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Abstract: One of the most appropriate electricity production systems is solid oxide fuel cells (SOFCs),
which are important because they are highly efficient, flexible to fuel, and have fewer environmental
degradation effects. A new optimum technique has been provided for providing well-organized
unknown parameters identification of the solid oxide fuel cell system. The main idea is to achieve
the lowest amount of the sum of square error between the model’s output voltage and the empirical
voltage datapoints. To get efficient results, the minimum error value has been achieved by designing
a new metaheuristic algorithm, called the Developed version of Battle Royale algorithm. The reason
for using this version of Battle Royale algorithm is to achieve results with higher accuracy and better
convergence. The proposed technique was then applied to a 96-cell SOFC stack under different
temperature and pressure values and its achievements were compared with several different latest
methods to show the proposed method’s efficiency.

Keywords: solid oxide fuel cell; parameter estimation; Developed Battle Royale algorithm;
sensitivity analysis

1. Introduction

Humanity is significantly dependent on energy. There is a deep gap between con-
sumers and fossil fuel accessibility due to the increase in economic growth and social
development [1]. Today, the energy crisis and environmental pollution caused by fossil
fuels is a major problem [2,3]. Increasing human activities and the use of natural energy
sources has caused a reduction in clean energy, and the methods currently in place to pro-
duce energy are not environmentally friendly [4]. Worries about global climate warming
require the development of new techniques of energy generation by natural sources of
carbon and sustainable energy [5,6]. Different clean energy sources have been designed
and utilized to solve this issue [5]. For example, photovoltaic systems, wind turbines, and
fuel cells (FCs) are some renowned sources in this area [7]. Among them, fuel cells, as a new
and environmentally friendly technology, have become more studied and utilized [8]. Fuel
cells are a technology with high efficiency for converting chemical energy into electrical
energy [9,10]. Hydrogen is used as the cleanest energy as fuel in fuel cells [11]. Hydrogen
is one of the most abundant elements on Earth [12]. This element does not exist in nature in
its pure form, but it can be obtained in several different ways from other elements [13]. Due
to the depletion of oil reserves and pollution of fossil fuels, the use of fuel cells is necessary
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in the future which does not pollute the environment in cars and power plants. Fuel cells
have several advantages, for example,

- They do not produce H2 fuel, greenhouse gas, or pollution of air.
- They significantly cause environment enhancement [14].
- They are more efficient than combustion engines.
- Unlike co-generation uses, these cells generate heat and electrical power with efficiency

of about 80%.
- FCs generate water and heat without particles, GHGs, or toxins, i.e., these cells

generate unpolluted air.
- They can be used in various sizes from mWs to MWs, such as in buildings, mobile

phones, cars, etc.
- FC supplements are applicable in various energy techniques, such as wind turbines,

batteries, solar panels, and super capacitors [8].

There are several models of fuel cells that are divided based on their configurations.
Each of these types also have their advantages and disadvantages [15]. Recently, the utiliza-
tion of solid oxide fuel cells (SOFCs) in high-temperature systems, such as power plants,
has made them devices with high tendency from the industry society [16]. Because of
high temperature working points, designing and testing these models needs a lot of time
and comes with a high cost. A proper method to prevent these problems is to first model
and simulate these devices in the computer and after reaching to the best efficiency, they
can be designed and constructed [17]. Another problem is that the manufactured SOFCs
after sending to the costumers, have some unknown parameters in their model which
should be then selected optimally for the considered work. Due to the high cost of polymer
electrolytes, it is better to predesign and simulate it. Some papers are published in this
regard [18]. However, literature showed that using metaheuristic-based techniques can be
so useful for solving such complicated problems. Different metaheuristics are proposed
in this direction. For example, Improved Red Fox Optimizer (IRFO) [19], Marine Predator
Optimizer (MPO) [20], chaotic grey wolf metaheuristic algorithm [21], Levenberg–Marquardt
republishing optimization algorithm [22], genetic algorithm, and radial movement opti-
mization [23] are some of these techniques. In the following, more details of the algorithms
are explained.

Luo et al. [19] used metaheuristic methods to detect solid oxide fuel cell (SOFC) param-
eters. In this research, an optimized metaheuristic method is used to detect the parameters of
SOFC. The optimized metaheuristic method is called Improved Red Fox Optimizer (IRFO).
For the evaluation of the effectiveness, an optimized metaheuristic model used the Sum
of Squared Error (SSE). The finding displayed that the IRFO method had minimum error
to generate power in various temperature conditions. It was obtained by about 0.0073 kW.
Moreover, the optimized metaheuristic method had a minimum error value for output
voltage by about 0.16 V. This finding was acceptable to detect SOFC parameters.

Yousri et al. [20] detected unknown parameters of SOFCs dynamically simulating by
comprehensive learning dynamic multiple-swarm MPO method. The most important step
in presenting an energy storage system is to accurately identify the unknown parameters.
In this research, with the help of the Marine Predator Optimizer (MPO), the proposed
strategies detected the variables. The efficiency of the proposed optimization method was
evaluated in different conditions of sudden load changes and dynamic voltage responses.
Comparison of the results showed that the Marine Predator Optimizer (MPO), by the
suggested strategies had the highest accuracy in identifying unknown parameters and
presented the lowest variance between current and voltage.

Hao et al. [21] utilized the improved chaotic grey wolf metaheuristic algorithm to
detect solid oxide fuel cells variables. The purpose of their use of optimization methods
is to increase the speed and accuracy of identifying the parameters of solid oxide fuel
cells. The results of using the chaotic grey wolf optimization method showed that this
optimization method had the least mean square error, the highest accuracy, and stability
in the optimal identification of unknown parameters. It also had the highest convergence
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rate for resolving optimization problems. Moreover, it was able to provide the minimum
variance between the current and voltage curves.

Yang et al. [22] identified the unknown parameters of the SOFC using the metaheuristic
method to identify SOFC parameters for modeling. For this objective in this study, the
Levenberg–Marquardt republishing optimization algorithm was used. This algorithm was
used to increase the efficiency of the artificial neural network in the training process to
identify unknown parameters. The results suggested by the technique were compared with
the electrochemical model (ECM) and steady-state model (SSM). The optimized artificial
neural network had good simulation results in identifying the parameters so that this
improved model was able to identify unknown parameters with high speed and stability
and provide more accurate results.

Nassef et al. [23] applied an optimal ANN method to identify the accuracy of solid
oxide fuel cell parameters. The optimal ANN model was based on radial movement
optimization. To confirm the optimum artificial neural network, it was compared to a
genetic algorithm. For this objective, the genetic algorithm and radial movement
optimization were compared in two different conditions. The investigation methods
showed that the radial movement optimization method increased the power by about
17.28% compared to the genetic optimization algorithm. Furthermore, in the second
condition, the radial movement metaheuristic method increased the power compared to
the genetic method about 28.85%.

Based on the literature, efficient results can be provided by optimization algorithms
for system identification of the SOFCs. Likewise, the application of metaheuristics as a
famous part of optimizers is continuously being increased. It is worth noting that by the
“No free lunch” theorems [24], there is no metaheuristic algorithm with the capability of
solving any type of problem. The major target here is to propose a developed design of
a metaheuristic optimizer to deliver a SOFC model with higher efficiency. Therefore, the
main contributions of the present study can be briefly highlighted as follows:

- New optimal parameters estimation of the solid oxide fuel cell system based on
metaheuristics.

- The idea is to minimize the error between the model output and the empirical datapoints.
- A developed version of Battle Royale algorithm is utilized to minimize the error value.
- The method is performed on a 96-cell SOFC stack under different temperature and

pressure values.

2. Modeling of a SOFC

The operational temperature of SOFC ranges between 600 ◦C and 1000 ◦C and therefore
various kinds of fuels can be applied in it. This fuel cell has two plate and tube structures
and a thin ceramic solid electrolyte is used instead of a liquid electrolyte. At high operating
temperatures in a solid oxide fuel cell, oxygen ions (negatively charged) move over the
crystal lattice [25]. At the negative electrode, four electrons have been combined with
O2. While a hydrogen-containing gas fuel moves over the positive electrode, O2 ions
with negative load moves through the electrolyte for fuel oxidization [26]. The generated
electrons at the positive electrode create an exterior circuit to produce electricity. SOFCs do
not require an additional converter. Solid oxide combustion reactions are given below [27]:

For cathode side:
2H2 + 2O2− → 2H2O + 4e− (1)

For anode size:
O2 + 4e+ → 2O2− (2)

And the total reaction of the system is:

2H2 + O2 → 2H2O (3)

The efficiency of SOFC is almost 45–60% and the density of power generation in this
type of fuel cell is 240–300. The lifespan of it is more than 40,000 h. The total efficiency is
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increased to 70% by combination of this cell with a turbine. Figure 1 shows a general form
of a SOFC.
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Figure 1. General form of a SOFC.

As can be observed from Figure 1, by considering the high operating temperature
operation condition, the oxygen ions, which are charged negatively, move through mem-
brane which is typically a blend of calcium oxide and zirconium oxide. The O2 molecules
are then combined with 4 electrons at the cathode side. During the process, if a gassy fuel
containing hydrogen molecules moves through the anode, there will be a movement by
the negatively charged current including oxygen ions moving over the electrolyte for fuel
oxidization. The electrons that are generated at the positive electrode side move over an
exterior circuit to reach to the negative electrode side and produces electricity.

By considering the configuration explained before, the SOFC generate electricity with
VT voltage. This voltage is achieved by considering different voltage drops that have
happened on the fuel cell. The main voltage losses in the SOFC include activation voltage
drop, concentration voltage drops, and ohmic voltage drop. By considering these losses,
the outputted voltage of the SOFC is achieved as follows [28]:

VT = (EN −VΩ −VCons −VAct)× N (4)

where VΩ describes the ohmic voltage drop, Vact defines the activation voltage, and
VC specifies the concentration voltage drop, N determines the quantity of the cells, and
EN is the open circuit voltage which is achieved by the following formula:

EN = 2× F× E0 + R× ln
(

PH2 ×
√

PO2 × 1/PH2O

)
× T ×

(
0.5× N0

F

)
(5)

where E0 describes the reversible potentiality, and T specifies the operational temperature.
Table 1 reports the parameter value of the parameters.

Table 1. The parameter amounts of the determined SOFC parameters.

Parameter Value

T 1.253–2.4516 × 10−4

F 96, 486 C mol−1

R 8.314 kJ (kmol K)−1

PO2 , PH2 , and PH2O describe the partial pressure for O2, H2, and the H2O, respectively.
The partial pressure for Oxygen and Hydrogen are achieved by the following [29]:

PO2 = Rhc × PH2O ×

 Pc

Rhc × PH2O × e
1.635I/A
T1.334 I

− 1

 (6)
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PH2 = 0.5× Rha × PH2O ×

 Pa

Rha × PH2O × e
1.635I/A
T1.334 I

− 1

 (7)

where Pa and Pc represent the inlet pressure in anode and cathode, and Rha and Rhc
represent the relative humidity of vapor at the positive and negative electrodes sides.

The ohmic voltage loss of the SOFC can be calculated as follows:

VΩ = I × r (8)

And the concentration voltage loss for the cell is mathematically achieved as follows:

VC =
R× T ×

[
ln
(

P2
H2
× PO2 × P−2

H2O

)
− ln

(
P∗2H2
× P∗O2

× P∗2H2O

)]
4× F

(9)

where P∗H2
defines the partial pressure of the hydrogen, P∗O2

partial pressure of oxygen, and
P∗H2O partial pressure of water.

The activation voltage drop is defined as given below:

VA = CT + S× ln I (10)

where CT represents the Tafel coefficient and S is the slope that can be formulated as follows:

CT =

(
− RT

α× ne × F

)
(11)

S =

(
RT

α× ne × F

)
(12)

Finally, the terminal voltage of a SOFC can be obtained as below:

VT = E0 − I × RΩ − A× sinh−1
(

I
2× Ia

0

)
− A sinh−1

(
I

2× Ic
0

)
+ B× ln

(
IL − L

IL

)
(13)

where RΩ signifies the resistance of the device area (kΩ cm2), IL specifies the constraint of
current density (mA cm2), and Ic

0 and Ia
0 refer to the exchanging flow’s current density of

the cathode and anode, respectively. By considering the clarified equations, seven unknown
parameters are defined for optimization. The parameters include RΩ, A, B, E0, IL, Ia

0 , and Ic
0.

3. Objective Function

As aforementioned, the major target here is to provide an optimum parameter esti-
mation methodology for the undetermined parameters of the SOFC models. The concept
is to lessen the means square error (MSE) between the experimental data and the model
output data. The data in this study are the voltage profile. Thus, the best results will be
achieved when there is a high confirmation between the empirical data and the model
output voltage. This conception can be considered as an objective function as follows [30]:

OF =
1
N

N

∑
i=1

(
VT(i)−Vexp(i)

)2 (14)

where N specifies the sample number of the voltage data, VT and Vexp describe the terminal
and the experimental output voltage data, respectively. So, the main idea is:

CF = minOF (15)

Considering the undetermined variables, RΩ, A, B, E0, IL, Ia
0 , and Ic

0, as decision
variables subject to the following constraints [31]:

I ≤ IL (16)



Sustainability 2022, 14, 9882 6 of 18

Ic
0 < Ia

0 (17)

xi ≤ xi ≤ xi (18)

Since the defined function in Equation (15) is a nonlinear formulation, solving it with
classic methods can sometimes provide improper results. In this study, we propose an
improved metaheuristic-based methodology for minimizing Equation (15).

4. Battle Royale Optimization Algorithm (DBRA)
4.1. Strategy of Battle Royale Game

Battle Royale is an enduring and competitive game designed using a Japanese movie.
In this game, players must explore the game area to avoid being eliminated. Battle Royale
can be played both in pairs and in teams of up to five people [32]. The players of this
game have the same power and resources because beating is one of the challenges of the
game. In addition, at the beginning of the game, all the players are randomly distributed
in the game space. The game space gradually decreases and if a player leaves the game
range (safe zone), he will either be expelled from the game or will be injured. Players must
explore tools to stay in the game in a smaller playing area [33]. In some kinds of Battle
Royale games, such as Counter-strike: Global Offensive, Ring of Elysium, Apex Legends,
Player Unknown’s Battlegrounds (PUBG), and Call of Duty: Warzone, players are given the
opportunity to rejuvenate; this feature is used in the proposed algorithm, and sometimes
players are rewarded for staying in the game [34]. In the end, only one team or one player
wins. In the mentioned games, the map of the game area is selected by the players, for
example, one of the famous maps in the PlayerUnknown’s Battlegrounds is Sanhok. Players
outside the safe zone of the game, which is also called “the circle”, are injured and damage
ticks are sent to them, so players try to be near to each other during the game, the map of
this area is marked in blue. Over time, the safe area becomes smaller, and the next limited
space is marked with a small white circle. Players try to kill their rivals to continue the
game themselves. One of the types of the game of the PlayerUnknown’s Battlegrounds is
that players kill or slice a certain number of rivals at a set time. This is called a death match
mode, and the player who kills more rivals will be winner. Furthermore, during the game,
the player who is killed can appear randomly in the game area.

4.2. Battle Royale Optimization Algorithm

In some cases, players jump from a parachute or a plane down onto the map and
the game starts. Battle Royale Optimization Algorithm is population-based and the initial
population is evenly dispersed all over the research space. Each soldier according to the
location he is in shoots the soldiers around him and injures them, and the level of damage
to the injured soldier increases to one and is expressed by damage = zj.damage + 1. The
injured soldier wants to alter his location immediately and shoot at the rivals from the other
flank. The soldier is placed between the preceding location and the best location found
so that he can focus on exploitation. The mathematical expression of these behaviors is
presented below [33]:

zdam.d = zdam.d + r(zbest.d − zdam.d) (19)

The location of the injured soldier is shown by zdam.d which is in dimension d, r is a
random amount in the range [0, 1]. In the following iteration, if the injured soldier can
shoot the rival, the value of zj is reduced to zero. In the exploration phase, if the amount of
damage of jth soldier (zj) exceeds the pre-determined threshold amount, it dies but can
appear randomly in the game space, and zj.damage can reduce to 0. After trial and error,
the amount of threshold is set on three. This prevents premature convergence and creates
good exploration. A soldier who appears in the search space after being killed is expressed
by the following formula [33]:

zdam.d = r× (ubd − lbd) + lbd (20)
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The upper and lower bounds in problem space are indicated by ubd and lbd. The initial
amount of problem space is ω = log10(MaxCicle) with each epoch, the search space of the
problem becomes smaller according to the best solution and its value is ω = ω + round

(
ω
2
)
.

Maximum amount of generation is expressed by MaxCicle.
The updated upper and lower bound values are given below [33]:

lbd = zbest.d − SD(zd)
ubd = zbest.d + SD(zd)

(21)

where the best solution ever found in dimension d is shown by zbest.d, SD(zd) is the standard
deviation of entire population. If the lower/upper bound exceeds the original lbd/ubd,
it sets to the original lower/upper bound. The finest soldier in each epoch is saved and
considered as an elite.

The computational difficulty of the suggested algorithm depends on the dimensions of
the problem, the highest number of epochs, and the population number. According to the
number of populations (n) and the number of epochs (m), the computational complexity
for all solutions is O(n2) and O

(
m2), respectively.

4.3. Developed Battle Royal Optimization Algorithm

However, the Battle Royal Optimization Algorithm as a new metaheuristic approach
provides good results based on its defaults analysis [35], it may have weak results in some
problems in different terms such as improper convergence and local optimum results [36].
Therefore, here, we used two kinds of modifications to improve the algorithm efficiency for
designing a more efficient model estimator for the SOFC mathematical model [37]. The first
improvement is based on the opposition-based learning (OBL) mechanism. Based on the
OBL mechanism [38], each generated solution candidate is considered as a pair of candidate,
where the place of the candidates pair is complement of the main candidate, i.e., [38],

→
z

new
j =

→
z

max
j +

→
z

min
j −→z j (22)

where
→
z

new
j describes the opposite position of

→
z j, and

→
z

min
j define the minimum and

→
z

max
j is the higher limitations of the solution.

The better solution of each pair will be considered as the new candidate and the other
one will be removed.

Here, 60% of the initial population is achieved randomly and 40% is achieved based
on the OBL mechanism. The other improvement that is used herein is “chaos theory”. This
system generates pseudo-random variables instead of completely random variables. This
can be used in the metaheuristics to enhance the algorithm’s convergence speed. Different
chaos introduced in the literature. This study uses a sinusoidal map for this purpose. By
updating the r parameter in Equation (20) as a pseudo-random variable, its update formula
will be achieved as follows [39]:

r1(j + 1) = P× r2
1(j)× sin(π × r1(j)) (23)

where r1(j + 1) specifies the chaotic random value generated during the current iteration,
and r1(j) defines the chaotic random value generated in the preceding iteration. Here,
P = 2.2 is the control parameter and r1(0) has been set 0.6.

The workflow of the Developed Battle Royal Optimizer is given in Figure 2.
To provide a proper validation to evaluate the suggested Developed Battle Royal

Algorithm efficiency, the algorithm was performed to several standard test functions and
its achievements were compared with the Particle Swarm Optimizer (PSO) [40] and two of
the newest presented optimizers: Whale Optimizer (WO) [41] and Archimedes Optimizer
(AO) [42]. Table 2 states the controlling parameters of the investigated algorithms.
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Figure 2. Developed Battle Royal Algorithm.

Table 2. Controlling parameters of the investigated algorithms.

Algorithm Parameter Value

Particle Swarm Optimization (PSO) [40]
c1 and c2 1

w 0.7

Whale Optimization Algorithm (WO) [41]

→
a 2
→
r 1

Archimedes Optimization Algorithm (AO) [42]

Protection probability 10%

Elimination probability 25%

c1 1.5

c2 1.5
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The simulation was performed in MATLAB R2018b software and programmed on a
Core i7-CPU 2.00 GHz processor with 16 GB of RAM. Four mathematical test functions are
used for comparison [43–46]. The information about these functions is listed in Table 3.

Table 3. Information about the utilized benchmark functions.

Formulation Range F*

F1 = x× sin(4x) + 1.1y× sin(2y) 0 < x, y < 0 −18.55

F2 = 0.5 +
sin2

(√
x2+y2−0.5

)
1+0.1(x2+y2)

0 < x,
y < 2 0.5

F3 = |x|+ |y|+
(

x2 + y2)0.25 × sin (30((x + 0.5)2 + y2)
0.1
) [−∞, ∞ ] −0.25

F4 = 10n +
n
∑

i=1

(
x2

i − 10 cos(2πxi)
)
, n = 9 [−5.12, 5.12] 0

The size of the population was 60 and highest iterations number during the optimiza-
tion was 100. Because of the stochastic nature of the metaheuristic algorithms, all of the
empirical achievements were achieved by considering the mean value of applying 35 runs
independently for all of the benchmark functions. Moreover, the average value, min value,
max value, and standard deviation (Std) of the test functions after 35 runs independently
were used as the measurement indicators. Table 4 reports the numerical achievements of
the optimizers employed to the investigated test functions.

Table 4. Numerical achievements of the optimizers employed to the investigated test functions.

Function Indicator
Algorithm

PSO [40] WO [41] AO [42] DBRA

F1

Max −11.232 −14.012 −16.263 −19.64
Min −15.287 −15.646 −14.41 −14.33

Median −13.253 −14.558 −15.16 −16.54
Std 5.355 4.839 3.64 2.34

F2

Max 0.647 0.637 0.325 0.315
Min 0.453 0.427 0.413 0.4

Median 0.55 0.537 0.48 0.476
Std 0.038 0.012 0.003 0.001

F3

Max −0.089 −0.187 −0.213 −0.221
Min −0.212 −0.234 −0.246 −0.297

Median −0.150 −0.164 −0.210 −0.263
Std 0.134 0.108 0.018 0.013

F4

Max 15.363 12.437 9.254 2.374
Min 1.816 1.009 0.008 0.002

Median 8.589 6.721 4.634 1.189
Std 5.234 5.054 2.372 1.062

Based on Table 4, the suggested Developed Battle Royal Optimizer in all four analyzed
benchmark functions provided the best results with minimum value that indicates its
higher effectiveness toward the comparative optimizers. Furthermore, observed from the
achievements, the suggested technique gives the minimum standard deviation results that
show its higher reliability in solving the methods during different independent runs.
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5. Simulation Results

As can be observed from the previous sections, the major target of this paper is to
provide an efficient method for system identification of the SOFCs. The major concept is to
provide an optimum method by a developed design of Battle Royal Optimizer to minimize
the sum of square error between the experimental data and the estimated outputted voltage
from the designed system. The model is based on working on the mathematical conception
of the SOFC with considering some undetermined variables on the model as decision
values which should be optimally selected for minimizing the error value. The decision
variables are RΩ, A, B, E0, IL, Ia

0 , and Ic
0. As mentioned before, due to using the stochastic

algorithm here, we ran the algorithm 25 times independently and its mean value was
considered as the final solution.

For ability validation of the presented Developed Battle Royal Optimizer in optimal
parameter selection of the SOFC system, it was implemented to a studied case and its
achievements were compared with some other related latest techniques by Chaotic Gray
Wolf Optimization algorithm (CGWO) [47], Satin Bowerbird Optimizer (SBO) [48], Simpli-
fied Competitive Swarm Optimizer (SCSO) [49], and Teaching-Learning Based Algorithm
(TLBO) [50]. To provide a fair comparison, like the Developed Battle Royal algorithm, all of
the compared methods were run 25 times and the maximum iteration and the population
size for all of them were similarly set to 200 and 50, respectively.

The case study in this research is a 96-cell SOFC stack where its information was
collected from [51]. The minimum and higher constraints of the major parameters for the
studied case is given in Table 5.

Table 5. Lower and upper limitations of the main parameters for the investigated case.

Parameter Lower Bound Higher Bound Unit

EOC 0 1.2 V

A 0 1 V

B 0 1 V

IL 0 10,000 mA·cm−2

I0,a 0 100 mA·cm−2

I0,c 0 1 mA·cm−2

In the first step, the system efficiency was analyzed based on temperature variations
under constant pressure. Therefore, this assessment shows how temperature changing
can affect the identification system. Here, we used 160 datapoints for the analysis. In this
study, five different temperatures, namely 550 ◦C, 600 ◦C, 650 ◦C, 700 ◦C, and 750 ◦C, under
3 atm constant pressure value were analyzed. Table 6 reports the simulation achievements
of the suggested technique under different temperatures in comparison with some of the
latest algorithms.

Table 6. Simulation results of the suggested technique under different temperatures in comparison
with some of the latest algorithms.

Algorithms 550 ◦C 600 ◦C 650 ◦C 700 ◦C 750 ◦C

CGWO [47] 6.28 × 10−2 7.23 × 10−2 9.92 × 10−2 2.19 × 10−1 6.63 × 10−1

SBO [48] 4.15 × 10−2 5.09 × 10−2 7.16 × 10−2 8.80 × 10−2 2.98 × 10−1

SCSO [49] 8.16 × 10−3 9.11 × 10−3 2.09 × 10−2 5.25 × 10−2 7.46 × 10−2

TLBO [50] 5.50 × 10−3 7.09 × 10−3 9.05 × 10−3 1.39 × 10−2 4.28 × 10−2

DBRA 9.41 × 10−5 6.39 × 10−4 8.60 × 10−4 1.63 × 10−3 3.97 × 10−3
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As can be observed from Table 6, the proposed DBRA with 9.41 × 10−5 in lower
temperature, i.e., 550 ◦C, provided the best confirmation with minimum error value than
the other comparative methods. It is clear that by increasing the temperature value, the
error value for all of the methods was increased. Because the above values were achieved
after 25 runs as mean value of each algorithm, their standard deviation value should be
also considered to show their consistency during different independent runs. The standard
deviation results of the studied case under different temperature value and 3 atm constant
pressure value are given in Figure 3.
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As can be inferred from the results of Table 6 and Figure 3, there is a minimum
error value for all of the metaheuristic algorithms which shows their efficient ability in
model parameter estimation of the SOFC. However, the proposed DBRA algorithm with
9.41 × 10−5 error in 550 ◦C provided the minimum value toward the others which shows
its higher accuracy than the others. It can also be inferred from Figure 3 that there is
an observable difference between the proposed DBRA and the other algorithms in their
reliability, which shows the propose method’s higher consistency during 25 independent
runs. After parameter estimation of the solid oxide fuel cell system, the value of the
unknown variables can be achieved and are reported in Table 7.

Table 7. Achieved optimal value of the unknown parameters under different temperature conditions.

Parameters 550 ◦C 600 ◦C 650 ◦C 700 ◦C 750 ◦C

Io,a
(
mA·cm−2) 13.96 15.50 19.81 22.68 24.41

Io,c
(
mA·cm−2) 7.11 7.28 7.42 7.49 7.53

IL
(
mA·cm−2) 149.73 153.35 159.66 165.85 167.26

Eoc(V) 1.35 1.30 1.49 1.39 1.28

A(V) 0.0448 0.045 0.047 0.049 0.051

B(V) 0.046 0.049 0.054 0.062 0.077

Rohm
(
KΩ·cm−2) 0.17 0.06 0.01 0.007 0.005

SSE 9.41 × 10−5 6.39 × 10−4 8.60 × 10−4 1.63 × 10−3 3.97 × 10−3

R2 value 0.99991 0.99985 0.99977 0.99635 0.99664

Accuracy 99.03 97.47 97.07 95.96 93.70
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As can be inferred from Table 7, the proposed method with 9.41 × 10−5 SSE value in
550 ◦C provides the highest confirmation with the real value and its results get weaker by
increasing the temperature value, where in the highest experimented temperature (750 ◦C),
the maximum SSE value (3.97 × 10−3) was achieved. The temperature variations provide
a strong upshot on the estimator, i.e., ith incrementing of the value of temperature, the
density amount of the exchange current for positive and negative is increased, though the
voltage is decreased. Moreover, Table 7 shows that R2 values for both training and testing
data were extremely close to 1.00. As a result, we can infer that the proposed approach
was flawlessly conducted and could precisely anticipate SOFC voltage with the exception
of a few severe border situations. We can also prove the better efficiency of the proposed
method from the accuracy (99.03%) results.

Figure 4 indicates how the suggested technique gives a promising confirmation with
the empirical data under different temperatures.
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Figure 4. Voltage–current profile of the proposed DBRA and its validation with the empirical data.

Based on Figure 4, the error between the DBRA and experimental data is negligible in
high values of voltage, such that it cannot be detected in the profile. The error profile of the
voltage–current profile during 160 different datapoints are shown in Figure 5.
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Figure 5. Error profile of the voltage–current profile during 160 different datapoints.

As can be seen from Figure 5, the voltage error value in 599.85 ◦C has the minimum
range. For more clarification, the power–current profile of the system during 160 different
datapoints are shown in Figure 6.
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Figure 6. Power-current profile of the proposed DBRA and its validation with the empirical data.

Based on Figure 6, the power–current error between the DBRA and empirical data is
negligible in high values of power, such that it cannot be detected in the profile. The error
profile of the power–current profile during 160 different datapoints is shown in Figure 7.
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It can be observed from Figure 7 that the presented DBRA has a high validation
with the experimental data based on power–current datapoints. In the second step, the
system efficiency was analyzed based on pressure variations under constant temperature.
Therefore, this calculation indicates how pressure variations affect the estimator. Like
the previous analysis, 160 datapoints were also utilized for the assessment. Here, five
various pressure values which were 1–5 atm under 750 ◦C constant temperature value
were studied. Table 7 reports the simulation achievements of the presented method under
different pressures in comparison with some of the latest optimizers.

Based on Table 8, the error value by the suggested DBRA was minimal in comparison
with other newest optimizers, which shows the suggested technique’s higher efficiency
toward the others. The error curve of the current–voltage of the system under different
pressure during 160 different datapoints are shown in Figure 8.

According to Table 8, the lowest error amount was achieved for the proposed DBRA.
However, TLBO also had a satisfying error value as the second rank. Furthermore, based
on Figure 8, the suggested technique with minimum standard deviation value provided
the best confirmation by the experimental data. Table 9 indicates the achieved optimum
amount of the undetermined parameters.
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Table 8. Achieved optimum amount of the undetermined parameters by different algorithms.

Algorithms 1 atm 2 atm 3 atm 4 atm 5 atm

CGWO [47] 2.58 3.05 3.59 3.70 3.86

SBO [48] 1.43 2.10 2.54 3.09 3.85

SCSO [49] 4.18 × 10−1 5.50 × 10−1 7.25 × 10−1 9.12 × 10−1 9.88 × 10−1

TLBO [50] 7.46 × 10−2 9.80 × 10−2 1.16 × 10−1 5.17 × 10−1 6.94 × 10−1

DBRA 9.43 × 10−3 4.39 × 10−2 6.82 × 10−2 8.17 × 10−2 9.90 × 10−2

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 18 
 

pressure values which were 1–5 atm under 750 °C constant temperature value were stud-

ied. Table 7 reports the simulation achievements of the presented method under different 

pressures in comparison with some of the latest optimizers. 

Based on Table 8, the error value by the suggested DBRA was minimal in comparison 

with other newest optimizers, which shows the suggested technique’s higher efficiency 

toward the others. The error curve of the current–voltage of the system under different 

pressure during 160 different datapoints are shown in Figure 8. 

Table 8. Achieved optimum amount of the undetermined parameters by different algorithms. 

Algorithms 1 atm 2 atm 3 atm 4 atm 5 atm 

CGWO [47] 2.58 3.05 3.59 3.70 3.86 

SBO [48] 1.43 2.10 2.54 3.09 3.85 

SCSO [49] 4.18 × 10−1 5.50 × 10−1 7.25 × 10−1 9.12 × 10−1 9.88 × 10−1 

TLBO [50] 7.46 × 10−2 9.80 × 10−2 1.16 × 10−1 5.17 × 10−1 6.94 × 10−1 

DBRA 9.43 × 10−3 4.39 × 10−2 6.82 × 10−2 8.17 × 10−2 9.90 × 10−2 

 

Figure 8. Standard deviation results of the studied case under different pressure values and 750 °C 

constant pressure value. 

According to Table 8, the lowest error amount was achieved for the proposed DBRA. 

However, TLBO also had a satisfying error value as the second rank. Furthermore, based 

on Figure 8, the suggested technique with minimum standard deviation value provided 

the best confirmation by the experimental data. Table 9 indicates the achieved optimum 

amount of the undetermined parameters. 

Table 9. Achieved optimum amount of the undetermined parameters by various pressure values. 

Parameters 1 atm 2 atm 3 atm 4 atm 5 atm 

𝐼𝑜,𝑎(mA · cm−2) 28.28 28.36 28.38 28.40 28.44 

𝐼𝑜,𝑐(mA · cm−2) 7.14 7.17 7.20 7.22 7.23 

𝐼𝐿(mA · cm−2) 161.42 161.45 161.52 161.53 161.56 

𝐸𝑜𝑐(V) 1.18 1.22 1.27 1.35 1.50 

𝐴(V) 0.043 0.043 0.043 0.043 0.043 

𝐵(V) 0.086 0.086 0.086 0.086 0.086 

𝑅𝑜ℎ𝑚(KΩ · cm−2) 0.016 0.016 0.016 0.016 0.016 

MSE 1.16 × 10−3 2.43 × 10−3 6.95 × 10−3 8.14 × 10−3 9.19 × 10−3 

𝑅2 value 0.9985 0.9949 0.9918 0.9911 0.9904 

Accuracy 97.18 95.14 91.66 90.98 90.35 

Figure 8. Standard deviation results of the studied case under different pressure values and 750 ◦C
constant pressure value.

Table 9. Achieved optimum amount of the undetermined parameters by various pressure values.

Parameters 1 atm 2 atm 3 atm 4 atm 5 atm

Io,a
(
mA·cm−2) 28.28 28.36 28.38 28.40 28.44

Io,c
(
mA·cm−2) 7.14 7.17 7.20 7.22 7.23

IL
(
mA·cm−2) 161.42 161.45 161.52 161.53 161.56

Eoc(V) 1.18 1.22 1.27 1.35 1.50

A(V) 0.043 0.043 0.043 0.043 0.043

B(V) 0.086 0.086 0.086 0.086 0.086

Rohm
(
KΩ·cm−2) 0.016 0.016 0.016 0.016 0.016

MSE 1.16 × 10−3 2.43 × 10−3 6.95 × 10−3 8.14 × 10−3 9.19 × 10−3

R2 value 0.9985 0.9949 0.9918 0.9911 0.9904

Accuracy 97.18 95.14 91.66 90.98 90.35

It is observed from Table 9, with pressure value increasing, the Nernst voltage value of
the mode increased. This indicates the direct relation between pressure value and Nernst
voltage value. However, there is no clear elation between the pressure value and the ohmic
resistance. Furthermore, Table 9 shows that R2 values for both training and testing data
were extremely close to 1.00. As a result, we can infer that the proposed approach was
flawlessly conducted and can precisely anticipate SOFC voltage with the exception of a few
severe border situations. We can also prove the better efficiency of the proposed method
from the accuracy (99.18%) results.
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Figure 9 indicates how the suggested technique gives a promising confirmation with
the empirical data under different pressure.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 18 
 

It is observed from Table 9, with pressure value increasing, the Nernst voltage value 

of the mode increased. This indicates the direct relation between pressure value and 

Nernst voltage value. However, there is no clear elation between the pressure value and 

the ohmic resistance. Furthermore, Table 9 shows that 𝑅2 values for both training and 

testing data were extremely close to 1.00. As a result, we can infer that the proposed ap-

proach was flawlessly conducted and can precisely anticipate SOFC voltage with the ex-

ception of a few severe border situations. We can also prove the better efficiency of the 

proposed method from the accuracy (99.18%) results. 

Figure 9 indicates how the suggested technique gives a promising confirmation with 

the empirical data under different pressure. 

 

Figure 9. Voltage–current profile of the proposed DBRA and its confirmation with the experimental 

data by various pressure conditions. 

According to Figure 9, the error amount between the DBRA and experimental data 

is negligible in high values of voltage, such that it cannot be detected in the profile. Finally, 

Figure 10 illustrates how the power–current profile provides a satisfying confirmation 

with the experimental data by various pressure. 

 

Figure 10. Power–current profile of the proposed DBRA and its confirmation with the experimental 

data by various pressure conditions. 

As seen in Figure 10, the power–current error between the DBRA and experimental 

data under rent pressure values is negligible in high values of power, such that it cannot 

be detected in the profile. 

  

Figure 9. Voltage–current profile of the proposed DBRA and its confirmation with the experimental
data by various pressure conditions.

According to Figure 9, the error amount between the DBRA and experimental data is
negligible in high values of voltage, such that it cannot be detected in the profile. Finally,
Figure 10 illustrates how the power–current profile provides a satisfying confirmation with
the experimental data by various pressure.
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Figure 10. Power–current profile of the proposed DBRA and its confirmation with the experimental
data by various pressure conditions.

As seen in Figure 10, the power–current error between the DBRA and experimental
data under rent pressure values is negligible in high values of power, such that it cannot be
detected in the profile.

6. Conclusions

The current study proposed a new optimal methodology for efficient identification
of the undetermined parameters in the solid oxide fuel cell models. The idea was to
lessen the sum of square error between the empirical data and the model output data.
The minimum error value in this study was provided with the help of a new developed
version of the Battle Royale algorithm to achieve results with higher accuracy and better
convergence. The reason for using this version of the Battle Royale algorithm was to attain
results with higher accuracy and better convergence. The designed method was then
performed on a 96-cell SOFC stack under different temperature and pressure values and
its achievements were compared with some of the latest methods to show the proposed
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method’s effectiveness. The results in the presented method showed high accuracy of the
presented developed version of the Battle Royale algorithm; however, using an improved
version of the metaheuristic algorithm increases the time complexity of the approach. In
future work, we work on proposing a method to simplify the proposed algorithm to get
lower time complexity. Moreover, the method will be applied to other fuel cells such as
proton-exchange membrane fuel cells to analyze the method’s efficiency.
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