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Abstract: The fluidity of air pollution makes a cross-regional joint effort to control pollution inevitable.
Exploring the dynamic correlation and affecting factors of air pollution in urban agglomerations
is conducive to improving the effectiveness of pollution control and promoting the high-quality
development of the regional economy. Based on daily data on PM2.5 concentration, the article
identifies the dynamic association relationship of atmospheric pollution in urban agglomerations
of Beijing–Tianjin–Hebei (BTH) air pollution transmission channel under the framework of the
vector autoregressive model, building the spatial correlation network of atmospheric pollution
in urban agglomerations of BTH atmospheric pollution transmission channel, investigating the
structure characteristics and influencing factors. The results show that the atmospheric pollution
in BTH cities has a general dynamic correlation, which shows a stable multithreaded complex
network structure; the overflow direction of air pollution is highly consistent with the weight matrix
of northwest wind direction; economic development level, population density, openness degree,
geographical location, and the relationship of wind direction are the important factors affecting the
spatial association network of atmospheric pollution. We should actively explore the construction
mode of urban agglomeration under the constraint of atmospheric pollution and improve the cross-
regional collaborative governance mechanism.

Keywords: urban agglomeration of atmospheric pollution transmission channel; dynamic association;
QAP (quadratic assignment procedure); BTH (Beijing–Tianjin–Hebei); spatial wind weight matrix

1. Introduction

Given the early extensive economic growth model, inefficient energy use efficiency,
the high proportion of coal, and, in the end, energy consumption, atmospheric pollution
has wreaked havoc in many Chinese cities since 2012. The pattern of urban expansion
characterized by high-density construction and high-intensity consumption of resources
further leads to more frequent and wider outbreaks of urban air pollution in China. Chinese
people should work together to control air pollution, and air quality in Chinese cities has
improved markedly. The 2020 World Air Quality Report showed that 86 percent of Chinese
cities had higher air quality than the previous year, and the PM2.5 exposure levels of the
population had dropped by 11 percent. However, China still dominates the list of the
100 most polluted cities in the world, despite continuous improvements in urban air quality.
According to the 2020 China Environmental Bulletin, air quality in 135 out of 337 cities
exceeded the standard, with PM2.5 being the main culprit among pollutants.

The atmosphere is fluid, and air pollution has the characteristics of spatial agglomera-
tion and diffusion [1–4]. Each 1% increase in the Air Quality Index of neighboring cities will
lead to a 0.45% increase in the Air Quality Index of the city [5]. Spatial spillover effect and
regional agglomeration features of atmospheric pollution mean “unilateral” efforts to treat
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haze may become in vain because of the regional haze pollution “leakage effect” [6]. In view
of the spread of air pollution, any individual industrial structure adjustment in any region
is ineffective. Only by coordinating with each other and establishing a joint prevention and
control mechanism can achieve the goal of coordinated air pollution control [7].

Atmospheric pollution will reduce the attractiveness of cities and thus slow down
the process of urbanization [8]. First of all, atmospheric pollution has a significant effect
on the healthy life of urban people. Long exposure to a bad air environment will increase
respiratory infections, cardiovascular and cerebrovascular diseases, and even cause prema-
ture death, increasing health costs [9,10]. Secondly, with the expansion of cities, the weight
of the ecological environment in population competitiveness is increasing, and urban air
pollution may lead to a decrease in the floating population’s residence intention, resulting
in the “reverse urbanization” phenomenon, hindering the promotion of new urbanization
strategy and having a negative impact on urban development [11]. Some scholars think
that the decline of air quality in big cities is an important factor restricting labor supply,
resulting in the “expelling effect” of human capital [12], and groups with high human
capital are more sensitive to the air pollution [13].

The BTH region is located in eastern China, where the northwest wind prevails and
in the semi-closed terrain of Taihang Mountain and Yanshan Mountain. Pollutants are
easy to accumulate there, and the region has a high level of urbanization and a high
population density [14]. In addition, coal is the main source of energy, and environmental
governance problems have been prominent. As the air pollution transmission channel of
The BTH region, the urban agglomeration is an essential part of China’s core economic
zone, with a high proportion of GDP. However, the contradiction between economy and
environment is prominent. The Ecological and Environmental Conditions report of China
in 2020 shows that 15 cities in the urban agglomeration of BTH atmospheric pollution
transmission channel, including Anyang, Shijiazhuang, and Taiyuan, were ranked in the
bottom 20 among 168 cities in the urban ambient air quality comprehensive index in 2020;
the average number of good days in the urban agglomeration was 63.5%, much lower than
the 87.0% average; the average PM2.5 concentration in 2020 was 51 micrograms per cubic
meter, much higher than the average concentration in the Yangtze River Delta, another key
region (35 micrograms per cubic meter).

Air pollution control is complicated by the transport of air pollutants in neighboring
areas; the BTH region is also facing the double pressure of improving regional air quality
and controlling cross-regional pollution. It is urgent to explore the regional atmospheric
pollution dynamic association of space and its influence factors, to search for ways to
establish trans-regional coordinated prevention and control of air pollution, to win the battle
of pollution prevention and governance, to promote coordinated development between
regions, to boost the joint law enforcement action to improve air quality improvement
effect. Spatial autocorrelation analysis originated from biometrics and has become one
of the basic methods in theoretical geography [15]. Spatial data are almost all spatially
dependent, so the study of regional pollution coordination and governance is no exception.
Exploratory spatial data analysis has been used in several pieces of literature to analyze the
spatio-temporal characteristics and interactive effects of regional air quality in China [16–19];
The existing literature on air pollution in the process of urban expansion is mostly based on
static analysis and lacks dynamic excavation of the spatial-temporal evolution of internal
air pollution within urban agglomerations. The spatial weight is mainly set by the spatial
geographic weight matrix or spatial adjacent weight matrix [16,20,21]. However, the
vector wind has a certain ability to explain the variation of PM2.5 concentration [22].
The prevailing monsoon transported PM2.5 from the upwind region to the downwind
region; PM2.5 concentration is generally affected by wind direction [23]. The east of
China is a monsoon region, and the northwest wind prevails in autumn and winter in
the “2 + 26” urban agglomeration. the northwest wind is essential in the diffusion of
PM2.5. Therefore, attention should be paid to the new characteristics of spatial spillover of
urban agglomeration.
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The marginal contribution of this paper lies in: First, in terms of the selection of
research regions, the BTH region and its surrounding areas, which are called the BTH air
pollution transmission channel urban agglomeration, are selected as the research object
to highlight the air quality changes of urban agglomeration and the correlation between
surrounding cities. This area is one of the typical key pollution regions and has better
representativeness in China. Second, based on daily PM2.5 data, to analyze the spatial
dynamic correlation structure characteristics between urban agglomerations in typical
regions and thoroughly and meticulously sort out the dynamic correlation relationship
between cities, which can provide new empirical evidence for the joint prevention and
control of air pollution in other key regions. Third, taking into full account the fact that the
strong northwest wind in autumn and winter caused long-term air pollution in the urban
agglomeration of the BTH atmospheric pollution transmission channel, the spatial weight
matrix of wind direction was constructed, presenting a new feature of the spatial spillover
direction of air pollution.

The remainder of the paper is arranged as follows: Section 2 is the research model and
data description of the spatial dynamic correlation of air pollution in the urban agglomera-
tion of the BTH air pollution transmission channel. Section 3 presents the empirical results
and analysis. Section 4 summarizes the conclusion and offers proposals.

2. Model and Data
2.1. Model Construction
2.1.1. Spatial Correlation Analysis

In order to explore whether air pollution has the characteristics of non-randomness
and spillover effect in spatial distribution, the exploratory spatial analysis method was used,
and Moran’s Index was adopted to investigate the overall spatial distribution characteristics
of PM2.5. The formula is as follows [24]:

Moran′ I =
n

∑i (xi − x)2

∑i ∑j 6=i Wij(xi − x)(xj − x)

∑i ∑j 6=i Wij
(1)

where n is the total city number in the research sample; xi and xj, respectively, represent
the observed value of PM2.5 of city i and city j; x presents the average value of PM2.5; and
wij is the spatial weight matrix.

Three matrices are respectively selected in this paper. The first is the weight matrix of
spatial wind direction (w1), which presents the transmission effect of northwest wind on
PM2.5 diffusion in the urban agglomeration of the BTH air pollution transmission channel,
measuring the spatial dynamic correlation of air pollution taking a city as a unit. If the
northwest wind of the city i comes from the upwind city j, the value is 1; otherwise,
the value is 0. The second is the spatial adjacent weight matrix (w2). If the city i and
city j is adjacent, the value is 1; otherwise, it is 0. The third is the geographical distance
weight matrix (w3); according to the first law of geography, the longer the distance between
two places, the weaker the spatial connection effect will be; therefore, the reciprocal of
geographical distance is used to construct geographical distance weight matrix [25].

The Moran’s value is between −1 and 1. If the value approaches 0, there is no spatial
autocorrelation of air pollution. If it is greater than 0, air pollution has a positive spatial
correlation, indicating the areas with similar air pollution concentrations are clustered
together. If it is less than 0, air pollution is negatively correlated in space, indicating that
areas with different concentrations of air pollution are clustered together.

2.1.2. Spatial Network Correlation Measurement of Air Pollution

The social network analysis method is a kind of interdisciplinary analysis method
aiming at “relational data” and taking “relationship” as the basic analysis unit. It builds
the association network and carries out global analysis and structural relationship analysis.
In this paper, the spatial correlation network is the relational set of air pollution of each city
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in the BTH air pollution transmission channel urban agglomeration. Each city is a point in
the network, and the air pollution correlation relationship between cities are lines in the
network. The network composed of points and lines can clearly reflect the spatial dynamic
correlation of air pollution in urban agglomeration along the air pollution transmission
channel.

In this paper, the method of Granger causality test was used to identify spatial associa-
tions and correlations of the urban agglomerations. Based on the unit root stationarity test
of PM2.5 concentration series in 28 cities, the function model of PM2.5 concentration series
variables between two cities in 28 cities was established, namely the vector autoregression
model (VAR) [21].

Xt = α1 +
m

∑
i=1

β1,iXt−i +
n

∑
i=1

γ1,iYt−i + ε1,t (2)

Yt = α2 +
p

∑
i=1

β2,iYt−i +
q

∑
i=1

γ2,iXt−i + ε2,t (3)

where Xt and Yt are the time series variables of the air pollution level of any two cities;
m, n, p, and q are the lags; α1, α2, β1,i, β2,i, γ1,i, and γ2,i are parameters to be estimated;
ε1,t and ε2,t are random disturbance terms. The Granger causality test is conducted under
the framework of the VAR model above-mentioned, and the significance level of 5% is
taken to determine the spatial correlation. If γ1,j is significant at 5% significance level,
it is considered that the atmospheric pollution concentration of city Y can be explained
by the pollution concentration of city X, that is, the air pollution of city Y produces a
spillover effect on city X, and the corresponding element of the spatial correlation matrix
Mij = 1 is obtained; otherwise, the value is 0, and the corresponding element of spatial
correlation matrix Mij = 0. Similarly, if γ2,i is significant at 5% significance level, it is
considered that the atmospheric pollution concentration of city X can be explained by the
pollution concentration of city Y, that is, the air pollution of city X has a spillover effect
on city Y, and the value is assigned to 1; otherwise, the value is assigned to 0. There are
four possibilities in the test results, that is, one-way correlation, two-way correlation, or
no correlation between city X and city Y. Thus, the spatial correlation matrix M of air
pollution between cities is constructed, which can represent the spatial correlation network
system of the urban agglomeration of the BTH air pollution transmission channel.

In the network system, individual characteristics directly reflect the relative impor-
tance and status of each city. The characteristics of individual network structure can
be characterized by out-degree centrality, in-degree centrality, point centrality, closeness
centrality, and betweenness centrality. Out-degree centrality is the relationship number
emitted by this node, which represents the spillover influence of one city on other cities
in the networks. In-degree centrality is the number of relationships received by this node,
which represents the influence that a city receives from other cities on it. The software can
automatically calculate the out-degree centrality and in-degree centrality. Point centrality
is used to measure the ability of a city to produce a linkage relationship of air pollution
with other cities; it is measured by the number of cities directly connected with other cities.
The high point centrality of a city shows the city is directly connected with others, and it is
in the center of the network. Closeness centrality measures the extent to which a city is not
controlled by other cities and reflects the independence of the city in the network; if the
“distance” of a city is very short, the city has a high degree of closeness to the center, and
the city has a rapid influence on the spatial linkage of air pollution. Betweenness centrality
is an index representing “control ability”, which mainly measures how much each city is
located in the “middle” of other cities in the network. The higher the betweenness centrality
of a city is, the stronger the city’s ability to control the air pollution associations of other
cities is.
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Equations (4)–(6) are the calculation methods of point centrality, betweenness centrality,
and closeness centrality [26].

degi = ∑
j

xij/(2n− 2) (4)

∑
j

xij is the associated number of nodes i, and n is the network scale.

cloi = [∑
j

dij/(n− 1)]−1 (5)

∑
j

dij represents a shortcut between nodes i and j.

beti =

2∑
j

∑
k

gij(i)

n2 − 3n + 2
(6)

gjk(i) represents the total number of shortcuts that pass-through node i between nodes j
and k. j 6= k 6= i, and j < k.

2.1.3. QAP Regression Analysis

Based on Environmental Kuznets Curve theory, taking into account geographical
distance, meteorological and socioeconomic factors, the influencing factor model of air
pollution spatial association network is constructed as follows:

M = f (D, W, RGDP, Density, Industrial, Open, Fiscal, Energy) (7)

All variables in model (7) are matrices, where M presents the spatial correlation
matrix of air pollution in the urban agglomeration, which is obtained from the VAR model
above. The geographical distance factor D is the spatial adjacency matrix of the urban
agglomeration of the BTH air pollution transmission channel; the meteorological factor W
is the relationship matrix of wind direction between cities. Social and economic factors
include economic development (RGDP), population density (Density), industrial structure
(Industrial), degree of openness (Open), fiscal freedom (Fiscal), and energy consumption
structure (Energy). RGDP is the difference matrix of economic development level between
cities and the per capita GDP is used to measure the economic development level of each
city. Density is difference matrix of population density between cities, population density is
described by the population number of per unit area of each city. Industrial is the difference
matrix of Industrial structure between cities; the industrial structure is measured by the
secondary industry proportion of cities. Open is the difference matrix of openness degree
between cities, the actual amount of foreign direct investment used by each city represents
the level of openness degree of a city. Fiscal is the difference matrix of Fiscal freedom
between cities, the ratio of budgetary Fiscal revenue and budgetary Fiscal expenditure in
each city is selected to measure Fiscal freedom. Energy is the difference matrix of Energy
consumption structure between cities. Referring to relevant literature [16], this paper selects
the proportion of the output of the high-consumption coal industry in regional GDP as an
indicator to measure energy consumption structure.

Model (7) adopts QAP (Quadratic Assignment Process) analysis. The spatial correla-
tion data of urban air pollution belong to relational data, which generally cannot be tested
by traditional statistical testing methods because there may be a high degree of correlation
between these relational data. QAP is a method based on matrix data replacement, which
compares the similarity of each lattice value in the two square matrices, the correlation
coefficient between the two matrices is obtained, and the correlation coefficient is tested
non-parametrically [27]. The QAP analysis method does not need to assume that the inde-
pendent variables are independent of each other, which is more robust than the parametric
method [28].
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2.2. Data Sources

The research object of this paper is the Urban agglomeration of the BTH air pollution
transmission channel, which specifically includes 28 cities. The geographical locations of
the 28 cities are shown in Figure 1. Although these cities belong to different administrative
regions, they are an inseparable whole in terms of air pollution.
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Figure 1. Geographical location of 28 cities. Note: 1. Beijing 2. Tianjin 3. Shijiazhuang 4. Tangshan 5.
Handan 6. Xingtai 7. Baoding 8. Cangzhou 9. Langfang 10. Hengshui 11. Taiyuan 12. Yangquan 13.
Changzhi 14. Jincheng 15. Jinan 16. Zibao 17. Jining 18. Dezhou 19. Liaocheng 20. Binzhou 21. Heze
22. Zhengzhou 23. Kaifeng 24. Anyang 25. Hebi 26. Xinxiang 27. Jianzuo 28. Puyang.

PM2.5 concentration is selected to measure the urban air pollution level. Compared
with the traditional air pollution index, PM2.5 source and composition are more complex,
and the harm degree is higher, which is the “culprit” of pollutants.

The data period in this paper is from 1 January 2020 to 31 December 2021. The
daily data of PM2.5 concentration were obtained from the website of “Weather Report”
through the web crawler program, the website is www.tianqihoubao.com/aqi (accessed
on 1 September 2022). The annual average processing of daily data of PM2.5 concentration
was carried out during the spatial correlation analysis. During QAP analysis, the period
from 2016 to 2020 was selected as the sample observation period to calculate the average
value of the corresponding index in model (7) during the investigation period, and then the
absolute difference of the average value constituted the corresponding difference matrix.
All data were from statistical yearbooks, statistical gazette, and China Economic Network
statistical database of 28 cities over the years.

3. Empirical Results
3.1. Spatial Correlation of Air Pollution in Urban Agglomeration

According to the above Formula (1), the universe spatial correlation index of PM2.5 was
calculated, and the results are shown in Table 1. Based on the Moran’s I results in Table 1,
the spatial wind direction weight matrix (w1), spatial adjacent weight matrix (w2), and
spatial inverse geographical distance weight matrix (w3) were selected. At the significance
level of 1% or 5%, the universe Moran’s was significantly positive. The results show that
air pollution in the urban agglomeration of the BTH atmospheric pollution transmission
channel has a significant positive correlation.

www.tianqihoubao.com/aqi
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Table 1. Universe spatial correlation test in urban agglomeration.

Weight
Matrix Year Moran’s I Expected Value

of Moran’s I

Standard
Deviation of

Moran’s I
Z p-Value

W1
2020 0.187 −0.037 0.102 2.196 0.014 **
2021 0.191 −0.037 0.103 2.222 0.013 **

W2
2020 0.213 −0.037 0.133 1.874 0.030 **
2021 0.246 −0.037 0.134 2.115 0.017 **

W3
2020 0.068 −0.037 0.037 2.884 0.002 ***
2021 0.095 −0.037 0.037 3.586 0.000 ***

Note: *** and ** represent 1% and 5% significance levels, respectively.

The spatial wind weight matrix (w1) was further selected to draw the Moran scatter
diagram, which showed that most cities lay in the first and third quadrants, and only a few
lay in the second and fourth quadrants, presenting high–high aggregation mode (H–H) and
low–low aggregation mode (L–L). As shown in the Figure 2, there is a positive correlation
between the spatial distribution of air pollution.
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3.2. Characteristics of Spatial Association Network of Air Pollution in Urban Agglomeration
3.2.1. Overall Network Characteristics

The net-draw tool of UCINET was used for visualizing the processing above, as shown
in Figure 3. There is no independent point in the spatial correlation of the network; the
PM2.5 concentration of urban agglomeration presents a complex and multithreaded spatial
correlation. The air pollution of a city is not only affected by local meteorological and
socioeconomic factors but also associated with other atmospheric pollution of the city, and
the relationship goes beyond mere geography in the sense of “adjacent” or “similar” effect;
each city has at least one more spatial correlation.

The overall network density of the air pollution spatial correlation network is 0.872,
indicating that the air pollution of each city in the network has a very close correlation,
the air pollution spatial correlation breaks through the pure relationship between adjacent
cities and presents a multithreaded cross network distribution; the measurement result of
network correlation degree is 1, shows that the 28 cities are all correlated with each other
in air pollution, and the accessibility between cities in the network is very high, there is
no isolated city, and the network is very robust, and every city is directly affected by the
spatial network. Overall speaking, there is a general spatial dynamic correlation between
air pollution in various cities. The network has a high degree of accessibility, which belongs
to a relatively uniform structure, with decentralized power and low level. Each city can
easily generate spatial correlation with other cities, which also indicates that it is difficult
for any city to be “isolated” in pollution control.
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Figure 3. Spatial correlation network of urban air pollution.

3.2.2. Individual Network Characteristics

Table 2 shows the node characteristics of the spatial association network during the
sample observation period.

Table 2. Centrality of spatial association network.

City Out-
Degree

In-
Degree

Centrality Degree Index
City Out-

Degree
In-

Degree
Centrality Degree Index

Degree Closeness Betweenness Degree Closeness Betweenness

Beijing 26 14 74.074 81.965 0.896 Binzhou 24 25 90.741 91.552 3.054
Tianjin 29 25 81.482 85.123 2.058 Jining 11 27 70.371 81.396 1.216

Shijiazhuang 27 25 96.297 96.552 5.802 Heze 19 26 83.333 86.786 2.417
Tangshan 24 23 87.037 88.549 3.081 Zhengzhou 27 25 96.297 96.552 5.619
Baoding 26 16 77.778 83.741 1.655 Xinxiang 23 24 87.037 88.549 4.431

Langfang 26 17 79.630 86.786 1.763 Hebi 25 23 88.889 90.100 4.005
Cangzhou 22 27 90.741 92.188 3.974 Anyang 27 19 85.185 88.572 2.360
Hengshui 24 36 92.593 93.215 3.065 Jiaozuo 26 25 94.445 94.766 4.121
Handan 25 21 85.186 87.461 2.790 Puyang 26 24 92.593 93.215 3.367
Xingtai 26 21 87.037 89.124 2.567 Kaifeng 25 26 94.445 94.766 5.591
Jinan 14 27 75.926 83.750 1.556 Taiyuan 26 22 88.889 90.402 4.429
Zibo 18 27 83.333 87.500 3.022 Yangquan 25 23 88.889 90.100 4.194

Liaocheng 21 25 85.186 87.461 2.060 Changzhi 26 25 94.445 94.766 5.803
Dezhou 25 27 96.297 96.552 5.200 Jincheng 26 24 92.593 93.215 5.903

Mean value 23.54 23.54 87.170 89.810 3.430 - - - - - -

As shown in Table 2, the mean values of out-degree centrality and in-degree centrality
are both 23.54. Among them, there are 21 cities whose out-degree centrality is over the
mean value, indicating the air pollution of these cities will spill out to others and have
a great impact on others. There are 18 cities with in-degree centrality greater than the
mean, indicating that these cities are more susceptible to air pollution than other cities. The
cities with the highest out-degree centrality of 27 are Zhengzhou and Anyang in Henan
Province and Shijiazhuang in Hebei Province, indicating that these three cities have the
strongest radiation and are most likely to affect the air pollution level of others. Several
cities have the highest in-degree centrality of 27, indicating they are in the middle of the air
pollution networks and are most susceptible to the impact of air pollution fluctuations of
other cities. They are Jinan, Jining, Zibo, Dezhou in Shandong Province, and Cangzhou in
Hebei Province.

The mean point centrality of BTH air pollution transmission channel urban agglom-
eration was 87.170. There are 14 cities above the average, from high to low, Shijiazhuang,
Zhengzhou, Dezhou, Changzhi, Kaifeng, Jiaozuo, Hengshui, Puyang, Jincheng, Binzhou,
Cangzhou, Taiyuan, Yangquan, and Hebi; there are many correlations between air pollution
in these cities and other cities. Among them, five cities belong to Henan Province, four
cities belong to Shanxi Province, three cities belong to Hebei Province, and two cities belong
to Shandong Province. Therefore, comparatively speaking, Henan province and Shanxi
Province are regions with relatively concentrated spatial correlation in air pollution. The
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three cities with the least number of spatial correlation relationships are Jining, Jinan in
Shandong Province, and Beijing; these cities are located at the edge of the network and are
less connected to other cities.

According to the closeness centrality, the mean value of the urban agglomeration
was 89.810, and 14 cities were higher than the mean value, which were Shijiazhuang,
Zhengzhou, Dezhou, Changzhi, Kaifeng, Jiaozuo, Hengshui, Puyang, Jincheng, Binzhou,
Cangzhou, Taiyuan, Yangquan, and Hebi in turn. These cities can quickly associate with
other cities in the spatial association network and are network centric actors in the network.

As to the betweenness centrality, the top six cities are Taiyuan, Jincheng, and Changzhi
in Shanxi Province, Shijiazhuang in Hebei province, and Zhengzhou and Kaifeng in Henan
Province. It can be seen that some cities of Shanxi Province and other provincial capitals
are relatively in the central position, playing the role of “intermediary” and “bridge”, and
have a strong influence on air pollution in other cities.

The measurement results of individual network characteristics show that Shanxi
Province and provincial capitals are the most likely to affect the air pollution of other cities,
and cities in Shandong Province are the most likely to be affected by other cities, while
Beijing is a relatively independent position. The reason is that Shanxi Province is China’s
first coal production, coal transport province, and energy-heavy chemical base; coal is its
main resource, coal combustion process produces not only a large number of soot but also
the formation of carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen oxides, and
other harmful substances, aggravating the air pollution of the city. Shandong province
is located in the northwest of other cities and is affected by the northwest wind. The air
pollutants of Shanxi Province and other cities will be transmitted and diffused to Shandong
Province through the northwest wind, aggravating the air pollution of Shandong Province.
Therefore, Shandong province is more vulnerable to air pollution from other cities. Beijing
is located on the northern edge of the urban cluster. Due to its own unique geographical
location and meteorological factors, it is in a relatively “independent” position in the urban
agglomeration and has relatively little correlation with the air pollution of other cities.

3.3. Influencing Factors of Spatial Association Network in the Urban Agglomeration

The QAP method was used for regression of model (7), and 5000 random replacements
were selected, obtaining the QAP regression results of the spatial correlation matrix and
influencing factors of air pollution in the urban agglomeration, as shown in Table 3.

Table 3. QAP regression results of influencing factors of spatial network structure of air pollution.

Variable Unstandardized
Coefficients

Standardized
Coefficients

Significance
Level p ≥ 0 p ≤ 0

D −0.1269 −0.1342 0.000 1.000 0.000
W −0.2596 −0.2847 0.000 1.000 0.000

RGDP −0.0000 −0.1216 0.010 0.990 0.010
Density 0.0002 0.1508 0.002 0.002 0.999

Industrial 0.0504 0.0115 0.426 0.426 0.575
Open −0.0010 −1.1472 0.037 0.963 0.037
Fiscal 0.0714 0.0302 0.269 0.963 0.037

Energy −0.0258 −0.0191 0.290 0.711 0.290
Note: p ≥ 0 and p ≤ 0 separately mean the probability that the regression coefficient generated by random
displacement is not less than and not greater than the final regression coefficient.

The results of QAP regression show that 5000 random displacement and within the
range of sample volume of 756 (the total number of interrelated influences of 28 cities),
the adjusted determination coefficient R2 is 0.324, indicating that the variable explanatory
power of the regression model to air pollution spatial network association was 32.4%.
Among them, the regression coefficient of spatial adjacency matrix D is −0.1269, indicating
geographical proximity does have an important effect on the spatial correlation of urban
agglomeration air pollution, which is consistent with the research conclusion of Lin L
and Li J [29]. The regression coefficient of the wind direction relation matrix W was
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−0.2596, indicating the northwest wind would significantly affect the spatial correlation
relationship of air pollution, which according to the view of Wang ZJ et al. [30], mentioned
that meteorological factors would affect the concentration and diffusion of atmospheric
particles, and there are leading, and lagging relations of atmospheric concentration between
cities are similar. The coefficient of RGDP of the difference matrix of economic development
level is negative and close to 0, indicating the difference in economic development level
between cities has a significant impact on the spatial correlation of air pollution, but the
effect is not obvious. The regression coefficient of the population density difference matrix
Density is positive, indicating the greater the difference in population density between
cities, the more air pollution conduction relationship is. Areas with high population
density are not conducive to the diffusion of pollutants due to the influence of high
residential density on wind speed. Therefore, the greater the difference in population
density between cities, the more obvious the diffusion effect of pollutants is. The gap
matrix of openness degree between Cities Open is negative, indicating that the greater
the similarity of openness between cities is, the greater the conduction relationship and
spatial spillover effect of air pollution between cities are. Compared with community
economy factors, geographical location and meteorological factors have a greater direct
impact on the spatial correlation of air pollution. While the financial freedom difference
matrix Fiscal, industrial structure difference matrix Industrial, and energy consumption
structure difference matrix Energy did not pass the significance level test, indicating under
the condition that other factors remain unchanged, financial freedom, industrial structure,
and energy consumption structure are not the core factors that affect the spatial correlation
network of air pollution.

4. Conclusions

In this paper, the spatial dynamic correlation and influencing factors of air pollution
were analyzed by using PM2.5 data of Urban agglomeration. The results show that air
pollution in urban agglomeration has a significant spatial correlation. The dynamic correla-
tion effect of air pollution shows a complex network structure of multithreading; the air
pollution goes beyond the “adjacent” or “close” effect in the pure geographical sense, the
spillover effect of air pollution also exists between distant cities, and the spillover direction
coincides with the northwest wind direction. The spatial association network structure of
air pollution is stable, and each city occupies different positions in the spatial association
network. Shijiazhuang, Zhengzhou, and Dezhou are located at the core of the network;
Jining, Jinan, and Beijing are located at the edge of the network. The causes of spatial
association networks of air pollution are complex. Geographical adjacency, wind direction,
economic development, population density, and openness are all important factors affecting
the dynamic association network of air pollution. Geographical and meteorological factors
have a significant direct impact on the spatial correlation of air pollution. Differences in
fiscal freedom, industrial structure, and energy consumption structure have no significant
impact on the spatial correlation of air pollution.

Based on this research, the following enlightenments can be obtained. Firstly, we need
to be fully aware of the difficulty of pollution control, with the goal of working together
to fight pollution for a long time; we need to optimize the mechanism for coordinated
trans-regional governance, implement a long-term trans-regional joint prevention and con-
trol mechanism for urban agglomerations, unify standards for atmospheric governance in
urban agglomerations, and implement interest coordination mechanisms such as standards
for ecological compensation, government incentives, and emission trading. Secondly, we
need to clarify the functions and roles of pollution control in individual urban and make
accurate decisions. The monitoring should focus on the cities that play the role of “inter-
mediary” and “bridge” to achieve global and local coordination and breakthrough and
build a cross-regional joint prevention and control system. Thirdly, we need to formulate
a reasonable population mobility policy and urban opening policy, build an appropriate
industrial structure and energy consumption structure, maintain a reasonable urban popu-
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lation density and urban openness, and optimize urban pollution problems from multiple
perspectives, as well as actively explore the construction mode of urban agglomeration
under the constraint of air pollution, promote the coordinated and sustainable development
of urban economy-environment system, introduce market mechanism, and improve envi-
ronmental and economic policies, so as to achieve the overall improvement of economic
development and environmental quality.
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