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Abstract: The coalification rank of the coal blend components and their caking properties initially
impact the coke’s quality. In part, the quality of coke depends on the technological parameters of the
coke production technology, such as the method of blend preparation, the coking condition, the design
features of the coke ovens, and the technique used for post-oven treatment. Therefore, to improve the
coke quality, the main attention is paid to the quality of the coal blend. The petrographic analysis
is the simplest and most reliable way to control coal quality indicators under industrial conditions.
In this paper, the effect of nine industrial blends on coke quality using petrographic analysis has
been studied. Additionally, this paper addresses the efficient use of coals and the preparation of coal
mixtures under industrial conditions, which contributes to the sustainability of cokemaking. For
the preparation of blends, 17 coals were used, for which, in addition to petrographic and proximate
analyzes, the maximum thickness of the plastic layer was determined. Industrially produced cokes
were analyzed for coke reactivity index (CRI), coke strength after reaction with CO2 (CSR), and
Micum indices (M25 and M10). It has been established that the petrographic properties of coal blends
are reliable parameters for assessing the quality of coke under conditions of an unstable raw material
base, multi-component blends, and changes in coking regimes. Moreover, the research results have
shown that to ensure the rational use of coals in the preparation of coal blends to achieve the required
coke quality and consequently the sustainability of cokemaking, it is necessary to consider not only
the mean reflectance of vitrinite but the proximate and caking properties of coals.

Keywords: coking coal; coal blend; coke; petrographic analysis; coke reactivity index; coke strength

1. Introduction

Efficient use of coals to prepare coal blends and obtain coke with good properties is
essential to achieving sustainable cokemaking under changing industrial conditions. In
turn, achieving carbon neutrality and rational use of non-renewable fuel in the coming
decades for metallurgical production is the focus of many studies. However, at present,
existing technologies do not allow completely abandoning the use of coal and coke and
there is still a great need to use this fuel and reducing agent.

The main consumers of coke are blast furnace ironmaking units, and therefore the
cokemaking technology is aimed at producing coke which can meet the requirements of the
blast furnace process. The operation of the blast furnace is determined by the stability of the

Sustainability 2022, 14, 9947. https://doi.org/10.3390/su14169947 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14169947
https://doi.org/10.3390/su14169947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3956-202X
https://orcid.org/0000-0001-7840-1873
https://orcid.org/0000-0002-4401-1284
https://orcid.org/0000-0003-3959-550X
https://orcid.org/0000-0002-9657-0635
https://orcid.org/0000-0001-9033-8002
https://doi.org/10.3390/su14169947
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14169947?type=check_update&version=2


Sustainability 2022, 14, 9947 2 of 21

technological parameters of smelting and the consistency of the quality of charge materials.
The quality of the coke plays a key role since the coke in the blast furnace performs an
indispensable function that ensures the maintenance of the skeleton of the charging column
and the gas permeability of the charge. Coke is the only solid material in the blast furnace
that reaches the tuyere zone, ensuring the movement of gases up the furnace and the flow
of iron and slag into the blast-furnace hearth. In addition, coke functions as a fuel and
reducing agent, as a filter for entrained particles from the race way, delivers chemical
energy to melt the burden, and provides the carbon for the carburization [1–3].

For the good performance of a blast furnace, coke should have high mechanical
strength, be uniform in size, and have relatively low reactivity [4]. Moreover, blast furnace
coke should possess a minimum of harmful components, such as moisture, mineral impuri-
ties, and sulfur [5–9]. Requirements for the quality of coke are being tightened due to the
requirement to reduce consumption and improve blast furnaces’ technical and economic
performance. Improving coke quality is especially important in connection to intensifying
blast furnace production. Advanced technologies, such as injection of pulverized solid fuel
(coal, biomass, plastic, etc.), liquid (oil, tar), gas (hydrogen, coke oven gas), increase in the
volume of blast furnaces, and the use of metallics such as DRI [10] can also intensify the
blast furnace smelting process and reduce coke consumption.

The quality of coke is crucially determined by the composition and quality of the
coal blend [11]. A coal blend is a mixture of coal concentrates with required coal rank,
coalification, caking and coking properties, and parameter values of proximate analysis.
Practically, to improve the quality of coke, primary attention is paid to the raw material
used for coking, namely the optimization of the composition and quality of the coal blend.

Coals differ in properties as they are inhomogeneous substances [12,13]. Therefore, for
the preparation of coal blends, with the subsequent production of coke of the required qual-
ity, it is necessary to consider a set of parameters of coal properties and their cost. Under
Ukrainian industrial conditions, the coal blend is prepared based on proximate analysis
indicators (moisture, ash yield, volatiles, sulfur). It uses one or more methods for deter-
mining caking and/or coking ability. The most commonly used method is Sapozhnikov’s
method for determining plastic layer thickness [14,15], the less commonly used methods
are Gieseler [16], the Audibert-Arnu dilatometer [17], and the Roga index [18]. In addition,
the laboratory coking installation Karbotest is used to study the blend’s properties and the
coke quality [19,20]. When preparing the blend, carrying out a petrographic analysis of the
blend components is required.

Petrographic analysis plays an important role in choosing the rational use of coal,
particularly in preparing coking coal blends. The petrographic analysis of coal focuses on
maceral composition and reflectance analysis. Three main groups of macerals are classified
into vitrinite, liptinite, and inertinite [21–23]. Moreover, they can be divided based on
their different fusibility qualities into fusibles (some of the inertinite macerals as well
as the vitrinite and liptinite macerals) and infusibles (the remaining inertinite macerals
and minerals) [24–28].

There are known papers devoted to establishing the relationship between the parame-
ters of petrographic analysis and indicators of proximate and ultimate analyses and the
relationship with the thermoplastic properties of coals. Thus, for example, the relationship
between the content of volatile substances or carbon content and the reflectance of vitrinite
for single coal has been studied in [29,30]. A strong negative correlation was observed
between the volatile matter content and the reflectance of vitrinite. Additionally, Ref. [31]
reported a positive dependence of the reflectance of vitrinite upon the carbon content.
It has been observed [30] that the vitrinite maceral group and its sub-macerals have the
strongest positive relationship with coal plasticity. Wang et al. [31] studied coal samples
with the reflectance of vitrinite within the range of 0.35 to 4.26%. The authors showed a
good negative correlation between the reflectance of vitrinite and the volatile matters. It has
also been noted that due to aliphatic polyester degradation and aromatization occurring
during coalification, fixed carbon has a high positive correlation with the reflectance of
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vitrinite. Antoshchenko et al. [32,33] developed an industrial coal rank classification to
determine hazardous characteristics of workable beds.

Vitrinite is the main active ingredient of coking coal, forming a non-volatile plastic
layer during pyrolysis. When heated, and softened, reactive macerals become plastic,
function as a binder, and contribute to forming a fused coke residue. Inerts generally
remain structurally unchanged and inert during the coking [30,34,35]. According to Jing
et al. [36], coal with a high inertinite content is more aromatic and polycondensed, and has
a high cross-linkage [30]. In turn, coal with a high content of liptinite usually has the lowest
aromaticity. The vitrinite group of macerals has higher thermoplastic characteristics and
contains more volatile matters (no more than liptinite), and has a lower degree of shrinkage
of aromatic compounds and a greater amount of hydroxyl groups [37]. Therefore, the
controlling factor in the quality of the coal blend and, subsequently, the coke quality is the
requirement for the correct preparation of multi-component coal blends, which consist of
individual coals with different ratios of fusibles and infusibles of petrographic components.

Regarding the influence of the petrographic properties of coal on coke quality, it
is important to study the effect of coal macerals on coke’s properties and establish the
relationship between petrographic parameters and parameters characterizing the properties
of the coke [38–40]. Gupta et al. [41] suggested using a combined coal index obtained
by combining two types of modifications in the original full phase maceral reflectance
parameters. The proposed index can better correlate coke strength both cold and after
reaction with CO2. Several papers [42–44] show the relationship between petrographic
properties and the physicomechanical (coke strength) [45] and physicochemical (coke
reactivity) [45,46] properties of coke. However, the parameters of CSR and CRI depend
not only on coal composition (organic or inorganic inerts) but also on coal rheology, coal
rank, and coking conditions [45]. Kumar et al. [47] studied 14 cokes and found that the
cokes with preferential CSR (>58%) were produced from coals with Rmax of 1.1–1.2%, which
confirms the relationship between the reflectance of vitrinite and coke strength. It was also
found that vitrinite and liptinite form plastic substances that bind the structure of coke,
which leads to the high strength of the coke [47], and inertinite reduces the strength of
the coke [48]. In papers [49,50] in-depth reviews of methods and models for predicting
coke quality in terms of CRI and CSR, as well as Micum indices, have been analyzed and
discussed. The authors concluded that there is a limited range of applicability of the models
beyond the specific coal range for which each model was obtained.

The literature analysis shows a lack of studies that consider the relationship between
the petrographic properties of currently used multi-component industrial blends and the
properties of cokes obtained under industrial conditions. This paper aims to establish these
relationships, which allow determining the features of using petrographic indicators of
coal blends to assess the quality of industrial cokes. Under frequently changing the blend
composition and using multi-component coal blends, the relationship between petrographic
parameters and coke quality is of great practical significance for optimizing the blend
composition and coking conditions. Additionally, this paper addresses the efficient use
of coals and the composition of coal blends under industrial conditions, contributing to
sustainable cokemaking. The relationships obtained are of practical value for cokemaking
plants that use multi-component coal blends and frequently change the blend composition.
This leads to changes in the petrographic composition, caking properties, and parameters
of the proximate analysis of the blends and is also of great importance under conditions of
an unstable final temperature of coking.

2. Materials and Methods
2.1. Preparation of Coal Blends

Preparation and coking of coal blends were carried out at the coke production of
Dnipro Metallurgical Plant (Ukraine). For the study, 17 kinds of coal (A to Q) concentrates
were used to prepare 9 kinds of blends. Each coal blend consisted of 6 to 8 different coals,
corresponding to those currently used at the plant. The composition of the coal blend
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depended on the availability of coal at the plant and the expected quality requirements for
the resulting coke. It should be noted that the properties of the same coal concentrates from
one supplier may vary since the coals arrived at different times. Proximate analysis of coals
and cokes hereinafter was carried out according to ISO 7404-2:2009 [51].

2.2. Petrographic Analysis of Coking Coals

Preparation of coal samples, coal maceral composition determination, and reflectance
of vitrinite determination were carried out based on ISO 7404-2:2009, ISO 7404-3:2009,
and ISO 7404-5:2009, respectively, [52–54]. Mean reflectance was measured on vitrinite
or altered vitrinite using Lucia petrographic complex. The LECO PR-32 automatic press
(LECO Instruments, St. Joseph, MO, USA), the LECO GPX- 300 grinding machine (LECO
Instruments, St. Joseph, MO, USA), and a polishing machine were used to prepare samples
for observation. Reflectance was measured on a polished sample surface under oil immer-
sion with Refractive Index 1.515 using an Olympus microscope (Olimpus Corporation,
Tokyo, Japan) at a magnification of 50×, and analyzed by Lucia Vitrinite 7.13 software.
Measurements of the reflectance of vitrinite were performed at a mean of 200 points for
each sample. Maceral analysis was based on the measurements of at least 500 points.

2.3. Maximum Thickness of the Plastic Layer of Coals

The parameter of maximum thickness of the coal plastic layer is the maximum value
measured by the thickness of the layer with a special plastometric needle according to
ISO/DTS 4699 [14]. First, 100 ± 1 g of coal with a particle size of less than 1.6 mm was
heated at a 3 ◦C/min heating rate within the range from 250 to 730 ◦C. Meanwhile, the
maximum thickness of the plastic layer (y, mm) was determined. Coal was under load and
heated from the bottom at a metal glass placed above a silicon carbide heater. The weight
and location of the load were calculated so that the pressure on the coal load could be fixed
as 9.1 MPa. At different distances from the heating surface in testing, the coal reached
varying stages of thermal destruction. During heating, a layer of coke and semi-coke, a
layer of plastic coal mass can be formed in the glass simultaneously, and above the plastic
layer, there is coal that has not yet turned into a plastic state.

Maximum thickness of the plastic layer, proximate and petrographic analyzes for coal
blends are calculated using the additivity, i.e., through weighted averages of individual
parent coals (Equation (1)), [55].

P =
n

∑
i=1

Pi·di, (1)

where Pi is the value of the i-th component within the blend, wt.%; di is the proportion of
the i-th component within the blend.

2.4. Coking Conditions

Coking of coal blends was carried out in a coke oven at the cokemaking production of
the metallurgical plant Dnipro Metallurgical Plant. The coke oven batteries are equipped
with a PVR system which has twin vertical flues with recirculation of waste gases. The
characteristics of the coke oven battery are shown in Table 1. The coking time was 18 h.
Coke ovens are heated with coke oven gas.

A pyrometer determined the final coking temperature from the coke side after the
door was removed and was in the range of 1060 to 1085 ◦C. After coke discharge, it was
quenched in a wet way. A sampling of coke to determine the quality is carried out after
sorting into sizes. Metallurgical coke with a more than 40 mm particle size was selected for
the study.
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Table 1. Characteristics of the coke oven battery.

Characteristic Unit of Measurement
Parameters

Total (Useful)

Useful capacity of oven m3 21.6

Heating system Twin vertical flues with recirculation of waste gases

Heating scheme Combined

Supply of gas Side

Length of the coke oven mm 13,980 (13,140)

Height of the coke oven mm 4300 (4000)

Width of the coke oven:

coke side mm 435

push side mm 385

average mm 410

taper mm 50

Distance between axes of coke ovens mm 1143

Number of verticals units 28

Heating level mm 700

Number of ovens in the battery units 37

Number of gas collectors units 1

2.5. Characterization of Coke Samples

The determination of the CO2 reactivity index and CSR was carried out according to
ISO 18894:2018 [56]. The ‘cold’ strength of coke was determined by different tumbler tests
and characterized by correspondent indices. In this study, Micum indices M25 characterized
the percentage of coke with particle size >25 mm after rotating 50 kg of coke 100 times, and
M10 characterized the percentage of coke with particle size <10 mm after rotating 50 kg of
coke 100 times in a drum 1 × 1 m for 4 min according to ISO 556:2020 [57].

3. Results and Discussion
3.1. Coking Coals and Coal Blends Properties

Tables 2–10 present the compositions of coal blends and the characteristics of coals
and blends. Blends are presented in rising order of Rom from 0.94 to 1.11 wt.%. The
volatile matters of the components of coal blends vary between 17.4 and 37.6 wt.%. In
turn, the values of the volatiles decrease from blend 1 to blend 9 and are in the range of
31.8–29.2 wt.%. Concerning the maceral contents of the coals, they display a moderate or
high vitrinite content from 58.00 to 93.00 wt.%, low to moderate liptinite content from 0.2
to 5.4 wt.%, and a low or moderate amount of inertinite macerals from 7.0 to 41.0 wt.%.
The maximum thickness of the plastic layer for coals ranges from 8.5 to 29.0 mm, and for
blends from 14.5 to 16.3 mm.

Figure 1a shows the dependence between the Rom and VM of all coals used for coal
blend preparation from which it follows that the values of VM decrease with increasing
values of Rom. At the same time, the values of FC increase with increasing values of Rom,
as follows from Figure 1b. As the Rom increase of the coals, the VM decreases significantly
(R2 = 0.93), and the FC content increases significantly (R2 = 0.92), consistent with the general
law of the coalification [58].
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Table 2. Characteristic of coals and coals blend 1.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon *

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 10.0 0.66 75.0 3.0 22.0 8.0 37.4 40.6 0.48 10.0 54.6

B 18.0 0.73 90.0 2.0 8.0 8.8 37.4 41.0 0.40 16.0 53.8

C 19.0 0.95 82.0 2.0 16.0 7.5 32.3 34.9 1.04 21.0 60.2

D 14.0 0.90 79.0 2.0 19.0 7.6 33.2 35.9 0.96 21.0 59.2

E 8.0 0.94 81.0 3.0 16.0 7.1 33.3 35.8 0.87 21.5 59.6

F 12.0 1.16 90.0 2.0 8.0 8.6 26.2 28.7 0.66 13.0 65.2

G 15.0 1.05 63.0 0.0 37.0 8.0 26.5 28.8 0.46 11.5 65.5

H 4.0 1.53 77.0 0.0 23.0 8.7 17.9 19.6 0.72 11.5 73.4

Blend 100 0.94 80.2 1.7 18.1 8.0 31.8 34.6 0.70 16.3 60.2

Rom is mean reflectance of vitrinite; Vt is vitrinite; L is liptinite; I is inertinite; VM is volatile matter; db is dry basis; daf is dry ash free basis; * Calculated by equation, Fixed
carbon, wt.% = 100 − (wt.% VM (db) − wt.% A (db)).

Table 3. Characteristic of coals and coals blend 2.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 10.0 0.66 75.0 3.0 22.0 8.0 37.4 40.6 0.48 10.0 54.6

B 18.0 0.73 90.0 2.0 8.0 8.8 37.4 41.0 0.40 16.0 53.8

C 17.0 0.95 82.0 2.0 16.0 7.5 32.3 34.9 1.04 21.0 60.2

D 12.0 0.90 79.0 2.0 19.0 7.6 33.2 35.9 0.96 21.0 59.2

E 12.0 0.94 81.0 3.0 16.0 7.1 33.3 35.8 0.87 21.5 59.6

F 12.0 1.16 90.0 2.0 8.0 8.6 26.2 28.7 0.66 13.0 65.2

G 10.0 1.05 63.0 0.0 37.0 8.0 26.5 28.8 0.46 11.5 65.5

H 9.0 1.53 77.0 0.0 23.0 8.7 17.9 19.6 0.72 11.5 73.4

Blend 100 0.96 80.9 1.8 17.3 8.0 31.4 34.1 0.71 16.3 60.6
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Table 4. Characteristic of coals and coals blend 3.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 11.0 0.66 79.0 2.0 19.0 8.0 37.4 40.6 0.46 10.0 54.6

B 22.0 0.73 90.0 2.0 8.0 8.2 36.7 40.0 0.39 16.0 55.1

C 4.0 0.93 82.0 2.0 16.0 7.4 32.7 35.3 1.06 22.0 59.9

D 31.0 0.91 80.0 2.0 18.0 7.6 33.2 35.9 0.96 21.0 59.2

F 17.0 1.14 89.0 1.0 10.0 8.6 25.9 28.3 0.65 13.0 65.5

H 15.0 1.53 77.0 0.0 23.0 8.7 17.9 19.6 0.72 11.5 73.4

Blend 100 0.98 83.3 1.5 15.2 8.1 30.9 33.6 0.69 15.9 61.0

Table 5. Characteristic of coals and coals blend 4.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 12.0 0.66 75.0 3.0 22.0 8.0 37.4 40.6 0.48 10.0 54.6

B 18.0 0.73 90.0 2.0 8.0 8.8 37.2 40.8 0.38 16.0 54.0

C 20.0 0.93 82.0 2.0 16.0 7.4 32.5 35.1 1.02 22.0 60.1

D 18.0 0.90 79.0 2.0 19.0 7.6 33.2 35.9 0.96 21.0 59.2

F 17.0 1.15 89.0 1.0 10.0 8.7 26.2 28.7 0.65 13.0 65.1

H 15.0 1.53 77.0 0.0 23.0 8.7 17.9 19.6 0.72 11.5 73.4

Blend 100 0.98 83.0 1.1 15.9 8.2 30.8 33.5 0.72 16.2 61.0
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Table 6. Characteristic of coals and coals blend 5.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 11.0 0.64 78.0 2.0 20.0 8.2 37.0 40.3 0.47 9.0 54.8

B 11.0 0.74 90.0 2.0 8.0 7.6 37.5 40.6 0.39 16.0 54.9

I 4.0 0.91 91.0 1.0 8.0 8.7 34.5 37.8 0.58 29.0 56.8

C 13.0 0.94 78.0 4.0 18.0 7.4 32.9 35.5 1.07 24.5 59.7

J 19.0 0.91 90.0 1.0 9.0 8.3 33.5 36.5 0.54 21.5 58.2

F 27.0 1.16 85.0 2.0 13.0 8.4 26.4 28.8 0.64 12.5 65.2

K 4.0 1.02 58.0 1.0 41.0 8.4 25.4 27.7 0.33 12.0 66.2

H 11.0 1.57 79.0 0.0 21.0 8.9 17.8 19.5 0.66 11.5 73.3

Blend 100 1.01 83.3 1.8 14.9 8.2 30.3 33.0 0.62 16.3 61.5

Table 7. Characteristic of coals and coals blend 6.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 16.0 0.62 75.0 2.0 23.0 7.8 36.9 40.0 0.49 10.0 55.3

B 13.0 0.74 88.0 2.0 9.0 8.0 37.6 40.9 0.39 16.0 54.4

L 10.0 0.99 85.0 6.0 9.0 6.6 32.9 35.2 0.86 24.0 60.5

J 7.0 0.90 89.0 2.0 9.0 8.3 34.0 37.1 0.55 21.5 57.7

M 11.0 1.05 74.0 1.0 25.0 8.8 26.6 29.2 0.47 13.0 64.6

F 25.0 1.14 86.0 2.0 12.0 8.7 26.3 28.8 0.66 13.0 65.0

N 8.0 1.16 90.0 2.0 8.0 8.0 25.8 28.0 1.05 20.5 66.2

H 10.0 1.55 79.0 1.0 20.0 8.3 17.4 19.0 0.63 11.5 74.3

Blend 100 1.01 82.9 2.3 14.8 8.1 29.8 32.4 0.62 15.1 62.1
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Table 8. Characteristic of coals and coals blend 7.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 20.0 0.62 79.0 1.0 20.0 8.1 36.9 40.1 0.43 10.0 55.0

B 4.0 0.74 90.0 1.0 9.0 7.7 37.3 40.4 0.33 14.0 55.0

I 19.0 0.90 92.0 0.0 8.0 8.7 35.1 38.4 0.57 25.0 56.2

C 4.0 0.91 82.0 3.0 15.0 7.2 32.8 35.3 1.10 22.0 60.0

M 12.0 1.07 73.0 0.0 27.0 8.8 26.6 29.2 0.48 13.0 64.6

F 27.0 1.15 91.0 1.0 8.0 8.4 26.6 29.0 0.67 13.0 65.0

H 14.0 1.57 82.0 0.0 18.0 8.2 17.9 19.5 0.72 11.0 73.9

Blend 100 1.02 85.0 0.6 14.4 8.3 29.7 32.4 0.59 14.8 62.0

Table 9. Characteristic of coals and coals blend 8.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 5.0 0.67 77.0 3.0 20.0 7.5 37.0 40.0 0.45 10.0 55.5

B 10.0 0.71 88.0 2.0 10.0 8.1 36.9 40.1 0.43 14.0 55.0

C 22.0 0.92 80.0 4.0 16.0 6.9 32.7 35.1 1.13 21.0 60.4

O 5.0 0.91 87.0 0.0 13.0 8.0 33.9 36.8 1.22 23.0 58.1

J 7.0 0.93 89.0 1.0 10.0 9.4 33.3 36.7 0.57 20.0 57.3

M 15.0 1.07 71.0 1.0 28.0 8.8 27.1 29.7 0.60 13.0 64.1

F 24.0 1.17 92.0 1.0 8.0 8.1 26.2 28.5 0.67 13.0 65.7

H 12.0 1.56 82.0 0.0 18.0 7.9 17.5 19.0 0.74 10.0 74.6

Blend 100 1.05 83.4 1.4 15.2 8.0 29.2 31.7 0.75 15.3 62.8
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Table 10. Characteristic of coals and coals blend 9.

Type of Coal Amount within the Blend, wt.%
Petrographic Analysis, wt.% Proximate Analysis, wt.% Maximum Thickness of Plastic Layer Fixed Carbon

Rom Vt L I Ash (db) VM (db) VM (daf) Sulfur (db) Y, mm FC, wt.%

A 9.0 0.62 79.0 1.0 20.0 7.5 37.1 40.1 0.44 10.0 55.4

P 4.0 0.67 76.0 1.0 23.0 7.6 36.2 39.2 0.51 9.5 56.2

B 8.0 0.74 90.0 1.0 9.0 8.2 36.7 40.0 0.44 12.0 55.1

I 8.0 0.90 93.0 0.0 7.0 8.8 35.3 38.7 0.56 24.0 55.9

C 4.0 0.93 79.0 3.0 18.0 7.1 32.8 35.3 1.11 24.5 60.1

Q 21.0 1.30 84.0 0.0 16.0 9.9 31.9 35.4 1.18 18.0 58.2

F 29.0 1.14 93.0 0.0 7.0 8.2 26.4 28.8 0.68 13.0 65.4

H 17.0 1.53 82.0 0.0 18.0 8.3 17.7 19.3 0.73 11.0 74.0

Blend 100 1.11 86.5 0.3 13.2 8.5 29.2 31.9 0.75 14.5 62.3
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Figure 1. (a) Relationship between mean reflectance of vitrinite and volatile matters (daf) of coals;
(b) Relationship between mean reflectance of vitrinite and fixed carbon of coals.

Figure 1a,b show a clear separation of the coals that are used to compose the coal blends
into four groups, which correspond to gas coals (Rom = 0.50–0.89%) fat coals (Rom = 0.80–1.19%),
coking coals (Rom = 1.0–1.29%) and lean coals (Rom = 1.30–1.80%).

Figure 2a shows the relationship between the parameters of Rom and the VM of coal
blends. The VM yield is found to have declined with the increase in the Rom of coal
blends. This is a strong relationship that reflects the rank of the coals [29,30]. According to
Sahoo et al. [30] the R2 for correlation between mean vitrinite reflectance and the volatile
matter is 0.89. However, it should be noted that the yield of VM is of technological value,
as it determines the amount of gaseous products released during coals heating. Figure 2b
shows the relationship between Rom and FC of coal blends. With an increase in the Rom,
the values of FC also increase due to a decrease in the yield of VM and the influence of
ash yield, which was within a narrow range of 8.0–8.5% for the studied blends. A similar
negative relationship between the Rom and VM and a positive relationship between the
Rom and FC were observed in a previous study [58], however, the correlation coefficients
are higher in our study.
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Figure 2. (a) Relationship between mean reflectance of vitrinite and volatile matters (daf) of coal
blends; (b) Relationship between mean reflectance of vitrinite and fixed carbon of coal blends.

It should be noted that the relationship between Rom and VM for blends is more
pronounced, which can be explained by the fact that the composition of the coal blends
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was purposely chosen. In contrast, the dependence of coals can only characterize the actual
properties without mixing to produce blends.

Figure 3a shows the relationship between vitrinite content and VM and the Rom. As
the content of vitrinite increases, the yield of VM tends to decrease, as was also shown in
previous studies [31,59,60], while the Rom increases. For the studied blends, the maximum
thickness of the plastic layer of the coal blends tends to decrease with increasing vitrinite
content, as shown in Figure 3b. The sum of caking microcomponents determines the plastic
properties of coals. Usually, the maximum formation of the plastic layer corresponds to
coals with VM of 30–35 wt.%, as follows from Tables 2–10. According to the requirements
for industrial coal blends, the maximum thickness of the plastic layer should be within the
range of 14–16 mm, ensuring good blend caking in the plastic state [55]. It is worth noting
that the vitrinite values for the blends were in the range limited to 80.2–86.5 wt.%, and the
main values for five blends were in a narrow range of 82.9–83.4 wt.% as shown in Figure 3b,
which determined the behavior of the obtained curve.
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Figure 3. (a) Relationship between vitrinite content and volatile matters (daf), mean reflectance of
vitrinite, or (b) the maximum thickness of the plastic layer of coal blends.

Figure 4 shows a negative correlation between parameters of inertinite content and
the Rom for coal blends. With an increase in the amount of inertinite content in coals, the
vitrinite content decreases, leading to a decrease in the Rom for blends. Additionally, no
relationship was observed between the content of inertinite and the VM.
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3.2. Metallurgical Coke Properties

Table 11 presents the characteristics of proximate analysis, physicochemical and physi-
comechanical properties of cokes, as well as the final temperatures of its production.
According to the proximate analysis results, the ash yields of cokes are 10.6–11.1 wt.%.
Changes in the yield of VM indicate the level of carbonization of the obtained coke and
decrease with an increase in the final coking temperature. The low sulfur content in the
coke is due to the low sulfur content in the blends. The CRI values of cokes decrease from
coke 1 to coke 9 and are in the range of 32.9–30.3 wt.%, while the CRS values increase and
are between 53.6–58.4 wt.%. Additionally, Table 11 shows the results of the tumble and
abrasion strengths, M25 and M10, respectively. It can be seen that the M25 and M10 values
of cokes are quite stable within the ranges from 87.3 wt.% to 88.8 wt.% and from 7.2 wt.%
to 7.8 wt.%, respectively.

Table 11. Parameters of industrial metallurgical coke quality.

Coke
Sample

Final Coking
Temperature, ◦C

Indices of Coke Quality, wt.%

Ash (db) VM (db) Sulfur
(db)

Fixed
Carbon

Coke
Reactivity

Index

Coke Strength
after Reaction

with CO2

Micum
25 Index

Micum
10 Index

FC CRI CSR M25 M10

1 1060 10.6 0.88 0.34 88.42 32.9 53.6 87.3 7.8

2 1060 10.7 0.89 0.35 88.41 32.4 53.9 87.6 7.7

3 1065 10.9 0.84 0.33 88.26 32.2 54.0 88.0 7.6

4 1070 11.0 0.80 0.36 88.20 32.0 54.2 88.0 7.6

5 1065 11.0 0.83 0.33 88.17 31.7 54.8 88.2 7.4

6 1070 10.9 0.79 0.32 88.31 31.7 55.0 87.9 7.6

7 1075 11.1 0.74 0.31 88.16 31.6 55.0 88.4 7.4

8 1075 10.7 0.75 0.38 88.55 31.1 55.4 88.0 7.5

9 1085 10.9 0.71 0.37 88.39 30.3 58.4 88.8 7.2

It is well known that the CSR parameter negatively correlates with the CRI parameter,
and this relationship can be vice versa [61–63]. Figure 5 shows that with a decrease in
the CRI of coke, the CSR increases. Coke 9 presents the lowest CRI and highest CSR,
representing a good metallurgical property. According to [64] the R2 is 0.894 for the
relationship between CRI and CSR. The resulting coefficient is slightly lower than indicated
by [64] and below the R2 = 0.977 value indicated in [46,61].
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In addition, using equations that describe the relationship between CRI and CSR,
for example, CRI = 52.547–0.397·CSR in paper [65], and CSR = −1.6884·CRI + 102.38 [66],
to assess the quality of the obtained coke leads to an underestimation of the values of
the parameters in comparison with those obtained in this study. Therefore, the original
equation is characterized by better accuracy.

Figure 6a,b show the dependencies of the Rom on CRI and CSR and on Micum 25 and
Micum 10 indices, respectively. It has been established that the coke quality indicators
improve with an increase in the Rom. It should be noted that the reflectance of vitrinite for
coal blend 9 corresponds to a value of 1.11 wt.%. According to Zhang et al. [67], a high
CSR value of coke can be obtained from coal with a reflectance of vitrinite of 1.1–1.2 wt.%
and/or from coals with VM of 22–26 wt.%. The relationship between the parameters of
Rom and the parameters of CRI (R2 = 0.99) or CSR (R2 = 0.98) is stronger than that for
M25 (R2 = 0.78) and M10 (R2 = 0.87). The higher the coefficient of determination (R2), the
better the relationship. This is because the Rom depicts the microstructure and level of
coalification, which ultimately affects the CRI and CSR parameters [67,68].
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Figure 6. (a) Relationship between mean reflectance of vitrinite of coal blends and CRI or CSR;
(b) Relationship between mean reflectance of vitrinite of coals blend and Micum 25 index or Micum
10 index.

Therefore, compared with the ‘cold’ strength, the physicochemical indicators of coke
quality, namely CRI and CSR, better reveal the coke’s relationship with the coals’ nature.
This is because the parameters CRI and CSR better characterize the structural changes in the
obtained cokes due to a chemical reaction with CO2 and subsequent determination of the
mechanical strength, in contrast to the method of determining the ‘cold’ strength. Therefore,
reflectance parameters describe the average degree of order of the molecular structure of
organic matter and are a useful tool for the characterization of such heterogeneous carbon
materials as raw or pyrolyzed. According to the Nippon Steel Corporation (NSC) model, it
should also be pointed out, showing the dependence of the CSR index and the reflectance
of vitrinite and inertinite [69,70]. The CSR increases with increasing Rom up to a value
of about 1.4 wt.%, and at any level of Rom, coals with an inertinite content of 15–25 wt.%
allow obtaining optimal CSR values. The paper [63] also reported that the maximum CSR
value for each rank level of coals is obtained with optimum inertinite content. However,
Kosina and Heppner [71] found that bituminous coals with the reflectance of vitrinite
within the range of 0.80–0.90% and high inertinite content had no significant influence on
coke mechanical properties expressed by Micum indices. In contrast, a distinct decrease in
M40 values with increasing inertinite contents was observed for higher rank coals.

Figure 7a shows the relationship between the inertinite content of coal blends and CRI
or CSR. As shown in Figure 7a, with an increase in inertinite content in the coal blend, the
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CRI values increase. It is worth noting that in paper [71] also with an increase in inertinite,
the CRI increases, but the correlation coefficient is 0.696. The CSR index has the opposite
effect, which is consistent with the results in [69]. Thus, for the investigated blends, it was
found that the coke quality deteriorates with increased inertinite content by more than 14%.
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Figure 7. (a) Relationship between inertinite content of coal blends and coke reactivity index or
coke strength after reaction with CO2; (b) Relationship between inertinite content of coal blends and
Micum 25 or Micum 10 indices.

Figure 7b shows the relationship between the parameters of inertinite content in coal
blends and indicators M25 or M10. An increase in inertinite content negatively correlates
with the M25 indicator and, contrariwise, shows a positive relationship with the M10 indica-
tor. In addition, relationships (R2 = 0.91 for M25 and 0.90 for M10) indicate that the inertinite
content of coal blends significantly influences ‘cold’ mechanical strength than on the CRI
and CSR. However, many of the obtained M25 values are within the standard deviation
range of 0.85–0.90. Thus, a low proportion of reactive macerals inhibits the agglomeration
of coal particles, creating a less stable coke structure, according to Pearson [72].

Since vitrinite is the main active component in coal, which contributes to forming a
non-volatile liquid mass during coking, the influence of vitrinite content in coal blends on
coke quality indicators was investigated. It is well-known that non-volatile liquid masses
obtained from coking coals of different grades are firstly fused and then interact with inert
components to form a coke [40]. Figure 8a shows the relationship between the parameters
of the vitrinite content in coal blends and CRI or CSR.

With an increase in the vitrinite content within the coal blend, the CRI of coke decreases
(R2 is 0.80). This is consistent with paper [73], where R2 is 0.748. In turn, this has the
opposite effect on CSR, which is also consistent with [73] where R2 is 0.659. However, the
obtained dependences of the content of inertinite and vitrinite contents within blends with
CRI are characterized by higher correlation coefficients than in paper [73]. The decrease
in CRI and increase in vitrinite content can be explained by the fact that softened ones
originate from vitrinites, fuse, and enter into interfacial reactions with each other in the
process of carbonization of a plastic mass. The higher fusion of the plastic mass is beneficial
for mixing, and the interfacial reactions of the plastic mass are relatively sufficient in the
coking process. Thus, cokes obtained from coal blends with a higher vitrinite content
may have fewer defects in carbon structures, which show higher resistance to CO2 [40].
Noteworthy, a strong dependence exists between the parameters of the vitrinite content
in coal blends and the M25 or M10 indices, which corresponds to R2 = 0.97 and R2 = 0.90,
respectively, as shown in Figure 8b, which confirms the pattern of obtaining coke with
good strength with an increase in the proportion of vitrinite in the blend.
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Figure 8. (a) Relationship between vitrinite content of coal blends and coke reactivity index or coke
strength after reaction with CO2; (b) Relationship between vitrinite content in coal blends and Micum
25 or Micum 10 indices.

It is known that the final coking temperature affects the decline of CRI and the increase
in CSR [2,74]. The final coking temperature is the maximum temperature of the coal
pyrolysis process and can be considered a factor influencing the coke quality. A comparison
of the results of determining the quality indicators of coke with the final temperature of
coking shows a decrease in reactivity and an improvement in CSR with an increase in the
final temperature of coking, as shown in Figure 9a. Less strict relationships were obtained
between final coking temperature and Micum 25 or Micum 10 indices (Figure 9b). However,
this also confirms that, in addition to the petrographic properties of the blend, the effect of
the final coking temperature as a technological factor is important for further improving
the coke quality.
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Figure 9. (a) Relationship between final coking temperature and coke reactivity index or coke strength
after reaction with CO2; (b) Relationship between final coking temperature and Micum 25 or Micum
10 indices.

Considering the strong relationship between CRI with final coking temperature and
petrographic characteristics of coals, it was also determined which of these parameters
has a greater impact on coke quality. Therefore, a two-component linear regression model
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was obtained, describing the dependence of CRI on final coking temperature (FCT) and
inertinite content (IC), which includes the following Equation (2):

CRI = 96.7 + (−0.06)·FCT + 0.16·IC, (2)

The regression results showed a greater significance of final coking temperature on
CRI. This conclusion can be of great practical importance, since the composition of coal
blends takes into account, first of all, the properties of the coal macerals, while the coking
temperature is assumed to be constant.

Analysis of the relationship between CRI or CSR with indicators M25 and M10 displays
medium coefficients of determination. As can be seen from Figure 10a,b M25 increases and
M10 decreases with decreasing CRI and increasing CSR. A good relationship between coke
quality indicators confirms the influence of the petrographic properties of coal blends and
the final coking temperature on the properties of industrial coke.
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Figure 10. (a) Correlation trend between coke reactivity index and Micum 25 or Micum 10 in-
dices; (b) Correlation trend between coke strength after reaction with CO2 and Micum 25 or Micum
10 indices.

Consequently, the research results show that under conditions of an unstable raw
material base for coking, multi-component coal blends, changes in coking regimes, petro-
graphic parameters of the blend, proximate and caking indices of coal blends are closely
related to the quality parameters of industrial coke.

4. Conclusions

Under the conditions of an unstable raw material base, multi-component coal blends,
and fluctuations in the coking regime, it is important to correctly operate with the properties
of coal to achieve the required coke quality. Petrographic analysis is of practical value
for the quality assessment and efficient utilization of coal blends to ensure sustainable
coke production. Therefore, an assessment of 9 coal blends in this study was suggested.
The petrographic characteristics of 9 multi-component coal blends with proximate (VM
and FC) and caking (y) properties have been established, and the influence on properties
of metallurgical coke under industrial conditions has been investigated. The following
conclusions and recommendations can be summarized:

1. Obtained dependencies between the parameters Rom and VM for all coals, which
were used to prepare coal blends, showed a decrease in VM with increasing values of
Rom (R2 = 0.93) and an increase in FC (R2 = 0.92). At the same time, the coals can be
divided into four groups which correspond to gas coals (Rom = 0.50–0.89%) fat coals
(Rom = 0.80–1.19%), coking coals (Rom = 1.0–1.29%) and lean coals (Rom = 1.30–1.80%).
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2. The investigated multicomponent coal blends demonstrate Rom within the range of
0.94 to 1.11 wt.%, vitrinite content 80.2–86.5 wt.%, and inertinite 13.2–18.1 wt.%. A
high coefficient of determination for the dependence on the Rom and volatile matters,
or Rom and FC, has been established, namely R2 = 0.96 and R2 = 0.91, respectively. In
addition, the relationship between the Rom in coal blends and the content of vitrinite
or inertinite in the coal blends (R2 = 0.80 and R2 = 0.84, respectively) was obtained.
Furthermore, the relationship between the change in VM or the maximum thickness
of the plastic layer of coal blends on the vitrinite content, which corresponds to
R2 = 0.72 and R2 = 0.68, has been analyzed.

3. A strict relationship between the Rom of coal blends and CRI or CSR of the obtained
cokes has been established, corresponding to R2 = 0.99 and R2 = 0.98, respectively.
An increase in the Rom for coal blends leads to a decrease in CRI and an increase in
CSR. Additionally, the Rom has a good relationship with the ‘cold’ strength of M25
and M10. However, the parameters CRI and CSR better characterize the structural
changes in the obtained cokes since they consider the change in the properties of the
coke because of a chemical reaction with CO2 and subsequent determination of the
mechanical strength.

4. An increase in inertinite content in the blends reduces the strength of the coke. Rela-
tionships between inertinite content in blends with M25 and M10 have been established
and correspond to R2 = 0.91 and R2 = 0.90, respectively. It also shows an increase in CRI
and a decrease in CSR with an increase in inertinite content within the blend, which is
reflected by the coefficients of determination R2 = 0.83 and R2 = 0.88, respectively.

5. An increase in the content of vitrinite contributes to the improvement of the caking
process of the coal blend and leads to the production of a strong and low-reactivity
coke. This can be confirmed by the high coefficients of determination of the vitrinite
content in the blends and the coke quality in terms of M25 and M10, correspond-
ing to R2 = 0.97 and R2 = 0.90, respectively. Good relationships are also obtained
between the vitrinite content with CRI and CSR, corresponding to R2 = 0.80 and
R2 = 0.82, respectively.

6. The final coking temperature as a technological factor contributes to an additional
improvement in the coke quality, which leads to a decrease in reactivity and an
improvement in coke strength after reaction with CO2 with an increase in the final
coking temperature. The relationship of the final coking temperature with the CRI and
CSR indicators corresponds to the values R2 = 0.80 and R2 = 0.89, and for the indicators
M25 and M10, it corresponds to the values R2 = 0.74 and R2 = 0.72, respectively. The
obtained two-component linear regression showed a greater significance of thefinal
coking temperature on CRI than inertinite content. This conclusion can be of practical
importance for cokemaking plants, since the composition of coal blends considers
the properties of the coal macerals, while the coking temperature is assumed to
be constant.

Based on the results obtained, the coke quality can be improved by increasing the
proportion of coals with a high Rom in the coal blend. However, as the research results
show, in addition to ensuring the maximum optimal value of Rom in the preparation of
coal blends to achieve the required coke quality, it is necessary to consider the proximate
and caking properties of coals, the final temperature of coking, and the availability of coals
with the appropriate properties at the cokemaking plant.
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