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Abstract: As the world’s most widely cultivated fruit, citrus in China is increasingly suffering from
ongoing climate change, which affects the sustainability of agricultural systems and social economy.
In this study, we linked climate factors to citrus quality and yield and established projection models to
elucidate the impact of future climate change. Then, we used the ensemble mean of 19 Coupled Model
Intercomparison Project 6 (CMIP6) models to project the 2021–2040 and 2041–2060 climate changes
relative to the historical baseline 1995–2014 period under different shared socioeconomic pathways
scenarios (SSP2-4.5, SSP5-8.5). The results show that the monthly mean diurnal temperature range in
July had the greatest influence on quality, and monthly mean temperature in October, monthly mean
relative humidity in October, monthly mean minimum temperature in November and monthly mean
maximum temperature in September had the greatest influence on yield at the growth and ripening
stages. Moreover, the quality and yield of citrus present different characteristics in terms of change
in cultivation areas in the future. The quality of Sichuan, Zhejiang and Fujian Provinces in China
will become significantly better, however, Hubei, Guangdong and Guangxi Provinces it will become
worse. Surprisingly, yield will increase in all plantations due to future suitable climate conditions for
citrus growth and ripening.

Keywords: citrus; climate change; quality; yield; future projection

1. Introduction

Climate change brings great challenges to natural resources and affects the sustainable
development of human society [1]. It is now widely recognized as the greatest global
threat of the 21st century [2]. Among many aspects of impacts, agriculture is the most
sensitive sector [3,4]. In this changing environment, the production of many crops is
affected, which is related to world food security and global stability [5–10]. As a result,
researchers in agriculture have made it a priority to understand the relationship between
crops and climate variables [11–13] and to predict crop yield and quality under climate
change scenarios [14]. By correctly recognizing the contribution of climate change to crops
and adopting effective adaptation measures to agriculture, human beings can make better
use of improving production and resistance to adverse effects, maximizing the increase in
output, reducing losses, and realizing potential benefits [15–17].

Citrus is the world’s largest cultivated fruit crop, with an annual output of approxi-
mately 158 million tons, accounting for approximately 18% of the total fruit output [18,19].
As one of the most important crop types, citrus is an important source of income for farmers
and is favoured by consumers for nutritional value [20,21], playing a significant role in
people’s livelihood, not to mention citrus juice. China has the largest population and is the
largest citrus producer in the world, with an annual output of 44 million tons, accounting
for almost 28% of global citrus production [18]. Thus, the production of citrus in China
plays a vital role in the world citrus pattern and needs to be duly considered. However,
China is increasingly suffering from ongoing climate change, and no part of the Earth is
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immune to this vulnerability, which could have a major effect on citrus [22,23]. Admittedly,
the direction and degree of climate change in terms of influencing citrus varies locally due
to regional differences in natural responses and anthropogenic factors.

The growth, development, flowering and fruiting of citrus are sensitive to climate
conditions, especially in their yield and chemical quality [24–27]. Previous studies re-
vealed that climate change in China affects the yield of citrus. Under the background of
global warming, the citrus yield may be affected by climate risk in subtropical regions of
China [28]. Soil erosion in citrus orchards caused by increasingly frequent and intense
extreme precipitation is the main cause of productivity decline [29]. Additionally, the
climate suitability of citrus affects the growth and final yield of citrus due to the change
of temperature and precipitation suitability [30]. However, studies on the effect of citrus
quality are rare. With advances in agricultural technology [31,32], climate change may have
a greater impact on quality than yield. The contents of Vitamin C, naringin and hesperidin
decreased significantly, while chlorogenic acid and caffeic acid increased during frozen
temperatures [33]. The highest content of peel was observed from October to March and
the Vitamin C content decreased during the ripening process [34]. Additionally, essential
oils vary in content in different months [35]. Therefore, the development of this study is
necessary to reveal the impact of future climate change on citrus quality, which is a factor
that is considered to be as important as yield.

To project future citrus production, Tubiello [36] used two different global circulation
model (GCM) scenarios to simulate climate change effects on US citrus production and the
result showed that simulated fruit production benefited greatly from the projected climate
change, as yields will increase by 20–50%. In this study, we combined empirical regression
models based on climate factors and citrus quality or yield with datasets in different
CMIP6 (Coupled Model Intercomparison Project 6) models in response to different shared
socioeconomic pathways (SSPs) of future climate changes (SSP2-4.5, SSP5-8.5) on citrus. The
aim of this study was to investigate the changes in citrus quality and yield in China in the
near future (2021–2040) and medium future (2041–2060) relative to the historical baseline
period (1995–2014) [37,38]. These results may provide useful information for perennial
horticultural crops to meet the challenge of climate change and can be generalized to other
parts of the world.

2. Materials and Methods
2.1. Study Area

The study areas include 79 meteorological stations in 11 major cultivation provinces in
China, which are Sichuan, Chongqing, Hubei, Yunnan, Guizhou, Guangxi, Hunan, Jiangxi,
Guangdong, Fujian and Zhejiang as shown in Figure 1 [39]. Typically, citrus production
in these 11 provinces account for 98% of the total citrus production (45.85 million tons),
and the cultivation areas account for 98% of the total citrus cultivation areas (2.62 million
hectares) across China based on the National Bureau of Statistics of China (NBSC) [40].

2.2. Data Sources
2.2.1. Statistical Data

Citrus quality refers to the exterior quality and internal quality. The most impor-
tant quality, in addition to fruit size, shape, colour and other economic values based on
appearance, is chemical composition, mainly related to the sweet, sour or bitter taste of
fruit, as well as the of active ingredient contents. The chemical composition of citrus
fruit includes the following two categories in addition to water: the first is insoluble in
water, such as cellulose, hemicellulose, and propectin, and the other includes water soluble
substances, called total soluble solid (TSS). TSS is one of the main factors determining
fruit quality [41–43], which reflects the flavor and can directly determine the commercial
value of fruit. In this study, we searched relevant published articles containing citrus TSS
data from the China National Knowledge Infrastructure (CNKI) and finally selected 125
available TSS data. TSS data combined with information from the China Meteorological
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Station (CMS) are listed in the Table S1. Therefore, the climate of citrus cultivation areas
was characterized by the local CMS from the China Meteorological Administration. From
the NBSC data, the citrus production and planting area of each province were obtained to
calculate the yield.
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Figure 1. 79 meteorological stations in citrus cultivation areas.

2.2.2. Meteorological Observation Data

CMS (V3.0) contains the Chinese benchmark and general weather stations, including
the main information of 2474 sites and the basic meteorological observation data since
January 1961. We extracted meteorological data from 11 provinces in major citrus producing
areas, including mean temperature, maximum temperature, minimum temperature, relative
humidity and other variables on a daily scale. Finally, 79 sites were collected from papers
and the data were downloaded from China Meteorological Administration as observational
data and used to construct citrus quality and yield regression models.

2.2.3. CMIP6 Data

The 19 CMIP6 global climate models were used to simulate climate change in the near
future (2021–2040) and medium future (2041–2060) relative to the historical base period
(1995–2014) under SSP2-4.5 and SSP5-8.5 scenarios. The relevant information of 19 CMIP6
global climate models is shown in Table 1. Among them, EC-Earth3 and EC-Earth3-Veg
models have the highest spatial resolution (0.7◦ × 0.7◦), and the CanESM5 model has
the lowest spatial resolution (2.8◦ × 2.8◦). The relative humidity, maximum temperature,
minimum temperature and mean temperature variables of the CMIP6 model were extracted
(there was no simulation of relative humidity variables in the future period in the BCC-
CSM2-MR model; therefore, the relative humidity in the future period was replaced by the
results of 18 model sets).

2.3. Methods

Citrus is an important fruit crop with high economic value and in this study, it was
assumed that when citrus lacks water, artificial irrigation is provided; therefore, the impact
of precipitation was not considered. The distribution of climate factors such as the mean
temperature, minimum temperature, maximum temperature and relative humidity in
different growing areas is significantly different, which often results in different effects of
climate change on citrus fruit quality and yield [25,44]. Diurnal temperature range (DTR)
is the difference between daily maximum temperature and daily minimum temperature,
which can reflect the change characteristics of the interaction and provides comprehensive
information between the two [45,46]. Changes in DTR can convey climate change infor-
mation, which will have an impact on human health, the circulation of the ecosystem, the



Sustainability 2022, 14, 9366 4 of 18

growth of animals and plants, and the use of renewable energy [47]. The DTR described in
this paper is the maximum temperature minus the minimum temperature in 24 h. By using
a correlation analysis, regression models were established for the relationship between
citrus fruit quality and yield and the key climate factors during fruit growth; furthermore,
the crop models of citrus fruit quality and yield were obtained. Lobell [48] considered that
all process models contain some degree of experience or statistical rules, and all statistical
models also contain some hypothesis of crop processes and mechanisms [49–51]. The
change in climate elements has a nonnegligible impact on the growth and development of
crops. Therefore, when crop quality and yield are only determined by climate factors, the
response characteristics of crops to climate elements should be understood. Statistical mod-
els can be used to predict crop responses to climate change [52,53]. By incorporating CMIP6
climate data into crop models, changes in citrus fruit quality and yield were obtained for
different future periods. See the supplementary materials for the flow chart.

Table 1. 19 CMIP6 models used in the study.

CMIP6 Models Institution Spatial Resolution (Lat ∗ lon) Variables

ACCESS-CM2 CSIRO-ARCCSS, Australia 144 ∗ 192 Tas, Tasmax, Tasmin, Hurs
ACCESS-ESM1-5 CSIRO, Australia 145 ∗ 192 Tas, Tasmax, Tasmin, Hurs
BCC-CSM2-MR BCC, China 160 ∗ 320 Tas, Tasmax, Tasmin

CanESM5 CCCma, Canada 64 ∗ 128 Tas, Tasmax, Tasmin, Hurs
CAS-ESM2-0 CAS, China 128 ∗ 256 Tas, Tasmax, Tasmin, Hurs
CMCC-ESM2 CMCC, Italy 192 ∗ 288 Tas, Tasmax, Tasmin, Hurs

EC-Earth3 EC-Earth-Consortium,
European Union 256 ∗ 512 Tas, Tasmax, Tasmin, Hurs

EC-Earth3-Veg EC-Earth-Consortium,
European Union 256 ∗ 512 Tas, Tasmax, Tasmin, Hurs

EC-Earth3-Veg-LR EC-Earth-Consortium,
European Union 160 ∗ 320 Tas, Tasmax, Tasmin, Hurs

FIO-ESM-2-0 FIO-QLNM, China 192 ∗ 288 Tas, Tasmax, Tasmin, Hurs
FGOALS-g3 CAS, China 80 ∗ 180 Tas, Tasmax, Tasmin, Hurs

GFDL-ESM4 NOAA-GFDL, United
States 180 ∗ 288 Tas, Tasmax, Tasmin, Hurs

INM-CM4-8 INM, Russia 120 ∗ 180 Tas, Tasmax, Tasmin, Hurs
INM-CM5-0 INM, Russia 120 ∗ 180 Tas, Tasmax, Tasmin, Hurs

IPSL-CM6A-LR IPSL, France 143 ∗ 144 Tas, Tasmax, Tasmin, Hurs
MIROC6 MIROC, Japan 128 ∗ 256 Tas, Tasmax, Tasmin, Hurs

MPI-ESM1-2-HR MPI-M, Germany 192 ∗ 384 Tas, Tasmax, Tasmin, Hurs
MPI-ESM1-2-LR MPI-M, Germany 96 ∗ 192 Tas, Tasmax, Tasmin, Hurs

MRI-ESM2-0 MRI, Japan 160 ∗ 320 Tas, Tasmax, Tasmin, Hurs

2.3.1. Meta-Analysis

A meta-analysis is a method that can be used to conduct a quantitative and compre-
hensive analysis of research results [54]. In this study, the quality data of fruit was finally
determined by summarizing the research results in the relevant published literature and
conducting repeated screening and averaging of the sample data. The operation process
includes the following four elements: (1) keywords: TSS of citrus, fruit origin and picking
year; (2) unity: recording the data of different varieties of fruit, delimiting the research
area and the research benchmark period so that the data of different producing areas and
different varieties of fruit have uniformity; (3) match external information: according to the
origin of fruit, the relevant information from China meteorological Station was matched,
and the corresponding climate data were extracted; (4) obtain results: data of TSS of citrus
in different years, different producing areas and different climate conditions. The scien-
tific database used in this study was obtained from China National Knowledge Network
(CNKI), with a focus on papers published on climate change, and the exclusion of the
effects of extreme climate events such as drought, flood and frost and human activities
such as technological progress on fruit quality data.
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2.3.2. Correlation Analysis

Correlation analysis is a method used to evaluate the relationship between two vari-
ables and the correlation coefficient indicates the strength of the relationship between
variables [55]. In this study, Pearson’s correlation coefficient calculation method was used
to calculate the correlation degree between the two variables, i.e., citrus quality and yield
with climate factors, for which the formula utilized is as follows:

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

where R represents the correlation coefficient, n is the number of samples, xi and yi are
the values of the ith sample in the sequence of two variables, and x and y are the average
values of the sequence of two variables.

2.3.3. Least Square Estimation

In this study, a unary linear regression equation was used to fit the relationship
between citrus quality and climate factors, and the trend of quality change was defined as
the slope of least square estimation, for which the formula is [55] as follows:

ŷi = kxi + b, i = 1, 2, . . . , n

k =
∑n

i=1 xiyi− 1
n (∑n

i=1 xi)(∑n
i=1 yi)

∑n
i=1 x2

i −
1
n (∑n

i=1 xi)

b = y − kx

y = 1
n ∑n

i=1 yi

x = 1
n ∑n

i=1 xi

where yi represents citrus quality with sample size n, xi corresponds to climate factor, k
represents the regression coefficient term, and b represents the regression constant term.

2.3.4. Bilinear Interpolation and Multimodel Ensemble

To avoid the uncertainties that may occur in a single model simulation, we selected
19 models from the CMIP6 GCMs. Using the bilinear interpolation method, we interpolated
the models with different resolutions on a unified 1◦ × 1◦ grid and obtained the average
result of the multimodel ensemble [56], for which the formula is as follows:

Ensemble =
∑19

i=1 Mi

19

where Ensemble represents the average value of the multimodel result, and Mi represents
the ith model value. Then, by using the method of bilinear interpolation, the average
model data of multiple model sets were uniformly interpolated to the China meteorological
stations outlined in the Supplementary Materials Table S1 to obtain the local climate
information of the meteorological stations simulated by the model [57].

3. Results
3.1. Changes of Quality in the Climate Change Factors
3.1.1. Quality in Relation to Climate Variables

The critical period for the growth and ripening of citrus fruits is from July to December.
During this period, the change in DTR is the main climatic factor affecting the quality
content of fruits [58,59]. Admittedly, a higher day temperature is preferred for the accu-
mulation of sugar and degradation of organic acids in the fruit-ripening process, and a
lower night temperature favours the same under suitable fruit growth conditions [60,61].
DTR can comprehensively reflect the information of maximum and minimum temperature,
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which has a considerable influence on fruit quality. To quantitatively compare the time
period with the maximum correlation with TSS, the maximum temperature and minimum
temperature observed at meteorological stations in different months were used to calculate
the mean values of DTR and conduct a correlation analysis with TSS, as shown in Figure 2.
The results show that DTR is positively correlated with TSS in citrus fruit growth in all
periods and passes the significance test at 0.05. The correlation between the mean value of
the DTR in July and TSS is highest (R = 0.44), and the correlation coefficient of the mean
values of the DTR in the periods from July to August, July to September, July to October,
July to November and July to December remains above 0.3, which is higher than that in
other periods.
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0.05 significance level.

Based on the correlation analysis in Figure 2, the maximum significant positive corre-
lation between the mean for the DTR value in July and the TSS content was obtained to
select the climate factors that most affected the change in TSS content in the key period. A
linear regression equation was obtained, and the quality prediction model was established
as follows:

Q = 0.35 × X1+9.021 (R1 = 0.442, P1 < 0.001)

where Q indicates the TSS content (%); X1 indicates the mean DTR value (◦C) in July; R1 is
the correlation coefficient; and P1 is the significance test index.

The citrus quality prediction model indicates that if the DTR becomes larger, the TSS
content also increases, and the citrus quality is good; otherwise, it becomes worse under
the background of future climate change.
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3.1.2. Changes in the Future DTR

The CMIP6 multimodel ensemble data were used to estimate future DTR changes
in July in 11 provinces in China where citrus cultivation areas are located, as shown in
Figure 3. Compared with the 1995–2014 historical baseline period, the DTR in July of
citrus producing areas in China presents an overall spatial distribution of increase-decrease-
increase from west to east in the 2021–2040 future climate state under the two scenarios,
SSP2-4.5 and SSP5-8.5. Sichuan Province in the west and Zhejiang and Fujian Provinces in
the east show signs of increasing DTRs; however, the DTRs of Hubei, Hunan, Guangxi and
other central regions show decreasing trends. Similarly, in the 2041–2060 mid-future period,
the DTR shows almost the same spatial distribution, and the range of change is larger than
that in the 2021–2040 period. The DTR in the northern part of Sichuan Province increases
above 0.4 ◦C under the SSP5-8.5 scenario. The central regions, such as Guizhou, Hunan
and Jiangxi Provinces, also show signs of increasing DTR trends, but in addition, the other
regions show signs of decreasing DTR changes within 0.2 ◦C under the SSP2-4.5 scenario.
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3.1.3. Changes in the future TSS

The change in DTR in July in the whole region of citrus producing areas obtained
in Figure 3 can be entered into the quality prediction model to calculate the change in
TSS content. Moreover, the spatial grid DTR data calculated by the CMIP6 multimodel
were interpolated to the local meteorological stations, and the spatial distribution map
of TSS content in actual citrus-producing areas is depicted in Figure 4. Consistent with
the spatial distribution in Figure 3, the change in TSS content in citrus also presents a
spatial distribution characteristic of increase-decrease-increase from west to east in the
2021–2040 future climate state under the SSP2-4.5 and SSP5-8.5 scenarios. This phenomenon
indicates that the quality of citrus has a tendency to become better-worse-better in these
corresponding regions. In the 2041–2060 mid-future climate state, the TSS content of citrus
shows a ribbon-like distribution of increasing TSS content in the western, central and
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eastern regions and decreasing TSS content in the southern and northern regions under the
SSP2-4.5 and SSP5-8.5 scenarios. It is suggested that the quality of citrus will change in the
same trend. Sichuan, Zhejiang and Fujian Provinces in terms of citrus quality present good
trends for the entirety of the future situation. Citrus quality in Guizhou, Hunan, Jiangxi,
northern Guangdong and northern Guangxi Provinces will change in the near future to
worse and in the mid-future to good. Citrus produced in Hubei Province is affected by
climate change and shows quality deterioration under different scenarios and in different
future climate states.
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Figure 4. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the TSS content of citrus at the meteorolog-
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mid future (2041–2060) compared with the historical period (1995–2014). The dots indicate citrus TSS
content variations. Blue indicates decreasing change, and red indicates increasing change.

3.2. Changes of Yield in the Climate Change Factors
3.2.1. Yield in Relation to Climate Variables

Ahmad [62] confirmed that citrus fruit growth requires certain temperature conditions,
and the yield is particularly sensitive to temperature. Citrus fruit grows and ripens from
July to December each year, and the climate factors during this period have great effects
on the yield. Consequently, the correlation between climate factors and yield in the above
months was examined, and the correlation coefficient diagram was obtained, as shown
in Figure 5. As seen from the figure, mean temperature in October, relative humidity in
October, minimum temperature in November and maximum temperature in September
have the highest correlation with yield; as a result, the particular climatic conditions were
selected as independent variables to establish a multiple linear regression model and obtain
the prediction of the yield model as follows:

Y = 0.007 × X2 + 0.108 × X3−0.025 × X4 −0.03X5 + 2.482 (R2 = 0.437, P2 < 0.001)
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where Y indicates the yield (10 t/ha); X2 indicates the mean temperature (◦C) in October;
X3 indicates the mean minimum temperature (◦C) in November; X4 indicates the mean
maximum temperature (◦C) in September; X5 indicates the mean relative humidity (%) in
October; R2 is the correlation coefficient; and P2 is the significance test index. The citrus
yield prediction model indicates that mean temperature and minimum temperature have a
positive contribution to yield, while maximum temperature and relative humidity have a
negative contribution under the synergistic effect of various climate factors.
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Figure 5. Correlation coefficient diagram between the monthly mean maximum temperature, mini-
mum temperature, relative humidity and mean temperature for each month from July to December
and yield. The abscissa represents each month, and the ordinate represents the monthly mean climate
variables mentioned above. The correlation coefficients in the figure all passed the significance test at
0.05, and those that did not pass are displayed as blanks.

3.2.2. Changes in the Future Climate Factors

The CMIP6 multimodel ensemble data were used to predict the future changes in four
key climate factors affecting citrus yield under different scenarios and different periods in
the future as shown in Figure 6 (Figure 6a–d). The mean temperature in October shows an
overall increase, as shown in Figure 6a. There is little difference between the simulation
results of the two different scenarios, and the mean temperature range is between 0.5 ◦C
and 1.5 ◦C in 2021–2040. Undoubtedly, the mean temperature range of the SSP5-8.5 scenario
is significantly higher than that of SSP2-4.5 in 2041–2060. The range of mean temperature
shows a phenomenon of increasing with latitude moving northwards in the citrus-growing
areas. Figure 6b show that the mean minimum temperature in November presents signs
of increasing in all regions, and the greatest warming trend is observed for northwestern
Sichuan. In addition, the increasing range of most regions is approximately 0.5 ◦C higher
under the SSP5-8.5 scenario than under the SSP2-4.5 scenario in 2021–2040, and the spatial
distribution of the warming gradient is consistent with that in 2041–2060. In Figure 6c,
the warming effect of the mean maximum temperature in September is approximately
the same as that of the mean temperature in October in Figure 6a, except that the greatest
warming effect shifts from the northwestern to the central and eastern parts of Sichuan.
The mean relative humidity in October increases in the western region and decreases in the
central and eastern regions, as shown in Figure 6d. The spatial pattern is approximately
similar under the two scenarios during different future periods, while the decreasing trend
is almost 0.5% higher in 2041–2060.
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Figure 6. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the various climate factors change in the
near future (2021–2040) and mid future (2041–2060) compared with the historical period (1995–2014).
(a) Mean temperature (◦C) in October. (b) Mean minimum temperature (◦C) in November. (c) Mean
maximum temperature (◦C) in September. (d) Mean relative humidity (%) in October.
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3.2.3. Changes in the Future Yield

According to Figure 6, we can see key climate factor changes to some extent simulated
by CMIP6 models in the future period under two different scenarios, which were entered
into the citrus yield prediction model. Compared with the historical period, the change in
citrus yield at the meteorological site scale in the future is shown in Figure 7. Citrus yield
shows an increasing trend under different conditions, and the yield-increasing effect is
more obvious in 2041–2060 than in 2021–2040, almost doubling the change. The citrus yields
of Hubei, Hunan, northern Guangxi and northern Guangdong Provinces increase with
an increase of 1–2 t/ha under the SSP2-4.5 scenario; however, almost all citrus-producing
areas show an increase of 1–2 t/ha with little difference in yield increase among regions
under the SSP5-8.5 scenario in 2021–2040. In regard to the 2041–2060 period, the yields in
southeastern Sichuan, Hubei and central Hunan Provinces increase by more than 2 t/ha,
and those of Zhejiang and Fujian Provinces almost double, while those of southern Hunan,
northern Guangxi and northern Guangdong Provinces have almost no difference compared
with the 2021–2040 period under the SSP2-4.5 scenario. A yield increase of above 2 t/ha
is observed in most citrus-producing areas except those in Fujian, Yunnan and southern
Sichuan Provinces and is double that from 2021–2040 under the SSP5-8.5 scenario.
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Figure 7. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the yield of citrus at the meteorological site
scale of Chinese citrus-producing areas changes in the near future (2021–2040) and in the mid future
(2041–2060) compared with the historical period (1995–2014). The orange dots indicate yield changes
whose sizes show the degree of change.

3.3. Changes of Quality-Yield in the Climate Change Factors

Quality-Yield (Q-Y) is defined as the total amount of TSS content contained in the yield,
which reflects comprehensive information between the quality and yield changes in the
future in t/ha. The change in Q-Y is shown in Figure 8 combined with the forecast for TSS
content in Figure 4 and the phenomenon of all conditions increasing yield in Figure 6, which
reflects the general change in citrus effective composition TSS content in yield. Although
the quality of citrus in some producing areas is worsening, affected by climate change, Q-Y
still shows an increasing trend with the increase in the citrus yield, which indicates that the
amount of TSS content will improve in the future under the two different scenarios. The
spatial distribution of the Q-Y increase is approximately 0.1–0.2 t/ha despite the obvious
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quality reduction in the central region and almost the same in all planting regions except in
the Zhejiang and Fujian Provinces under the SSP2-4.5 and SSP5-8.5 scenarios in 2021–2040.
Because of the effect of yield increase, Q-Y almost doubles compared with 2021–2040 under
the SSP2-4.5 scenario in 2041–2060. Although the quality obviously declines in Hubei
Province, the Q-Y increases by approximately 0.2 t/ha. The increasing effect of Q-Y is weak
in Zhejiang and Fujian Provinces and some other places at approximately 0.1–0.2 t/ha. The
decline in quality in the central and southern regions does not affect the Q-Y increase by
more than 0.2 t/ha under the SSP5-8.5 scenario in 2041–2060.
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Figure 8. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the quality-yield of citrus at the meteoro-
logical site scale of Chinese citrus-producing areas will change in the near future (2021–2040) and in
the mid future (2041–2060) compared with the historical period (1995–2014). The orange dots indicate
quality-yield changes, whose sizes show the degree of change. The red circles on the outer layer of
the dots indicate the increase in TSS content, and the blue circles indicate the decrease in TSS content
shown in Figure 4.

4. Discussion
4.1. Impact Mechanisms of Empirical Models for Predicting Citrus Fruit Quality and Yield

Many studies revealed the impact of climate change on the yield of crops, indicating
that changes in climate factors such as temperature and precipitation will increase or
decrease the yield [9,63,64]. However, fruits have not been given the same attention, and
it is necessary to study the impact of climate change on fruits and what will happen to
fruits in the future, especially in relation to their yield and quality. The climate factors
used in this study are also relevant to temperature and precipitation factors, such as
maximum temperature, minimum temperature, DTR, mean temperature and relative
humidity, on a daily scale, as shown in Figures 2 and 5. Maximum temperature is beneficial
for the accumulation of active substances in the fruit-ripening process, and minimum
temperature favours the same under suitable fruit growth conditions [59,61]. DTR can
comprehensively reflect the information of maximum and minimum temperature, which
has a considerable influence on fruit quality. Mean temperature and relative humidity
have been proven to be very important in the growth of citrus and have certain effects on
phenology and yield [65–67]. The above climate factors in the key growth periods calculated
from meteorological station data in citrus producing areas have a strong correlation with
quality and yield. It has been proven that local climate change has a direct impact on
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citrus production, in contrast to large-scale warming conditions. This method was also
applied to study climate-crop yield relationships [68]. In this study, statistical models were
used to establish the relationship between climate factors and citrus quality and yield,
which have certain reference values because some researchers used statistical models to
predict crop yield [69,70]. Mechanism models are so complex that few suitable models
can be used to predict the quality and yield changes of citrus in the future, which means
that it was difficult to select a model in our study. However, the comprehensive use of
mechanism models and statistical models will be of great significance for the prediction of
the quality and yield of citrus and even for fruit once the mechanism model is developed
and perfected [71,72].

4.2. Sensitive Areas Affected by Climate Factors in the Future

The key period of citrus fruit growth and maturation is from July to December, as
shown in Figures 2 and 5, and the climate change in citrus-producing areas in this period
has a direct influence on the change in citrus fruit quality and yield. This conclusion
shows that the climate factors in the study area have the same trend of change under the
two scenarios, but the intensity of change is greater under the SSP5-8.5 scenario, which
is also in line with the simulation setting of future emission scenarios. In addition, the
prediction of different future time periods presents different spatial distributions. In the
2021–2040 period, the DTR in July is projected to increase in Sichuan, Zhejiang and Fujian
Provinces and decrease in most studied areas; the mean temperature in October, maximum
temperature in September and minimum temperature in November seem to increase in all
areas; and the relative humidity in October is projected to increase in Sichuan and Yunnan
Provinces and decrease in other places. In the 2041–2060 period, the DTR in July is projected
to decrease in only some parts of Hubei, Guangdong, Guangxi and Yunnan Provinces
and increase in other areas; the mean temperature in October, maximum temperature in
September and minimum temperature in November will increase in all areas; and the
relative humidity in October is projected to decrease largely in the study areas.

4.3. Some Measures May Improve Citrus Quality and Yield

According to Figure 2, the DTR will decrease in most cultivation regions except
for Sichuan, Zhejiang and Fujian Provinces, which indicates that the quality of citrus is
projected to worsen. Some artificial adaptation measures may be taken to prevent negative
situations. The DTR can be obtained by subtracting the daily maximum temperature
from the daily minimum temperature, and both will increase significantly under the
background of global warming; therefore, the reason for the decrease in the DTR is that
the warming effect has a more significant enhancement effect on the daily minimum
temperature. Suggested coping strategies include a lower night temperature and providing
enough day warming conditions. On the other hand, changing cultivation regions is a
contributing factor. Admittedly, there is a decreasing degree of DTR of between 0.1 ◦C and
0.2 ◦C, which has seldom effected TSS content as shown in Figure 3. Quality decline does
not represent a serious concern based on the results under climate warming conditions.
Sichuan Province may have the best natural DTR conditions for the accumulation of active
substances in the future. Under the joint action of various climate factors, the changing
climate is beneficial for citrus fruit growth and ripening, and the yield of citrus is projected
to increase in all producing regions, not to mention the improvement of agricultural
technology. Based on our hypothesis, offering irrigation is critical.

4.4. Limitations of this Study

(1) Without the support of specific citrus quality and yield data at the grid scale, the
research areas of this study were limited to all provinces, and the locations of meteorolog-
ical stations were used to represent the local climate conditions, which included certain
errors. (2) Due to the inability of the author and the research group to undertake relevant
experiments, the research data on TSS contents of citrus in this study were obtained from
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other published papers, and the consistency of the data were not guaranteed. (3) In this
study, the ensemble mean of 19 CMIP6 models was adopted to reduce the uncertainty of
single-model simulations of climate change impacts. However, the GCM climate models
also have some system errors in terms of the observations, which lead to the uncertainty in
future changes of projected climate variables. (4) This study did not consider the effect of
artificial technological progress on the results.

5. Conclusions

The key climate factors from July to December of citrus fruit growth and maturation
have a good relationship with citrus quality and yield. The monthly mean DTR in July
has the greatest influence on quality, and monthly mean temperature in October, monthly
mean relative humidity in October, monthly mean minimum temperature in November
and monthly mean maximum temperature in September have the greatest influence on
yield. Moreover, the monthly mean DTR in July is projected to increase in Sichuan, Zhejiang
and Fujian Provinces and decrease in other regions; the monthly mean temperature in
October, monthly mean minimum temperature in November and monthly mean maximum
temperature in September are projected to increase in all studied areas; and the monthly
mean relative humidity in October is projected to increase in small regions of Sichuan
and Yunnan Provinces and decrease in other places. Thus, the quality and yield of citrus
presented different characteristics of change in cultivation areas when using the established
prediction model for the 2021–2040 and 2041–2060 future periods relative to the 1995–2014
baseline period. The quality of western cultivation areas in Sichuan Province and eastern
cultivation areas in Zhejiang and Fujian Provinces in China will become significantly better;
however, that of Hubei, Guangdong and Guangxi Provinces will worsen. Surprisingly,
yield will increase in all plantations due to future suitable climate conditions for citrus
growth and ripening.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14159366/s1, Figure S1: Flow chart; Table S1: TSS data used in
this study [73–85].
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