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File S1. Detailed methodology of the study. 
 
The study methodology included collecting relevant literature and 

required datasets as follows: 
Digital Elevation Model (DEM) SRTM v3 (30m resolution) and 

satellite images (Landsat 5TM and Landsat 8OLI/TIRS) were downloaded 
from the USGS website (https://earthexplorer.usgs.gov/) and Glovis 
website (https://glovis.usgs.gov/app). 

Administrative areas geographical borders were obtained from the 
respective municipalities of Bab Amman and Jarash. 

Census data for the years 1994, 2004, 2015 and 2020 were 
downloaded from the Department of Statistics in Amman, Jordan, 
website (http://dosweb.dos.gov.jo/). 

Administrative areas (in km2) data was obtained from the 
Department of Statistics in Amman, Jordan, website 
(http://dosweb.dos.gov.jo/). 

Social services data were obtained from the Ministry of Education 
(schools), Ministry of Health (health centres) and Civil Defense (civil 
defence centres) in Jordan websites and the use of Google Earth Pro. 
Software.  

Then, the data was pre-processed based on the intended further 
analyses, tabulated and saved in proper formats; Excel spreadsheets, 
shapefiles, etc., for further analyses. 

 
3.1 Built environment parameters  

Alongside population size and growth, wherein GIS spatial 
analysis tools such as choropleth maps, point density maps, heat maps 
and directional distribution ellipse are useful in understanding the 
spatial and temporal variability in population size and growth rates, 
remote sensing (RS) data, particularly obtained through satellite 
remote sensing (SRS), are important basis for mapping different built 
environment parameters [1-4].  

Several indices have been developed to extract desired features and 
maps from the RS data, of which, the normalized difference vegetation 
index (NDVI) is the mostly used to extract vegetation cover [3,6]. In 
addition, built up land can also be observed and its changes can be 
monitored using image classification tools in ArcMap Software (e.g. [7]). 

 
3.1.1 Population size and growth rate spatial and temporal variation 

over the period 1994-2020. 

For this part, the researcher follows a descriptive, analytical 
approach as follows: 

a. Obtain data about the administrative boundaries for the towns 
in the study area from the respective governmental 
directorates. 

b. Obtain census data for the years 1994, 2004, 2015 and 2020 from 
the Jordan Department of Statistics for the towns in the study 
area. 
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c. The data was tabulated and inserted into Microsoft Excel 
software for: 

i. Basic descriptive statistics. 

ii. Calculation of the population growth rate based on the 
following equation: 

R=Lnh (Pt/P0)/T*100, [8] 

where; R= population growth, Pt=population in the next time 
period, P0= population in the previous time period, T= time 
period in question, Lnh=Lin to the power of (growth and time) 
rates. 

d-  The data was then input into a GIS environment 
(ArcMap10.8.1) to create maps that show the population 
temporal/spatial distribution, growth rate spatial distribution, 
population density, Mean Center Point of Population and the 
Directional Distribution-Standard Deviation Ellipse for the 
years 1994, 2004, 2015 and 2020 in the study area. This was 
accomplished using the spatial analysis tools in ArcMap10.8.1. 

The results provides an understanding about the population 
growth, density and direction in the study area which is essential to 
understand whether the population and the consequence urbanization 
is well managed to avoid landslide prone zones or not. 

 
3.1.2 Built-up lands change over the period 1994-2020. 

Following [7], Landsat images were used to detect temporal and 
spatial changes in built-up areas and calculate their areas and 
percentages over the studied time periods.  

Landsat data was inserted into ArcMap software and using digital 
image processing tools, the built-up lands were mapped by supervised 
classification. The colour combination of bands 4(Red), 3 (Green) and 2 
(Blue) was used for this step (ESRI, 2011). In this colour combination the 
built up land appears in cyan colour, while vegetation appears in red 
and green colours and water in black [9]. Since the focus is on 
delineating built-up lands, the on-screen digital image processing 
focused the training sample points on identifying areas with cyan colour. 
Built-up (urban) areas typically comprise industrial and commercial 
buildings, residential development and transportation facilities [9]. 

The colour bands were input into ArcMap 10.8.1 software and 
image analysis tools were used to generate a composite image. The 
image was cropped to the Area of Interest (AOI) and the on-screen 
digital image processing was carried out using Image Classification 
Tools and the Training Sample Manager. After collecting the training 
sample points, the Merge option was used to create a class. Scatter plots 
were then generated in order to test the distribution and separability of 
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the training samples. If the training samples do not overlap this means 
that they represent different classes that are well separated. Having 
prepared the signature file of the training samples, Maximum Likelihood 
method was used for supervised classification which assigns every pixel 
to a distinct class based on the means and variances of the class 
signatures (ESRI, 2011). 

To calculate areas and percentages, the resultant raster data were 
reclassified and converted to feature classes and the calculate geometry 
option (in the attribute table) was used for the subsequent time periods 
1994-2004, 2004-2015 and 2015-2020 to estimate the temporal and spatial 
variability in built up areas in the study area. 

 
3.1.3 Green surfaces change (using NDVI) over the period 1994-2020 

 NDVI [10] depends on the chlorophyll absorption of visible light and 
the reflectance of near-infrared by the plant leaves and cellular 
structures. Since satellite images are composed of bands reflecting 
different parameters of the image collection, accordingly, measuring the 
difference between near infra-red (NIR) and RED bands in a satellite 
image is an indication of chlorophyll presence, and thus vegetation [6, 
11]. In ArcMap, the formula can be applied using the spatial analysis tool 
“Raster calculator”. In this study, satellite images captured during the 
months of March to May of every year were downloaded to avoid any 
disturbance in the images, such as clouds. 

The NDVI is calculated using the “raster calculator” tool in 
ArcMap software as the difference between near infrared (NIR) and red 
(RED) reflectance divided by their sum: 

NDVI=NIR-RED/NIR+RED 

The resultant index has values ranging from -1 to 1. Values <1 
indicate water or snow, values <0.1 and >0 reflect empty areas, rocks and 
sand. Values about 0.1-0.3 indicate meadows and shrubs, while high 
values >0.3 indicate vegetation. 

For the NDVI calculations, Landsat images were downloaded from 
the USGS earth explorer website (https://earthexplorer.usgs.gov/) and 
Glovis website (https://glovis.usgs.gov/app). 

For the years 1994 and 2004 Landsat 5 images are used, while the 
2015 and 2020 NDVI calculations are based on Landsat8 imagery. The 
importance of understanding the version of the Landsat image is 
significant as different sensors record bands in different ways and this 
affects the calculation of the NDVI and the required bands. Where the 
NIR is the near infrared band and RED is the red band. Which are Bands 
4 and 3 in Landsat 5 and Bands 5 and 4 in Landsat 8 data, respectively 
[6]. The NDVI images were created using ArcMap 10.8.1 and spatial 
analysis tools. The raster NDVI maps were then reclassified and the 
areas for the index values were calculated as pixel area and then 
transformed into %. 
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The NDVI maps and calculated areas were measured for the 
subsequent time periods 1994-2004, 2004-2015 and 2015-2020 to estimate 
the temporal and spatial variability in green surfaces in the study area. 
Change detection in NDVI was calculated using the “Combine Tool” 
from the spatial analyst in ArcMap 10.8.1 software. 

 
2.1.4 Satellite images pre-processing 

 Due to the presence of different satellite imagery sources over space and 
time, imagery pre-processing is a substantial part of the indices 
calculations [11, 12]. Data downloaded from the USGS website, are 
corrected for terrain, radiometric, and geographic corrections, 
nonetheless, the data were formatted into an 8-bit number (from 0-255) 
and are referred to as digital number (DN) data. Thus, prior to using 
these bands for indices calculation, the data should be converted into 
reflectance data for Landsat 5TM (1994 and 2004 data) and 8 OLI/TIRS 
(2015 and 2020 data) imagery. All the imagery data were obtained 
during the months of May and June with 0-5% cloud cover. 

Thus, prior to the NDVI calculations, the Landsat 5TM satellite images 
were pre-processed following the process reported by [13], as follows: 

1. The Landsat data is re-projected using “Project Raster” tool in 
ArcMap software to project the data into a common geographic 
coordinate system. WGS1984 world Mercator is used in this 
research. 

2. The Landsat data is then reclassified to ensure that all “0” values 
are re-mapped as “no-data” using ArcMap software spatial 
analysis tool “reclassify”. This step ensures that all missing data 
pixels are removed. 

3. The Landsat 5 TM data is converted to Landsat 7 ETM+ data, when 
using Landsat 5 data for the years 1994 and 2004. This step is 
important to enable using the tasseled cap of Huang et al. (2002). 
This is done based on the equation and using the “raster 
calculator” in ArcMap software: 

DN7= (slope λ*DN5) + intercept λ 

Where, DN7 is the Landsat 7 ETM+ equivalent DN data, DN5 is the 
Landsat 5 TM DN data, and the slope and intercept are band-specific 

numbers given by the inverse of those found in [14] (Table 1). 
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Table S1. Slope and intercept data [14] 

 

4. Converting the DN data to radiance data through the equation: 

L λ =(gain λ *DN7) + bias λ 

Where, L λ is the calculated radiance [in Watts / (sq. meter * um * ster)], 
DN7 is the Landsat 7 ETM+ DN data (or the equivalent calculated in step 
3), and the gain and bias are band specific numbers. The latest gain and 
bias numbers for the Landsat 7 ETM+ sensor are given in [12] and are 
shown in the following table. 

Table S2. Gain and bias data [12] 

  

5. Converting radiance data to reflectance data. This step is important 
as the radiance data is the actual quantity measured by the Landsat 
images, but the reflectance data enables using this data to compare with 
other scenes. This correction removes the differences of sun position 
during the recording of different scenes and bands, thus corrects for the 
fraction of the sun’s energy reflected by the surface. This correction can 
be estimated based on the following equation: 

R λ = (π*L λ *d2)/(ESun, λ *sin(ΦSE)) 

Where, R λ: reflectance (unitless ratio), L λ: radiance calculated in step 4, 
d: earth-sun distance (in astronomical units), Esun, λ: is the band-specific 

radiance emitted by the sun, and ΦSE: solar elevation angle. Some of 
these values are given in Chander et al. (2009) (Table 3). 
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Table S3. Esun, λ data [12] 

  

Whereas to find “d”, the earth-sun distance, and ΦSE, the solar elevation 
angle, we need to look up the the day of the year and the time of day 
when the scene was recorded. These can be found in the metadata of the 
scene acquired and the values are based on Earth-sun distance (d) in 
astronomical units based on the day of year. A final step here is 
converting the solar elevation angle from degrees to radians as required 
by ArcMap through the equation:  

Radians = (degrees * π)/180° 

6. Enforcing positive values of reflectance. This step is the final step in 
pre-processing the required bands. It involves removing any calculated 
negative reflectance values using the “raster calculator” in ArcMap and 
the function: 

“Corrected reflectance = CON ([reflectance] < 0.0, 0.0, [reflectance])” 

7. The band is ready to be used for indices calculations. 

While, the correction of the Landsat 8 OLI/TIRS images was 
undertaken based on the USGS Landsat 8 data Users Handbook 
(www.usgs.gov) to convert the bands to TOA reflectance using the 
image-specific rescaling coefficients in the MTL file and based on the 
equation: 

ρλ′=MρQcal+Aρ 

Where: ρλ'= TOA planetary reflectance, without correction for solar 
angle.  Note that ρλ' does not contain a correction for the sun angle. 
Mρ=Band-specific multiplicative rescaling factor from the metadata 
(REFLECTANCE_MULT_BAND_x, where x is the band number) 

Aρ=Band-specific additive rescaling factor from the metadata 
(REFLECTANCE_ADD_BAND_x, where x is the band number) Qcal = 

Quantized and calibrated standard product pixel values (DN). 
 

2.1.5 Social Services mapping and spatial analysis for the year 2020 

For the facilities and institutions mapping, the researcher used 
online resources as follows.  
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a. For the mapping of the schools, data were downloaded from the 
Jordan Ministry of Education (https://www.moe.gov.jo) and 
mapped on Google Earth Pro. 2020 software. The data was then 
input into ArcMap 10.8.1 and transformed into shapefiles as part of 
a database for the year 2020. 

b. For the health centers, data were data were downloaded from the 
Jordan Ministry of Health (http://moh.gov.jo) and mapped on 
Google Earth Pro. 2020 software. The data was then input into 
ArcMap 10.8.1 and transformed into shapefiles as part of a 
database for the year 2020. 

c. For the Civil Defence centers, data was digitised using Google 
Earth Pro. Software. The data was then input into ArcMap 10.8.1 
and transformed into shapefiles as part of a database for the year 
2020. 

d. The data from this step was used as input on the final map to show 
the present day locations of the important social services in the 
study area relative to the green surfaces, built-up land, population 
patterns and recorded landslides. 

e. Following to this, the researcher used GIS techniques to spatially 
illustrate the social services distribution in the study area and used 
the nearest neighbor tool in ArcMap 10.8.1 to investigate the nature 
of the services distribution. 

 
3.2 Landslide spatial and temporal variability  

To estimate the landslide variability over the period 1994-2020, the 
researcher follows the next approach: 

a. The documented landslide events location in the literature from 
1994 up to the year 2018 [15-21]. 

b. The raw data was entered into ArcMap. 

c. The locations were digitized and transformed into shapefiles 
and landslide maps were generated for the years 1994, 2004, and 
2015. 

d. Using the data published from 2015 to 2018, a base map for the 
landslides was generated and then the landslide events recorded 
in the media for the years 2019, 2020 and 2021 were added to the 
map to generate the final landslide map for the year 2020. A field 
trip was conducted to visit the landslide locations and document 
them on the ground, using GPS readings and photographs to 
validate the 2020 landslide map. 

e. Using Google Earth (GE) Pro, and based on landslide locations 
in the literature, the landslide changes were delineated to show 
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their spatial and temporal changes for the years 2010 and 2020 
(based on available temporal data in GE). 

f. The landslide data was then superimposed on the resultant 
maps of the built environment and population to show the 
spatial relationships where present. 

3.3 Topographical investigation 

 Topography plays a significant role in the distribution and changes in land 
cover and population [22]. Thus, this study used DEM data and GIS techniques 
in order to calculate the elevation and slope in the study area. Based on DEM data, 
the slope was calculated using Slope Tool from the spatial analyst tools in ArcMap 
software. Then the raster data were converted to feature class (polygons) to 
calculate their areas and to estimate the elevation and slope spatial distribution. 

The Union tool form Arc Toolbox was then used to combine the different 
layers from previous analyses with the elevation (based on elevation scales used 
by [22]) to investigate the effect of topographic features on the built-up 
environment changes and landslide events. 

3.4 Fieldwork 

 During this research two fieldtrips were conducted in March and April, 2021 
in order to validate the landslides located using GE and to show their impact, if 
present, on populated areas. 

During the fieldwork, the localities mapped on GE were visited and verified 
with photographs and GPS readings. The verification was based on the 
deformation caused by the landslide, e.g. soil erosion or trees inclination. Notes 
were also recorded where settlements were present and the relative extent of the 
effect of the mapped landslide. Thus, the author conducted a fieldtrip and a 
Google Earth survey to detect landslides in the study area located away from the 
highway that can be observed for the years 2010 and 2020. In addition, the author 
collected the media reports about landslide events that have occurred since 2018 
and compiled a “landslide map” for the year 2020 and the new incidents of the 
year 2021. The survey resulted in locating 10 new landslide locations, most of 
which are away from the highway and close to the populated settlements. All the 
located landslides are accompanied by either deforestation, increased built-up 
land (residents) or both in some instances. This indicates the importance of having 
green surfaces and the impact of building residents and the associated cut and 
fills especially along slopes in the area. 
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