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Abstract: This study aims to analyze the nonlinear relationship between environmental regulation
and carbon emission efficiency and provide scientific reference for achieving the goal for carbon
neutrality at a lower cost. Taking 30 provinces in China, using dual carbon policy as the research
objects, the slacks-based measure–Malmquist–Luenberger (SBM–ML) index method was used to
measure the carbon emission efficiency from 2009 to 2019 and a panel threshold regression model
was established to explore the nonlinear effects of environmental regulation and carbon emission
efficiency in each province. The results show that: (1) during the sample period, there is geographical
variability in CEE, with the eastern coastal provinces having the highest CEE, followed by the
central and western provinces, and the resource-dependent provinces having the lowest CEE and
their energy consumption and utilization efficiency being significantly lower than other provinces;
(2) when the energy consumption intensity is used as a threshold variable, the relationship between
environmental regulation and carbon emission rate is an inverted “U” shape; and (3) when green
technology innovation is used as a threshold variable, the relationship between environmental
regulation and carbon emission rate is a “U” shape. This study provides a new perspective for
improving carbon emission efficiency.

Keywords: environmental regulation; carbon emission rate; SBM–ML; panel threshold model

1. Introduction

Climate change is posing a challenge to sustainable development worldwide. Coun-
tries around the world have set carbon peak and carbon neutralization targets to accelerate
the low-carbon green transformation of energy and actively address climate change, which
is a common global issue [1–3]. China has actively declared and promoted the implemen-
tation of carbon peak and carbon neutralization targets [4,5] and has committed to reach
peak carbon dioxide emissions by 2030. Thus, the Chinese government has successively
implemented a series of environmental policies to limit carbon dioxide emission activi-
ties to guide the market process through the introduction of environmental regulatory
policies and correct the carbon dioxide emission response [1], so as to achieve the goal
of sustainable and coordinated development between China’s economic growth and the
environment [6,7]. However, scholars still fail to reach a consensus on the necessity and
effectiveness of environmental regulation in reducing carbon emissions [8]. Therefore, a
scientific assessment and cause analysis of the current stage of carbon emissions and the
identification of a reasonable path to reduce emissions in the future have become an urgent
issue for academics and politicians. At the same time, it is of great importance to accelerate
China’s low-carbon transformation and achieve the carbon peak target at an early date.
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As an important evaluation standard of low-carbon economy, carbon emission ef-
ficiency is directly related to the degree of coordination between economic growth and
sustainable development [9]. Scholars from various countries have carried out research
on the impact of carbon emission efficiency in various respects and have achieved fruitful
results, among which the influencing factors of carbon emission efficiency are mainly
concentrated in countries, provinces, regions, enterprises and industries [10], as shown in
Table 1. Studies have confirmed environmental regulation [11,12], energy consumption
intensity [13–15], green technological innovation [16–18], spatial spillover [19], evaluation
of influencing factors [20] and the relationship between environmental regulation and
carbon emissions [21]. Few studies have studied the relationship between environmental
regulation and carbon emission efficiency. The relationship between environmental reg-
ulation and sustainable development has always been a controversial topic in academic
circles [22] because it affects many important economic development policies.

Table 1. Studies on measuring carbon emission efficiency.

Authors Method Scope of Research Input Desirable Output Undesirable Output

Teng et al. (2021) [23] Modified dynamic
SBM model 30 provinces in China Population,

Energy GDP CO2 emissions

Li et al. (2019) [24] DEA-Malmquist 28 provinces in China Capital, Labor,
Energy GDP CO2 emissions

Xie et al. (2021) [25] Super-SBM 59 countries Capital, Labor,
Energy GDP CO2 emissions

Zhang et al. (2022) [26] SBM the Yangtze River
Economic Belt

Capital, Labor,
Energy GDP CO2 emissions

Wen et al. (2022) [27] Super-SBM 266 Chinese cities Capital, Labor,
Energy GDP CO2 emissions

Dong et al. (2022) [28] SE-SBM 32 developed
countries

Capital, Labor,
Energy Regional GDP CO2 emissions

Niu et al. (2022) [29]
Three-Stage

SBM-Undesirable
Model

30 provinces in China Capital, Labor,
Energy

Gross regional
product CO2 emissions

Environmental regulation, as one of the important policy tools for China to achieve
its sustainable development strategy, plays an important role in promoting low-carbon
economy and social transformation [30]. Environmental regulation is a kind of restraint abil-
ity, which achieves the purpose of protecting the natural environment by controlling and
constraining various behaviors of economic entities that pollute the environment. Environ-
mental regulation tools include not only legal and policy tools, such as the formulation of
pollutant discharge permits and penalties for polluting enterprises, but also market-based
tools, such as pollution rights trading, environmental taxes and environmental subsidies,
and voluntary awareness-based tools, such as public supervision and advice. The sample
for this article is each province in China and aims to make management recommendations
for the government in each province, so we choose to study environmental regulation from
the perspective of the government. Previous studies have found that there is spatial hetero-
geneity in carbon emission efficiency under different levels of environmental regulation
and in different regions [2]. This also means that improving carbon emission efficiency is
an inevitable trend. How to improve the impact of environmental regulation on carbon
emission efficiency has become a research focus. In short, in the context of global carbon
peak and carbon neutrality, environmental regulation has become an important means for
China to achieve the goal of dual carbon policy, ease the crisis of climate change, address
the issue of energy security and improve environmental quality. Provincial development
is the core platform of modern economic growth and an important starting point for re-
ducing carbon emissions and improving carbon emission efficiency to realize China’s dual
carbon policy. Therefore, the objective of this study is to explore the nonlinear impact of
environmental regulation on provincial carbon emission efficiency in China. By comparing
the direction and degree of impact under different threshold variables, it can provide a
reference for decision making to achieve carbon neutrality at a lower cost.
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Therefore, in this paper, 30 provinces in China (except Hong Kong, Macao, Taiwan and
Tibet) are selected as the research objects and their carbon emission efficiency from 2009
to 2019 is measured by using the method of the Malmquist–Luenberger index based on
slacks-based measure’s directional distance function (SBM–ML). Then, a panel threshold
regression model is established with energy consumption intensity and green technology
innovation as threshold variables and the relationship and influencing factors of these
variables on provincial carbon emission efficiency are analyzed. This will not only provide
empirical evidence for optimizing the low-carbon green transition path and fulfilling
the goal of carbon neutrality, but also provide policy recommendations for low-carbon
development research in developing countries under the dual carbon goal (Figure 1).
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2. Literature Review
2.1. Environmental Regulation

Environmental regulation (ER) mainly refers to the institutional arrangement in which
the government restrains public behavior by means of policies and regulations, economic
measures and market mechanisms, in order to protect the environment [15]. There are
two main methods to measure environmental regulation. One is the single-index method,
such as pollutant emission [31], emission fee [32] and the proportion of environmental
protection input to GDP [33]. These indicators are pollution-control cost indicators, which
reflect the intensity of environmental regulation; that is, the higher the cost of pollution
control, the greater the intensity of environmental regulation. Anyone of them can be
used to represent environmental regulation constraints. The other is the composite index
method. The comprehensive index of environmental regulation can be constructed by five
single indexes, namely, wastewater discharge compliance rate, sulfur dioxide removal rate,
solid waste, comprehensive utilization rate, soot removal rate and dust removal rate [34].
This comprehensive index reflects the effect and level of environmental regulation.

The research on environmental regulation in academic circles mainly focuses on the
“Paradox of Green”. Sinn [30] developed the concept of the “Paradox of Green”, arguing
that the more carbon taxes there are, the higher the resource owners’ expectations of
future resource tax increases, thus, increasing short-term extraction and accelerating global
warming. Grafton’s [35] analysis of U.S. carbon emissions data from 1981 to 2011, which
concluded that biofuel subsidies would increase fuel extraction rates and carbon emissions
and would also confirm the “Paradox of Green”. Others deny the existence of “Paradox
of Green “, with academics arguing that governments can limit corporate emissions by
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setting strict emission standards [36]. At the same time, technological innovation based on
environmental regulations also contributes to the realization of energy conservation and
emission reduction targets [37]. In addition, Zhang’s [21] research shows that there is an
inverse “U” relationship between environmental regulation and carbon emissions. Only
when a certain threshold is crossed will the impact of environmental policies on carbon
emissions change from positive to negative. This kind of research believes that the influence
of environmental regulation is nonlinear, which is different from the first two views.

2.2. Carbon Emission Efficiency

Carbon Emission efficiency (CEE) is a complex concept, involving economy, environment,
region and other factors, which is defined by academia from perspectives of single factor
and total factor at present. Defining from the perspective of single-factor mainly refers to
measuring carbon emission efficiency from three single-factor indicators, namely, carbon
productivity [38], carbon index [39] and carbon emission intensity [40]. The calculation of
carbon emission efficiency index from the single-factor perspective is simple and easy to
understand, but the contribution of other factors is ignored. Therefore, scholars begin to
define carbon emission efficiency from the perspective of total factor. For example, Zaim and
Taskin [41], on the basis of taking carbon emissions as an undesirable output, put forward a
comprehensive evaluation index of carbon emissions to explore carbon emission efficiency.

Defining from this perspective refers to measuring carbon emission efficiency from
the total-factor perspective and can be measured by stochastic frontier analysis (SFA) and
data envelopment analysis (DEA), both of which have different characteristics. SFA is a
parameter based on regression analysis and its estimated results depend upon the setting
of production function. For example, Jin, Kim [42] and Wang et al. [43] all adopted the SFA
method to calculate carbon emission efficiency in different countries and industries. DEA is
a non-parameter without the assumption of the form of production function in advance. In
the current study on carbon emission efficiency, most scholars regard carbon emissions as
undesired output and use the improved DEA model to calculate and evaluate the efficiency.
The slacks-based measure (SBM) model proposed by Tone [44] is a further improvement on
the traditional model. It not only considers the influence of input and output slack variables
on production efficiency but also correctly distinguishes the quality of output. On this basis,
Gao et al. [45] extended the input–output model to the field of environmental economics,
estimated China’s carbon emission efficiency by using the SBM model and measured the
calculated carbon emission efficiency and the direct carbon emission efficiency, respectively.

2.3. Green Technological Innovation

“Green technology” puts all the technologies, crafts or products that can achieve
energy saving and emission reduction together [46]. Scholars interpret the concept of green
technology innovation mainly from two aspects. Firstly, based on the whole process of
production, the connotation of green technology innovation is summarized by describing
the process from a systematic perspective. According to the Organization for Economic
Co-operation and Development (OECD), green technology innovation refers to the creative
behavior of developing or improving new products, crafts and marketing methods, without
the purpose of improving the environment. Secondly, based on the characteristics of inno-
vation, green technology innovation is defined by summarizing its main characteristics [47].
James et al. [48] defined green technology innovation as a new product or process that
simultaneously reduces industrial pollution, improves the profits and increases the vitality
from a microscopic perspective.

The existing literature research on green technology innovation is from two perspec-
tives. Firstly, from the perspective of management innovation, scholars combine green
technology innovation with industry development and they believe that green technology
innovation plays a crucial role in the sustainable development of the industry. They have
explored the impact of green technology innovation on the environment through manufac-
turing [17], industrial industry [49] and other industries. Secondly, from the perspective of
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technical innovation, Wang et al. [50] explored the inhibition effect and path of informal
environmental regulation on air pollution based on the panel data of 285 Cities in China
from 1998 to 2018.

2.4. Energy Consumption Intensity

Energy consumption intensity refers to the amount of energy consumed per unit of
economic output. Higher energy consumption intensity means that producing a unit of
output requires more energy consumption, which is a manifestation of low energy efficiency.
However, lower energy consumption intensity means less energy consumption and high
energy efficiency to produce one unit of output. Energy consumption intensity varies
in regions, industries and years. Linwang [51] discovered that China’s energy intensity
decreased considerably during 2000–2016. From the perspective of regional differences,
countries with higher Gross Domestic Product (GDP) and smaller population tend to have
lower energy intensity values [52] and the energy intensity in inland areas is usually higher
than that in coastal areas [21].

The important goal of energy conservation and emission reduction [53] is to reduce
the energy consumption intensity in the production process. Starting with the factors
affecting energy consumption intensity, scholars studied the impact of some factors, in-
cluding industrialization intensity, opening up [54], relative energy price [55], total-factor
productivity [56], technological improvement [57] and other factors. The result shows that
these factors as opening up, technological innovation and so on can improve the energy
consumption intensity of a region, while the increase in relative energy prices and economic
growth based on the increase in total-factor productivity will reduce the energy intensity.

3. Research Methods and Data
3.1. Panel Threshold Model

Threshold regression model is a nonlinear econometric model, which estimates the
significance of parameters to divide the sample group by the estimated threshold value.
Hansen proposed a panel data threshold regression model based on the static panel thresh-
old model. By combining the regression model and the piecewise function, threshold
variables are set into it to estimate and test the threshold value and threshold effect [58].
The panel threshold model avoids the randomness of traditional panel regression in group-
ing. It determines the threshold number endogenously by the number of samples and
estimates the threshold value and tests its significance according to the characteristics
of samples. This helps to overcome the bias of the supervisor in setting the structural
mutation point. In order to explore the nonlinear effect of environmental regulation on
carbon emission efficiency, this paper introduces carbon emission efficiency, environmental
regulation and related threshold variables and this paper introduces a series of control
variables to avoid the estimation bias caused by missing variables and, finally, constructs
the following panel threshold model:

CEEit = µi + β1ERit I(Qit ≤ γ1) + β2ERit I(γ1 < Qit ≤ γ2) + β3ERit I(Qit > γ2) + αZit + εit (1)

where, i represents province, t represents Year, CEEit represents carbon emission efficiency,
ERit represents environmental regulation, β1, β2 and β3 are regression coefficients, Qit is
threshold variable and γ1, γ2 is threshold value to be estimated. I(·) is indicative function,
taking 1 when there is a threshold value and taking 0 when there is no threshold value. µi
is characteristics value of the observed value, Zit is control variable, α is control variable
coefficients and εit is stochastic disturbance. Equation (1) is a double-threshold model. If
there is no estimate γ1 < Qit ≤ γ2 in the middle, it is a single-threshold model.

Taking energy consumption intensity and green technology innovation as threshold
variables, this paper discusses the nonlinear relationship between environmental regulation
and carbon emission efficiency and constructs a double-threshold model [24,28], which is
specifically expressed as Model (2) and Model (3). Model (2) takes energy consumption
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intensity (EI) as the threshold variable and Model (3) takes green technology innovation
(GTI) as the threshold variable.

CEEit = µi + β1ERit I(EIit ≤ γ1) + β2ERit I(γ1 < EIit ≤ γ2) + β3ERit I(EIit > γ2) + αZit + εit (2)

CEEit = µi + β1ERit I(GTIit ≤ γ1) + β2ERit I(γ1 < GTIit ≤ γ2) + β3ERit I(GTIit > γ2) + αZit + εit (3)

3.2. Variable Setting
3.2.1. Explained Variable: Carbon Emission Efficiency (CEE)

DEA method is widely used in efficiency measurement but in the traditional DEA, it
is difficult to distinguish good from bad output, that is, it can not correctly deal with bad
output. The SBM direction distance model proposed by Tone is a further improvement on
the traditional model [44]. It not only considers the impact of input and output relaxation
variables on production efficiency, but also correctly distinguishes the quality of output.
On this basis, this paper introduces the concept of intertemporal dynamics, adopts the
SBM–ML index model containing undesirable output and measures China’s provincial
carbon emission efficiency under the condition of variable return to scale [59]. In this
paper, each province is taken as the production decision-making unit. Assuming that
each province has N inputs X = {x1, x2, . . . , xn} ∈ R+

N , which can produce Q1 desirable
outputs Y = {y1, y2, . . . , yn} ∈ R+

Q1 and Q2 undesirable outputs B = {b1, b2, . . . , bn} ∈
R+

Q2 . Under the condition of variable returns to scale, each province contains the possible
set of desirable outputs and undesirable outputs Pt(x) = {yt, bt} in the year t, then the
SBM directional distance function of the province i in the year t is:
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V
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i
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(4)

where min(·) is minimum function value and ρ̂’s numerator and denominator, respectively,
represent the average distance between input and output and the production frontier.
sx

n, sy
q1 , sb

q2
denote the slack variable, respectively, and zt

i is weight vector. Further, the
SBM–ML index for two consecutive years t and t + 1 is constructed as follows:

(SBM−ML)t+1
t =

[
Dt

V(xt+1, yt+1, bt+1)

Dt
V(xt, yt, bt)

×
Dt+1

V (xt+1, yt+1, bt+1)

Dt+1
V (xt, yt, bt)

]1/2

(5)

where SBM−ML > 1 means an increase in carbon emission efficiency and SBM−ML < 1
means a reduction in carbon emission efficiency.

According to the existing literature [25,60], this paper selects the number of urban
employments in each province from 2008 to 2019 as labor input, adopts the perpetual
inventory method [61] to account for the fixed capital stock in each province as capital
input, considers the depreciation of fixed capital stock with a depreciation rate of 9.6% and
selects the total energy consumption as energy input; the desirable output is expressed
with regional GDP, which is calculated and adjusted to real GDP using 2008 as the base
period and the undesirable output is expressed with carbon dioxide emissions, which is
calculated with reference to the estimation method of the IPCC Guidelines for National
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Greenhouse Gas Emission Inventories, 2006 edition. The definitions of input and output
variables are detailed in Table 2.

Table 2. Input and output variables.

Variable Definition Source

Input
Labor Input Total Urban Employment China Statistical Yearbook

Capital Input Kit = Ki,t−1(1− δit) + Iit (6) China Statistical Yearbook
Energy Input Total Energy Consumption in Standard Coal China Energy Statistical Yearbook

Desirable Output Regional GDP Adjusted Real GDP on 2008 Base Period China Statistical Yearbook

Undesirable Output CO2 Emission (CO2)ijt =
j

∑
j=1

Rjt × δj × αj × 44
12 (7)

China Energy Statistical Yearbook;
IPCC 2006

In Formula (6), Kit denotes the fixed capital stock of province i in period t, Iit represents
the fixed capital investment of province i in period t and δit represents the depreciation rate.
In Formula (7), Rjt denotes the consumption of the No. j energy in period t, δj denotes the
standard energy consumption conversion factor corresponding to the No. j energy and αj
represents the carbon emission factor corresponding to the energy source.

3.2.2. Core Explanatory Variable: Environmental Regulation

There is no unified standard for the measurement of environmental regulation in
the existing literature and some scholars measure it from the perspective of the intensity
of environmental regulation. Morgenstern uses industry pollution reduction investment
as a measure of environmental regulation [62] and Liu adopts the relative index of the
proportion of industrial pollution control investment in the added value of the secondary
industry to measure environmental regulation [63]. Considering that this paper studies the
impact of environmental regulation on the efficiency indicator, carbon emission efficiency,
this paper chooses the proportion of industrial pollution control investment in the added
value of the secondary industry to measure this indicator.

3.2.3. Threshold Variable

(1) The energy consumption intensity is measured by the proportion of the total energy
consumption of each province in the regional GDP. This indicator is a negative indi-
cator; that is, the higher the economic development level of a region and the more
reasonable the industrial structure, the lower its energy consumption intensity and
the higher the economic and ecological losses [64].

(2) The green technology innovation indicator uses the sum of the number of environ-
mentally friendly inventions and utility models obtained by each province, allowing
it to measure the technological innovation of a province in saving resources, reducing
pollution and achieving clean production, reflecting the overall level and scale of
green technology innovation activities in a region.

3.2.4. Controlled Variable

Referring to related research results, industrial structure, government scale and open-
ness are included as controlled variables in the analysis model to avoid the estimation bias
caused by missing variables.

(1) Industrial structure is applied to measure the proportion of industrial added value
in regional GDP. The secondary industry is a carbon-emission-intensive industry. The
larger the proportion of the secondary industry, the more obvious the scale effect of carbon
emissions. Therefore, the evolution of the industrial structure is closely related to the
total-factor carbon emission efficiency. (2) Government scale is adopted to measure the
proportion of government fiscal expenditure in GDP. Fiscal policies in different regions will
promote the transfer and upgrading of the industrial structure, which will affect the carbon
emission efficiency of each region. (3) Openness is included to measure the proportion
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of total imports and exports in GDP. Opening to the outside world is often accompanied
by technology transfer and pollution emissions. Improvements in the level of opening
to the outside world will inevitably lead to the transfer of international carbon emissions
(Figure 2).
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Figure 2. Variable relationship diagram.

3.3. Data Source

According to the availability of data, 30 provinces (Tibet, Hong Kong, Macao and
Taiwan are excluded because of incomplete data) responding to the dual carbon policy
in China are selected as the research samples and the relevant data from 2008 to 2019 are
selected to calculate the carbon emission efficiency of each province. The calculation data
are from the China Statistical Yearbook and the China Energy Statistical Yearbook; the data
of environmental regulation (ER), green technology innovation (GTI), energy consumption
intensity (EI), industrial structure (IND), government scale (GS) and openness (OP) are
from China Statistical Yearbook (2009–2019), China Energy Statistical Yearbook (2009–2019),
IPCC 2006 and CNRDS database. The descriptive statistical results of each variable are
shown in Table 3. In order to alleviate heteroscedasticity, logarithmic transformation is
carried out for green technological innovation. Table 4 shows the correlation coefficient
and multicollinearity test results among the variables, which illustrates the significant
correlation between variables and shows that the maximum VIF value is 3.18, a number far
less than 10, indicating that there is no multicollinearity.

Table 3. Descriptive statistics of study variables.

Variable Obs Mean Std. Dev. Min Max

CEE 330 0.950 0.149 0.209 1.808
ER 330 0.003 0.003 0.001 0.015
EI 330 0.841 0.451 0.208 2.503

GTI 330 7.315 1.459 3.091 10.874
IND 330 0.370 0.088 0.120 0.508
GS 330 0.243 0.100 0.110 0.593
OP 330 0.275 0.315 0.027 1.447
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Table 4. Correlation coefficients and multiple covariance tests.

CEE ER EI GTI IND GS OP

CEE -
ER −0.261 *** 1.57
EI −0.271 *** 0.598 *** 3.18

GTI 0.211 *** −0.482 *** −0.720 *** 2.48
IND −0.160 *** 0.103 * 0.176 *** −0.039 1.76
GS −0.080 0.352 *** 0.584 *** −0.610 *** −0.390 *** 2.86
OP 0.122 ** −0.290 *** −0.441 *** 0.472 *** −0.147 *** −0.372 *** 1.39

Note: The diagonal is the variance inflation factor. Its maximum value is 3.18 (3.18 < 10) and there is no
multicollinearity. * p < 0.1, ** p < 0.05, *** p < 0.01.

3.4. Panel Unit Root Cointegration Test Results

In order to avoid spurious regression, a unit root test was conducted on the panel
data to increase the stability of the data. The LLC test and IPS test were used for the unit
root test in this paper and the results are shown in Table 5. From the results, it is clear that
some of the variables in the original values have unit roots, indicating that the data are
non-stationary, but all the variables are significant after first-order difference test, indicating
that the variables are first-order stationary.

Table 5. Panel unit root test.

Variable LLC IPS Variable LLC IPS

CEE −6.0512 ***
(0.0000)

−4.4963 ***
(0.0000) ∆CEE −10.2082 ***

(0.0000)
−6.1546 ***

(0.0000)

ER −6.4158 ***
(0.0000)

−5.1893 ***
(0.0000) ∆ER −10.9125 ***

(0.0000)
−8.2653 ***

(0.0000)

EI −0.1708
(0.4322)

2.2708
(0.9884) ∆EI −6.0961 ***

(0.0000)
−5.4924 ***

(0.0000)

GTI −4.1117 ***
(0.0000)

−2.7465 ***
(0.0030) ∆GTI −3.6087 ***

(0.0002)
−7.0964 ***

(0.0000)

IND −3.9973 ***
(0.0000)

−1.8410 **
(0.0328) ∆IND −4.0808 ***

(0.0000)
−4.9391 ***

(0.0000)

GS −5.3745 ***
(0.0000)

0.5773
(0.7181) ∆GS −6.1376 ***

(0.0000)
−4.3890 ***

(0.0000)

OP −6.7039 ***
(0.0000)

−2.5921 **
(0.0048) ∆OP −9.6870 ***

(0.0000)
−4.6144 ***

(0.0000)
Note: ** p < 0.05, *** p < 0.01. Standard errors are in parentheses.

The unit root test shows that the data are first-order integration. Therefore, the cointe-
gration test is conducted in this paper to verify the long-term cointegration relationship
between variables and the results are shown in Table 6. The results show that the original
hypothesis is rejected at the level of 1% significance after passing the Kao test and Pedroni
test, which shows that there is a cointegration relationship between variables.

Table 6. Panel cointegration test.

Kao Pedroni

Modified
Dickey-Fuller t

−7.4182 ***
(0.0000)

Modified
Phillips-Perron t

8.6376 ***
(0.0000)

Dickey-Fuller t −9.1739 ***
(0.0000) Phillips-Perron t −12.0192 ***

(0.0000)
Augmented

Dickey-Fuller t
−3.9415 ***

(0.0000)
Augmented

Dickey-Fuller t
−10.0236 ***

(0.0000)
Note: *** p < 0.01. Standard errors are in parentheses.
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4. The Empirical Test
4.1. Analysis of Carbon Emission Efficiency Results

According to Formula (4) to (7), the carbon emission efficiency of 30 provinces in
China (except Tibet, Hong Kong, Macau and Taiwan) from 2009 to 2019 is calculated and
the average carbon emission efficiency of each province is compared; the results are shown
in Figure 3. Most of the top-ten regions in carbon emission efficiency are coastal regions,
such as Beijing, Fujian, Hainan, Jiangsu, Shanghai and Guangdong. With a high economic
development level and reasonable energy utilization, these regions obtain more desirable
outputs with less inputs. Provinces with middle-level carbon emission efficiency are mostly
distributed in Central, Western and Northeastern China, such as Hebei, Henan, Anhui,
Hunan, Shaanxi, Jilin, Liaoning, Inner Mongolia, Qinghai, Guangxi and other regions,
which have a lower energy utilization rate than the eastern coastal regions in the process of
economic development. At the same time, these areas have taken over the transfer of heavy
polluting industries from the eastern region to promote local economic development. At
the bottom of the list, in terms of carbon emission efficiency, are regions, such as Gansu,
Heilongjiang, Guizhou and Shanxi, which are China’s major resource provinces. These
regions have advantages in resources, such as coal and oil, but this also leads to their high
energy consumption intensity and low carbon emission efficiency.
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4.2. Results of Panel Threshold Regression Analysis
4.2.1. Threshold Effect Test

According to Model (2) and Model (3), the effect of environmental regulation on carbon
emission efficiency was tested with energy consumption intensity and green technology
innovation as threshold variables, respectively. First, the threshold value was estimated
and significance test was conducted. The results are shown in Table 7. From the table, it
can be seen that the p value of the single-threshold test in Model (2) is 0.006 (0.006 < 0.01),
which indicates that there is a single-threshold effect. Then, the double-threshold test was
carried out and the p value of the double-threshold test was 0.044 (0.044 < 0.05), which
indicates that there is a double-threshold effect in Model (2). Similarly, the p value of
the double-threshold test for Model (3) is 0.058 (0.058 < 0.01), indicating that there is a
double-threshold effect for Model (3). Furthermore, Figure 4A,B, respectively, show the
LR plots of the double-threshold estimation with energy intensity and green technology
innovation as threshold variables and Table 8 shows the results of threshold value and
the confidence intervals (at 95% level). The confidence intervals of the four thresholds are
relatively narrow, which can further prove the significant threshold effect, indicating that
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there is a nonlinear relationship between environmental regulations and carbon emission
efficiency in each province.

Table 7. Existence tests of threshold effects for Model (2) and Model (3).

Single Threshold Test Double Threshold Test

Model
(2)

F-value 24.99 15.52
Bootstrap p-Value 0.006 0.044
Crit10, Crit5, Crit1 12.7305, 16.1797, 22.6921 12.1784, 15.1686, 22.2521

BS 500 500
Grid samples 1000 1000

Model
(3)

F-value 32.50 14.17
Bootstrap p-Value 0.000 0.058
Crit10, Crit5, Crit1 12.4546, 14.9838, 24.3737 10.9003, 14.9057, 24.0189

BS 500 500
Grid samples 1000 1000
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Table 8. Estimation results of threshold values for Model (2) and Model (3).

Threshold Lower Upper

Model (2)
Th-21 1.0138 0.9746 1.0139
Th-22 1.7756 1.7620 1.7764

Model (3)
Th-21 6.8469 6.7942 6.8804
Th-22 5.7930 5.6449 5.8021

The estimation results of the threshold effect show that the energy consumption intensity
of coastal regions, such as Beijing, Shanghai, Guangdong, Zhejiang and Jiangsu, has been below
the first threshold value from 2009 to 2019 in the sample of this paper. Yunnan, Sichuan, Henan,
Hebei, Hunan, Chongqing and Heilongjiang were below the first threshold value in 2009–2011 and
Gansu and Guizhou were also below the first threshold value in 2014–2015, which indicates that
these regions are constantly improving their energy utilization efficiency. Shanxi and Qinghai were
below the second threshold value from 2010 to 2014, while Ningxia’s energy consumption intensity
has been higher than the second threshold value, which indicates that these regions pay attention
to energy utilization efficiency. From 2009 to 2019, the capability of green technology innovation in
Beijing, Shanghai, Guangdong, Shandong, Zhejiang and Jiangsu was above the second threshold
value, while central and western regions, such as Sichuan, Chongqing, Henan, Hebei, Hunan
and Hubei, broke through the second threshold value in 2010–2012. The western regions, such as
Yunnan, Inner Mongolia, Guizhou and Gansu, broke through the second threshold in 2015–2018.
It indicates that these regions attach great importance to the role of green technology innovation



Sustainability 2022, 14, 10448 12 of 18

and continuously improve their own capabilities in this respect. Ningxia, Qinghai and Hainan
broke the first threshold value in 2016–2018, indicating that the green technology innovation
capacity of these three provinces needs to be improved.

4.2.2. Estimation Results

Table 9 reports the effect of environmental regulation on carbon emission efficiency in
different threshold intervals for Model (2) and Model (3), respectively. As Table 8 shows,
there is a nonlinear relationship between environmental regulation and carbon emission
efficiency in each province in China. This influence relationship is varied because of external
conditions. For provinces with energy consumption intensity below the first threshold
value of 1.0138, their environmental regulations can promote carbon emission efficiency, but
they cannot pass the significance test. When the energy consumption intensity exceeds the
first threshold value, environmental regulation plays an inhibitory role. When the energy
consumption intensity exceeds the second threshold value of 1.7756, the inhibitory effect of
environmental regulation intensifies and the estimated coefficient decreases from −24.328
to −49.531; for provinces whose green technology innovation capability is below the first
threshold value of 5.7930, their environmental regulation suppresses carbon emission
efficiency improvement. When the innovation capability breaks the first threshold value,
the inhibition effect of environmental regulation weakens and the estimated coefficient
increases from −32.849 to −16.044. When the innovation capability breaks the second
threshold value of 6.8469, the estimated coefficient of environmental regulation rises from
negative to positive and the significance level decreases.

Table 9. Estimation results of the panel threshold model.

Variable Threshold Variable (Q)EI Threshold Variable (Q)GTI

IND −0.845 *** (0.172) −0.707 *** (0.173)
GS −1.747 *** (0.364) −1.897 *** (0.367)
OP −0.090 (0.094) −0.083 (0.093)

ER × I (Q1) 5.035 (6.186) −32.849 *** (4.890)
ER × I (1Q2) −24.328 *** (4.754) −16.044 *** (4.793)
ER × I (Q2) −49.531 *** (7.086) 13.224 ** (6.654)

Cons 1.748 *** (0.137) 1.716 *** (0.136)
Obs. 330 330

Note: ** p < 0.05, *** p < 0.01. Standard errors are in parentheses.

4.3. Robustness Test

To ensure the reliability of the threshold regression analysis results, a fixed effects
model with interaction terms is considered to test the robustness of the results. The
interaction term robustness test involves the following two models:

CEEit = µi + β1ERit + β2(ERit × EIit) + αZit + εit (8)

CEEit = µit + β1ERit + β2(ERit + GTIit) + αZit + εit (9)

In Model (8) and Model (9), the interaction terms of energy consumption intensity
and environmental regulation, green technology innovation and environmental regulation
are added into the general regression model, respectively, which are control variables, and
a fixed effect model with interaction terms is established. The test results are shown in
Table 10. After the interaction term between energy consumption intensity and environ-
mental regulation is added into Model (8), the total influence coefficient of environmental
regulation on carbon emission efficiency is “26.432–36.843EI”, indicating that when en-
ergy consumption intensity is low, environmental regulation promotes carbon emission
efficiency. When energy consumption intensity increases to a certain extent, environmen-
tal regulation restrains carbon emission efficiency and with a further increase in energy
consumption intensity, the inhibition effect is strengthened, which is consistent with the
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conclusion of Model (2). After the interaction between green technology innovation and
environmental regulation is added into Model (9), the total influence coefficient of environ-
mental regulation on carbon emission efficiency is “−85.160–11.059GTI”, indicating that
when the green technology innovation capability is low, environmental regulation inhibits
carbon emission efficiency, but with a further increase in energy consumption intensity, the
inhibition effect is weakened. When the green technology innovation capacity is improved
to a certain extent, environmental regulation promotes carbon emission efficiency, which is
consistent with the conclusion of Model (3). Through the test of two groups of interactive
terms, it is proved that the result of the threshold regression model is robust.

Table 10. Robustness test results.

Variable Model (8) Model (9)

IND −0.837 *** (0.220) −0.724 *** (0.210)
GS −1.670 *** (0.446) −1.852 *** (0.656)
OP −0.053 (0.046) −0.051 (0.049)
ER 26.432 ** (10.300) −85.160 ** (38.308)

ER × EI −36.843 *** (9.883)
ER × GTI 11.059 * (5.491)

Cons 1.718 *** (0.164) 1.713 *** (0.195)
Obs. 330 330

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are in parentheses.

5. Discussion

Most of the existing studies focus on the impact of environmental regulation and
carbon emissions, but in the context of climate change, carbon emission efficiency can reflect
the coordinated relationship between economic growth and carbon emissions [65]. Scholars
have also paid attention to the study of carbon emission efficiency. After verification, the
research results of this paper are applicable to all provinces in China and provide scientific
basis for improving carbon emission efficiency in Chinese provinces [28]. Specifically,
the paper analyzes the carbon emission efficiency of China’s 30 provinces. This paper
also discusses the nonlinear relationship between environmental regulation and carbon
emission efficiency, focusing on the three findings below.

Firstly, by establishing the input–output index system, this paper measures the carbon
emission efficiency of 30 provinces in China from 2009 to 2019 by using the SBM–ML
index method and compares the average value of 30 provinces, which is consistent with
the research conclusions of Lan and Wang [11]. The eastern coastal regions, such as
Beijing, Fujian, Jiangsu, Shanghai and Guangdong, transferred energy-consuming and
high- polluting industries to the central and western regions and they improve the efficiency
of human resource, capital, as well as energy utilization and carbon emission. In order to
promote their economic development, Hebei, Henan, Anhui, Hunan and Shaanxi have
taken over the industrial transfer from eastern regions. However, this method ignores
carbon emissions to some extent, increasing their undesirable output. The carbon emission
efficiency of these regions is lower than that of eastern coastal regions, while regions, such
as Shanxi, Guizhou, Gansu and Heilongjiang, are rich in miner and petroleum resources
and their residents use mineral and petroleum resources as their businesses. As a result,
their energy consumption intensity is high and industrial transformation is difficult, so the
carbon emission efficiency of these regions is relatively low.

Secondly, the change in energy consumption intensity affects the carbon dioxide emis-
sions and also the regional carbon emission efficiency. Few studies have explored the impact
of energy consumption intensity on the relationship between environmental regulation and
carbon emission efficiency. Therefore, this paper establishes a panel thresh- old model using
energy consumption intensity as a threshold variable to carry out the study. The results find
that the energy consumption intensity in 13 regions, Shanghai, Beijing, Guangdong, Jiangsu,
Zhejiang, Fujian, Shandong, Shaanxi, Anhui, Jiangxi, Hainan, Guangxi and Hainan, was
below the first threshold value of 1.0138 from 2009 to 2019. These regions are relatively energy
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deficient and are actively pursuing the “dual control” goal and their environmental regulations
contribute to carbon emission efficiency. However, it does not pass the significance test as the
energy consumption intensity in these regions seems to have remained low during the sample
period, and the intensity of environmental regulations and carbon emission efficiency have
little relationship with energy consumption intensity. The effect of environmental regulations
on carbon emission efficiency changed from negative to positive during the sample period in
11 regions: Hebei, Liaoning, Jilin, Heilongjiang, Henan, Hubei, Hunan, Chongqing, Sichuan,
Yunnan and Gansu. These regions took over the industrial transfer from Eastern China and
increased energy consumption intensity in earlier years, but in recent years, they have contin-
ued to pay attention to the control and utilization of energy consumption while promoting
economic growth. Shanxi, Qinghai and Guizhou are ahead of other regions in terms of total
energy consumption and more difficult industrial transformation, but they still control energy
consumption and actively explore industrial optimization and transformation, and the inhibit-
ing effect of their environmental regulations on carbon emission efficiency diminishes during
the sample period. Due to high energy consumption and slow economic growth, as well as
the ineffective implementation of the “dual control” policy, Ningxia’s energy consumption
intensity has always exceeded the second threshold, while Inner Mongolia and Xinjiang are
located between the first and second thresholds, whose environmental regulations will inhibit
improvements in carbon emission efficiency and Ningxia’s inhibiting effect is even stronger.

Thirdly, green technology innovation capability refers to a technology, process or
product that can promote carbon emission reduction, which is an important factor affecting
carbon emission efficiency. In order to explore the influence of green technology innovation
on the relationship between environmental regulation and carbon emission efficiency, this
paper establishes a panel threshold model, with green technology innovation as a threshold
variable to conduct the study. The results find that Hainan, Qinghai and Ningxia actively
respond to the policy of green low-carbon transition. Nevertheless, due to the lack of talent,
capital, technology and other innovation resources, their green technology innovation only
broke through the first threshold in 2015–2017 and the negative influence of their environ-
mental regulation on carbon emission efficiency weakened. Seven provinces, Shanxi, Inner
Mongolia, Guangxi, Guizhou, Yunnan, Gansu and Xinjiang, have continuously improved
their green technology systems and policies and their green technology innovation capa-
bilities have significantly improved and optimized their carbon emission efficiency. The
impact of environmental regulations on carbon emission efficiency in these regions has
turned from negative to positive. The 12 central and northeastern provinces, Tianjin, Hebei,
Jilin, Heilongjiang, Anhui, Fujian, Henan, Hubei, Hunan, Chongqing, Sichuan and Shaanxi,
broke through the second threshold earlier. The impact of environmental regulations on car-
bon emission efficiency in these regions was achieved earlier from inhibition to promotion
in the context of green transformation in key supported industry sectors, drawing on the
experience of coastal regions and using their own excellent innovative resources to enhance
capacity. Beijing, Shanghai, Guangdong, Shandong, Jiangsu, Zhejiang and Liaoning focus
on green technology innovation capability to achieve sustainable development and on
using technology innovation to achieve carbon emission efficiency at a lower cost and their
regional environmental regulations have promoted carbon emission efficiency.

6. Conclusions

This paper analyzed the impact of environmental regulation on provincial carbon
emission efficiency through relevant data from 30 provinces. The concept and related
theories are explained and considered. Through empirical analysis, the author finds that
different energy consumption intensity and green technology innovation capability have a
double-threshold effect on provincial carbon emission efficiency, at levels of 5% and 10%,
respectively. In general, there is a nonlinear relationship between environmental regulation
and carbon emission rate in each province. When considering the external condition of
energy consumption intensity, the relationship between environmental regulation and
carbon emission efficiency would be shown as an inverted “U” shape. When the external
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conditions of green technology innovation are considered, the relationship between en-
vironmental regulation and carbon emission efficiency would be shown as a “U” shape.
This further verifies the view of some scholars that the impact of environmental regulation
on carbon emission efficiency is uncertain and China still needs to find the appropriate
intensity of environmental regulation to maximize the role of environmental regulation.

6.1. Policy Implications

Based on the analysis results, this paper offers the following suggestions.
Firstly, China should improve the efficiency of human resource, capital and energy and

further implement laws on carbon emissions. Provinces in Central, Western and Northeast
China have formulated measures to introduce talent. They advocate local enterprises
to make full use of capital resources and encourage enterprises to actively implement
the “dual control” policy of energy consumption to improve the utilization efficiency of
various resources. At present, China lacks regulations on “Undesirable Output”, that is,
carbon dioxide emissions, so Chinese provinces can regulate carbon dioxide emissions
by improving laws and policies, which will help provinces to further constrain their own
behavior and take measures to achieve emission reduction.

Secondly, all regions in China should continuously reduce their own energy con-
sumption intensity and, at the same time, adjust the intensity of environmental regulation
accordingly, so as to effectively exert the positive effect of environmental regulation on
carbon emission efficiency. Sichuan, Chongqing, Hunan, Hubei and other central and
western regions have accelerated industrial upgrading and transformation. These regions
actively promote the transformation of labor-intensive and resource-intensive industries
to technology-intensive and capital-intensive industries and continue to encourage the
development of low-carbon green industries. Gansu, Qinghai, Xinjiang and many other
provinces can combine regional advantages to develop wind and solar energy to reduce
energy consumption. Decision makers in these regions should continue to seek to reduce
the intensity of regional energy consumption, while strengthening the intensity of environ-
mental regulation accordingly, so as to have a positive impact on carbon emission efficiency
and seek a coordinated path between regional economic benefits and environmental pollu-
tion. The coastal areas of East China should continue to maintain low energy consumption,
strengthen support for sustainable development in industrial sectors and continuously
strengthen environmental regulation to improve carbon emission efficiency.

Thirdly, Chinese provinces should strengthen their green technology innovation ca-
pabilities and determine the intensity of environmental regulation according to their own
green technology innovation levels. The central and western provinces with weak green
technology innovation capabilities should actively promote the green transformation of
industries, attach importance to and support the development of emission reduction tech-
nologies, advocate clean energy and actively promote green environmental protection
technologies. With improvements in green technology innovation capabilities, provinces
should appropriately strengthen the intensity of environmental regulation to play a pos-
itive role in carbon emission efficiency and, at the same time, use green technology to
reduce unnecessary expenditure in environmental regulation and increase carbon emission
efficiency at a low cost. The eastern coastal areas with strong green technology innovation
capabilities should continue to break through the high level of green technology innovation,
continue to strengthen environmental regulations and improve carbon emission efficiency.

6.2. Outlook and Deficiencies

In this paper, there are still some areas that need to be further improved. Firstly,
although the applicability of this study to Chinese provinces has been validated, it is
necessary to test whether the conclusions are applicable to different industries and different
countries. In future studies, sample data from other countries or a wider range of industries
can be collected to explore the general impact mechanism of environmental regulation
on carbon emission efficiency. Secondly, environmental regulation can be measured from
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two aspects: intensity and effect. Different types or different measurement standards may
have completely different impacts on carbon emission efficiency. However, this study
only considers the impact of the intensity of environmental regulation on carbon emission
efficiency. Future studies may measure environmental regulation from different angles to
further improve the impact mechanism of environmental regulation on carbon emission
efficiency.
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