 2916 (0.11)
C=O 1735 (0.14) n/d n/d 1735 (0.07) 1735 (0.09)
C=N 1603 (0.15) 1604 (0.17) 1596 (0.09) 1597 (0.08) 1596 (0.13)
N-O n/d 1508 (0.08) 1504 (0.08) n/d n/d

C=N-O 1370 (0.15) 1413 (0.18) 1408 (0.09) 1420 (0.08) 1413 (0.14)
C-O 1238 (0.16) 1231 (0.18) 1234 (0.09) 1233 (0.08) 1236 (0.14)
S=O 1018 (0.23) 1024 (0.27) 1025 (0.13) 1019 (0.12) 1022 (0.24)

C—Control; ND—Normal Dose; ND+B—Normal Dose and Biochar; HD—High Dose; HD+B—High Dose and
Biochar.

Table 4. Fourier transform infrared spectroscopy of cauliflower roots from different treatments. The
absorbance values are shown in brackets; n/d: band not detected.

Vibration Wavenumber (cm−1)

Treatments
C ND ND+B HD HD+B

O-H 3284 (0.03) 3283 (0.13) 3288 (0.16) 3285 (0.15) 3289 (0.19)
C-H 2918 (0.03) 2920 (0.11) 2920 (0.14) 2920 (0.14) 2920 (0.18)
C=O 1734 (0.22) n/d n/d n/d n/d
C=N 1604 (0.03) 1603 (0.15) 1604 (0.18) 1605 (0.16) 1566 (0.24)
N-O n/d n/d n/d n/d n/d

C=N-O 1396 (0.03) 1410 (0.14) 1366 (0.19) 1365 (0.17) 1402 (0.25)
C-O 1234 (0.03) 1243 (0.13) 1235 (0.17) 1235 (0.16) 1235 (0.23)
S=O 1019 (0.08) 1019 (0.29) 1022 (0.3) 1019 (0.26) 1019 (0.41)

C—Control; ND—Normal Dose; ND+B—Normal Dose and Biochar; HD—High Dose; HD+B—High Dose and
Biochar.
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Figure 3. Infrared spectra with Fourier transform for different cauliflower plant tissues over the whole
spectrum region: (a) roots; (b) stems; (c) leaves, and (d) curds. In legend: C—Control; ND—Normal
Dose; ND+B—Normal Dose and Biochar; HD—High Dose; HD+B—High Dose and Biochar.

FTIR spectra comparison provided information on the four cauliflower tissues and
their treatments (Figure 4). The overall spectra features are predominated by peaks corre-
sponding to major functional groups and show comprehensive information on the sample’s
phenolics, compounds, proteins, and sulforaphane/glucosinolates [44,45].
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Figure 4. ATR-FTIR spectra obtained at 4000–500 cm−1 for all samples.

All samples showed characteristic peaks centered at 3290 cm−1 (assigned to O-H
stretching of alcohols or phenols) and at 2930–2860 cm−1 (assigned to C-H stretching of
alkynes). The peaks at 1742 cm−1 were associated to C=O, typical in carboxylic acids.
The absorption at 1649 cm−1 and 1540 cm−1 was assigned to amide-stretching protein
bands. The peak at 1400 cm−1 and a sharp peak at 1051 cm−1, were also attributed to
sulfones-stretching vibration in sulforaphane/glucosinolates. At the same time, the band
at 1235 cm−1 (C=O) was assigned to the ester chain.

Biochar-amended soil caused changes in the absorbance of the cauliflower tissues,
with differences observed in the region between 3200 and 2860 cm−1, associated with bands
typical of carboxylic acids (Figure 3) and to the existence of polysaccharides, lipids, and car-
bohydrates [52]. In the fingerprint region, between 1900 and 800 cm−1, the main differences
were highlighted with N doses of fertilizer and biochar application, corresponding to the
presence of specific compounds associated with environmental stress [53] and, therefore, to
the availability of nitrogenous nutrients. A significant difference in IR absorbance within
the protein spectral region has also been demonstrated in the FTIR study of B. carinata [54].

As shown in Figure 4, using the green soil improver resulted in high absorbance values
in the fingerprint region of both roots and cauliflower leaves, corresponding of principal
compounds in the family of Brassicaceae [45].

The highest absorbance levels at ~1051 cm−1 were observed in the cauliflower leaves
and the roots of plants treated with biochar (Figure 5a, Tables 1–4), probably due to the
stability of the bond induced by the use of the carbonaceous material [55].

In the foliar tissues of plants that received a high nitrogen application dose, with and
without biochar, high levels of absorbance relative to the peaks at ~1650 and ~1400 cm−1

of amide stretching (pink and green lines, Figure 5c; Table 1). In line with this study, Lu
et al.’s [56] research on Brassica napus has also demonstrated the variability of protein levels
with high levels of nitrogen fertilizers.

In contrast, the peak at ~1000 cm−1 characteristic of sulfones was high in the leaves
of untreated cauliflower plants and fertilized with a standard application dose (black line,
Figure 5c). Changes in the absorbance region between 1100–900 cm−1 were also observed
by [57] under a lower N condition, demonstrating that these molecules are associated
with the nitrogenous fertilization. The FTIR spectra comparison in the fingerprint region
shows higher peaks relative to the main functional groups, characterizing absorbance in the
fingerprint region of the curd were higher in the C and ND experimental lines, confirming
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that many Brassicaceae compounds are related with sustainable nitrogen fertilization
practices.

A reduction in absorbance was found for the functional group of sulfones (peaks at
1051 cm−1) in cauliflower stems treated with a high dose of nitrogen fertilizer (HD) and
in ND+B (blue and pink lines, respectively, Figure 5b; Table 3). High absorbance values
at a wavelength of ~1600 and ~1400–1051 cm−1 were highlighted in control plant curds
fertilized with normal doses of calcium nitrate (Figure 5d), proving that the contents of
organic molecules (protein, amines, and glucosinolates) were influenced by N doses.
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The changes in absorbance were observed in several species treated with the different
doses of nitrogen in the fertilizer [58–60], but the study of biochar’s influence on the content
of cauliflower organic molecules has not been investigated.

The characteristic flavor of the curd is determined by the glucosinolate (GLS) content.
The pattern of these molecules in individual plants is fixed early in life, perhaps as a
response to early exposure to different environmental factors, such as salinity, drought,
and nutritional deficiency [61]. An excessive amount of nitrogen may cause a decrease in
total GLS, while a low amount of N produces an increase in total GLS when S supply is
not limiting [62,63]. In addition, the transient allocation and distribution of glucosinolates
modifies according to environmental changes [53].

In this research, the absorption values of each FTIR spectrum acquired in the range of
4000–400 cm−1 were utilized to perform the PCA. Table 5 exhibits variance that accounts
for the first four principal components (PCs) computed from the absorbance value of the
FTIR spectra of different vegetable tissues. The first three PCs outlined more data variance
than any other PC and represented more than 99.27% of the data variation. The scores
scatter plots PC1 (explained 89.7% of variability) × PC2 (explained 7.8% of variability)
were used to obtain separation of each group in the 1800–1200 cm −1 region.

Table 5. Variance distribution of the first four PCs of the vegetable tissues’ spectra.

Principal Component Number Eigenvalue Percentage of Variance (%) Cumulative (%)

1 19.88754 89.71161 89.71161
2 1.67916 7.57461 97.28622
3 0.43998 1.98474 99.27096
4 0.06031 0.27206 99.54302

Figure 6 shows the score plot based on the first two PCs. The score plot indicates that
the curds can be well separated in a separate ellipse, and in brief, the PCAs obtained on
FTIR spectra discriminated samples mainly according to their chemical-physical properties,
identifying well-distinguished groups based on the kind of vegetable tissue analyzed.
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4. Conclusions

New sustainable agronomic practices include the application of green soil improvers,
such as biochar, to enhance agricultural yield and the quality of environmental matrices.
Specific organic molecules associated with functional groups characteristic of roots, stems,
leaves, and inflorescences, are affected by the application of nitrogenous fertilizers, with the
consequent change of the absorption peaks. Biochar application determines the increase in
the number of phenolic compounds, carbohydrates, and proteins in cauliflower plants, in
the presence of nitrogenous fertilizers. Low levels of N fertilizers increase the functional
groups characteristic of glucosinolates, which are secondary metabolites of Brassicaceae
with antioxidant activity.

This research identifies functional groups of Brassica oleracea L. var. botrytis with consid-
erable importance in the nutraceutical and pharmacological fields. The protection afforded
by the active ingredients in cauliflower is mainly attributed to their antioxidant activity
and the presence of high amounts of GLS in the edible parts. Glucosinolates represent
molecules devoid of toxicity and are easy to use as food integrators for maintaining a good
state of health, reducing the risk of contracting degenerative diseases, such as tumors.

The results from this study demonstrate the potential of ATR-FTIR technology in
studying changes in plant compounds in response to agricultural fertilization practices.
Applying this new technology, together with the techniques of quantifying metabolites,
will allow an improvement of the agricultural products on the market, respecting the
environmental quality.
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