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Abstract: A non-uniform permeable flow numerical model of vehicular oil cooler was proposed to
simulate the thermal performance of oil cooler, due to the complex internal structure of cooler and the
anisotropy of coolant flow and heat transfer. By comparing the numerical simulation results with the
experimental results, the maximum error of the simulation results under different working conditions
is 9.2%, which indicates that the modelling method is reliable and can improve the development
efficiency. On this basis, through the three-dimensional numerical simulation to establish and
optimize the oil cooler’s parameters. The thermal performance under different structural oil cooler
were compared using the comprehensive evaluation factor j/f. The results and the experimental data
show that under the impermeable flow model can obtain good heat transfer efficiency with low flow
resistance at the same time. When the cross-sectional area is 3 mm2, length of 90 mm, layer number
of 11, the model accuracy was 0.6%, as the optimal structure parameters, the heat transfer increase by
47% and with the total pressure drop increased by only 30%.

Keywords: non-permeate flow model; oil cooler; numerical simulation; j/f factor; heat transfer
performance

1. Introduction

Oil cooler is mainly used in automobile, construction machinery and other vehicle
cooling system. The efficient oil cooler can meet the heat transfer requirements of each
subsystem of the vehicle, so that each component of the vehicle can have a good thermal
state under different operating conditions and environmental conditions. The flow and
heat transfer characteristics of oil cooler are important factors affecting heat transfer. With
the development of computational fluid dynamics, numerical simulation technology has
become a means of researching and developing oil cooler. Due to the complex structure
and high precision requirements of the plate-fin, disc and integral oil coolers on the market,
a lot of energy and resources are needed for the accurate simulation [1–3], which greatly
affects the optimization cycle of its structure parameters.

For instance, when building the overall model of the plate-fin cooler, the scale of
the fin structure of the cooler is usually at the millimeter level, but the flow of the heat
exchanger may often be at the meter level, resulting in a gap of four orders of magnitude
between the length of the flow channel of the heat exchanger and the fin. At this point,
to build the entire model of the heat exchanger, the number of grids in unit channel of
a heat exchanger reaches 100,000, consequently, the number of grids in the overall heat
exchanger even exceeded 10 million. This brings great challenges to the accurate flow and
heat transfer simulation of heat exchanger, which not only puts forward high requirements
for computing resources, but also has a long calculation cycle.

At present, the research on numerical simulation technology of vehicular heat ex-
changer is mainly divided into three categories. The first category is the theoretical equiv-
alence of heat exchanger based on empirical correlation [4]. Aydin used approximate
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formula to fit the relationship between heat exchanger performance index and structural
parameters [5]. Mortean predicted the performance of heat exchanger through the corre-
lation of flow and heat transfer performance, but its simulation accuracy was only about
±20% [6]. Qiu used performance-heat transfer Unit number method (ε-NTU) and Daven-
port’s modified equation to build a flow heat transfer analysis model for heat exchangers,
but the accuracy of the model was only between −10% and +24% [7]. Deng fitted the test
correlation of outer fins of automotive heat exchangers through experiments to improve
the overall performance of heat exchangers [8]. However, the test data came from bench
tests, and the prediction of j and f factors of actual heat exchangers needs to be further
verified. Therefore, the high precision fitting of empirical correlation depends on a large
number of experimental results or the full scale numerical simulation of heat exchangers,
and the universality of different heat exchangers is still a problem due to the different fin
structure parameters and operating conditions.

The second method is the numerical simulation equivalence of heat exchanger based
on the porous media model [9]. The equivalence of heat exchanger in this method is mainly
used for the equivalence of flow resistance, but it is still not accurate in the equivalence of
heat transfer performance, so the one-dimensional heat transfer model of heat exchanger
is mainly established depending on experimental results. This method can not only ob-
tain more accurate three-dimensional flow information of cooling air, but also efficiently
calculate the heat transfer performance of heat exchanger. Zhou simulated the resistance
characteristics of heat exchanger by using the porous medium model [10]. Du simplified the
internal flow channel of plate-fin heat exchanger with staggered teeth by using the porous
medium model [11]. Wang and Teodor used the porous medium model to simulate its
flow characteristics and the one-dimensional heat transfer matrix of the heat exchanger to
simulate its heat transfer characteristics, and the simulation results were in good agreement
with the experimental results [12,13]. In addition, Mongibello, Shen, and Yu also adopted
this model when conducting the equivalence of heat exchangers [14–16].

The third is multi-scale equivalence of heat exchanger with both micro fin parameters
and macro performance parameters [17]. Su analyzed the overall heat transfer performance
by means of microscale unit simulation analysis and full-scale model [18]. Huang improved
the accuracy of simulation by using multi-scale porous media model [19]. Saravanan and
Sethuramalingam established a geometric model through the periodic boundary and
calculated the aerodynamic resistance and heat transfer performance of the heat exchanger,
which was pointed out that the simulation accuracy of the method for air flow resistance
was 8.64%, but did not specify the simulation error of heat transfer performance [20,21].
Starace also constructed gas-liquid side fin element and carried out coupled heat transfer
calculation, and established fitting correlation through regression analysis method, which
further improved the accuracy of equivalent model [22]. Greiciunas also constructed the
porous media unit model, but simplified the source term for heat transfer to improve
the calculation efficiency [23]. On this basis, the iteration of import and export boundary
conditions is carried out through the periodic boundary, so as to realize the flow and
heat transfer simulation of the overall model through the element model. However, this
method does not take into account the influence of the import and export header of the
heat exchanger on the non-uniform flow distribution, and there is still space for further
improvement [24].

Therefore, in this paper, the non-permeable flow model is used to simulate the
anisotropic flow inside the oil cooler, and the equivalent simulation method of oil cooler
was proposed and verified by experiments, so as to get rid of the dependence on experi-
mental results and significantly improve its calculation efficiency and accuracy. On this
basis, the flow and heat transfer performance under different structural parameters are
analyzed and optimized.



Sustainability 2022, 14, 7757 3 of 16

2. Equivalent Theory
2.1. Non-Uniform Permeable Flow Model

Flow in porous media is controlled by continuity equation and momentum equation,
which together constitute Brinkmann equation [25]:

Brinkman equations:

1
εp

ρ(u · ∇)u 1
εp

= ∇ · [−pI + κ]−
(

µκ−1 + βεpρ|u|+ Qm

ε2
p

)
u + F (1)

Definition of porosity matrix:

κ = µ
1
εp

(
∇u + (∇u)T

)
− 2

3
µ

1
εp

(∇u)I (2)

The definition of parameter β:

β =
cF√

κ
(3)

where, µ is the dynamic viscosity of the fluid, kg/(m·s); u is the velocity vector, m/s, ρ is
the density of the fluid, kg/m3; p is the pressure, I is identity orthogonal matrix, εp is the
porosity, κ is the penetration matrix, m2; Qm is the quality of the source term; F is volume
force, kg/(m2·s2).

2.2. Local Thermal Non-Equilibrium Model

In the oil cooler, the heat transfer process of coolant follows the energy conservation equation:

ρcp
∂T
∂t

+ ρcpu · ∇T +∇ · (−k∇T) = Q (4)

The assumption of local heat balance is adopted in the heat transfer equivalence of oil
cooler, and the temperature between solid and liquid is considered equal at the interface
of solid, namely Tf = Ts = T. In steady-state conduction problems, or where the internal
volume heating of both materials is the same, the local heat equilibrium hypothesis can be
used for most low-response problems, assuming that the solid and fluid temperatures are
equal. When the heat transfer of porous media is considered, ρcp in the transient term of
energy Equation (5) becomes effective volume heat capacity at constant pressure, which is
defined as follows: (

ρcp
)

eff = θsρscp,s + εpρfcf,s (5)

where, εp is the porosity, θs is the volume fraction of solid, and the thermal conductivity
term ∇ · (−keff∇T) is from ∇ · (−k∇T), where is the weighted average of the thermal
conductivity of solid ks and liquid kf:

keff = θsks + εpkf (6)

3. Numerical Model of Oil Cooler
3.1. Heat Exchange Unit Model

Figure 1 shows the fin structure of the oil cooler, from which it can be seen that both
the oil side and the water side are staggered tooth fins. Staggered fin has two directions
of high resistance flow and low resistance flow at the same time, and the flow direction is
random, so it cannot be equivalent to the traditional porous media set only one mainstream
direction, and the resistance of the other two directions is set 1000 times of the mainstream
direction. In staggered fins, the flow is three-dimensional, and there is no flow in the z
direction perpendicular to the wall, but flows in either x or y directions [26].
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Figure 1. Water side fin structure (left) and oil side fin structure (right).

The three-dimensional flow structure and simulation model are shown in Figure 2.
The difference between them mainly lies in the different velocity gradients generated under
different pressure gradients, resulting in different velocity components in the x direction
and y direction. Therefore, this project proposes to calculate the flow in the direction of
high resistance and low resistance simultaneously under the same structure, and consider
the change of velocity gradient and viscosity to synthesize the permeability κ in two
different directions of x direction and y direction, so as to establish the permeability matrix

κ =

κx 0 0
0 κy 0
0 0 κz

 of x, y and z anisotropically. This permeability matrix can be used to

equivalent flow resistance on both sides of oil and water in the overall model of the oil
cooler [27].
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(b) simulation model.

3.2. Grid Dependence Analysis

Mesh size will have a certain impact on the results, too few grids will lead to poor
accuracy of the calculation results, but too dense grids will increase the calculation cost
and accuracy is limited, so grid independence verification must be carried out to obtain the
comprehensive accuracy and calculation cost of grid number selection As can be seen from
Figure 3, with inlet and outlet pressure drop and calculation time as evaluation indexes,
after the number of grids reaches 600,000, the calculation time increases significantly with
the increase of the number of grids, but the increase of calculation results is not obvious.
Based on the calculation results and efficiency, the number of grids selected for H-fin and
Z-fin is 600,000.
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3.3. Nonlinear Fitting Correlation

In order to obtain the calculation results at different flow rates, the flow rates were set
from 0 to 2 m/s at intervals of 0.5 m/s. To simulate the coolant viscosity of different species
and at different temperatures, the viscosity was set from 0 to 0.5 Pa·s at 0.05 Pa·s intervals.

Based on the above content, the calculation result is shown in Figure 4 The nonlinear
fitting correlation between pressure gradient and viscosity is obtained. On this basis,
anisotropic permeability matrix κ can be obtained through calculation of H direction and Z
direction respectively, as shown in Equation (7). In macro heat exchanger model, κ and β
were the key parameters to characterize the flow resistance of the oil cooler.

∆p =
µ

κ
u + βεpρu2 (7)
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3.4. Establishment of Equivalent Model

In Section 2.1, the connection between the micro fin unit of heat exchanger and the
macro performance has been established, so that the micro fin research of heat exchanger
and the macro performance research can complement each other. In this section, the equiv-
alent model of oil cooler is designed. Figure 5 reflect the structural size and macroscopic
equivalent model of the oil cooler.
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3.5. Boundary Conditions and Thermophysical Parameters

In order to obtain the flow and heat transfer characteristics of the equivalent model of
oil cooler under common working conditions, operating parameters such as oil-side inlet
temperature, cold-side inlet temperature, oil flow rate and cold-side flow rate are set as shown
in Table 1, which are consistent with the experimental verification working conditions.

Table 1. Equivalent simulated operating conditions.

Number Oil Inlet
Temperature (◦C)

Cold Test Inlet
Temperature (◦C)

Oil Flow Rate
(kg/min)

Cold Side Flow
Rate (kg/min)

1 100 70 12.25 12.75
2 100 70 12.25 15.75
3 100 70 6.75 8.75
4 100 70 6.75 12.75
5 100 70 6.75 16.00
6 100 70 10.00 16.00
7 100 70 10.00 13.00
8 100 70 10.00 8.25
9 100 70 12.75 8.25
10 130 90 12.00 15.25
11 130 90 12.00 12.25
12 130 90 12.00 8.25
13 130 90 9.50 8.00
14 130 90 10.00 12.50
15 130 90 10.00 15.50
16 130 90 6.50 15.50
17 130 90 6.50 12.50
18 130 90 6.50 8.00

Because the constant pressure heat capacity, density, dynamic viscosity and thermal
conductivity involved in the energy equation are all functions of temperature, it is necessary
to establish the curves of these thermal physical properties with temperature. Thermal
properties of the cold-side medium 50% ethylene glycol +50% pure water are shown in
Table 2. The thermal physical parameters of 5W30, a medium heat conduction oil on the
hot side, are shown in Table 3.
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Table 2. Equivalent simulated operating conditions.

Density /kg/m3 y = 2× 10−6x3 − 0.002x2 − 0.4554x + 1074.6 R2 = 0.9999

Constant pressure heat capacity/J/(kg ◦C) y = 2× 10−5x3 − 0.0051x2 + 4.207x + 3256.5 R2 = 0.9989

Dynamic viscosity/Pa · s y = −9× 10−14x5 + 8× 10−11x4− 2× 10−8x3 + 3× 10−6x2− 0.0003x + 0.0084
R2 = 0.9989

Coefficient of thermal conductivity/W/(m · ◦C) y = 7× 10−7x2 − 0.0003x + 0.4423 R2 = 0.9991

Table 3. Equivalent simulated operating conditions.

Density /kg/m3 y = −8× 10−5x2 − 0.5779x + 898.75 R2 = 1

Constant pressure heat capacity/J/(kg ◦C) y = 0.0014x2 + 4.078x + 1801.4 R2 = 1

Dynamic viscosity/Pa · s y = −1× 10−10x5 + 6× 10−8x4 − 1× 10−5x3 + 0.0009x2 − 0.0356x + 0.5894
R2 = 0.9972

Coefficient of thermal conductivity/W/(m · ◦C) y = 2× 10−8x2 − 1× 10−4x + 0.1464 R2 = 1

The calculation time was 0.2 h on a 128 core workstation with 192 G memory. Solid-
Works was used for the geometric model, COMSOL 5.6 was used for the flow field sim-
ulation, and pressure-based coupling solver was used for the numerical solution of the
governing equation.

4. Experimental Verification
4.1. Experimental Rig Construction and Error Analysis

The oil cooling test bench is a closed loop system, as shown in Figure 6. It is mainly
composed of temperature sensor, pressure sensor, mass flow sensor, electric pump group,
electric heater, flow control valve and circulation pipeline. The inlet and outlet pipelines of
the cold side and hot side were equipped with 0.2-class Pt100 thermal resistance, 0.5-class
pressure sensor and 0.15-class Coriolis mass flow sensor to detect the temperature, pressure
and flow of the fluid respectively. The detailed information of the experimental bench can
be referring to references [28,29].
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Figure 6. Schematic diagram of the oil cooling test bench.

In this paper, the heat transfer Q needs to be calculated by the mass flow rate and
temperature difference of the fluid, and the calculation formula is as follows:

Q = cpm(Tout − Tin) (8)
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Therefore, the uncertainty of heat transfer calculation can be expressed by the following
formula:

∆Q =

√(
∂Q
∂m δm

)2
+
(

∂Q
∂∆T1

δT1

)2
+
(

∂Q
∂∆T2

δT2

)2

= Q

√
( δm

m )
2
+ ( δT1

∆T1
)

2
+ ( δT2

∆T2
)

2
(9)

The relative error expression of heat transfer can be obtained:

δQ
Q

=

√
(

∆m
m

)
2
+ (

δT1

∆T1
)

2
+ (

δT2

∆T2
)

2
(10)

The relative error value is 3.2%, which meets the accuracy requirements of the test.

4.2. The Results Discussed

The heat balance test of oil cooler was carried out on the experimental platform of
heat exchanger flow and heat transfer performance and compared with the numerical
simulation results. 5W30 was used as the hot side medium and 50% ethylene glycol +50%
pure water was used as the cold side medium. The test conditions were set as Table 1.
Figure 7 shows the comparison results of the pressure drop between the oil side and the
cold side between test and simulation.
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Figure 7. The pressure drop of test and simulation varies with the flow rate of oil side and cold side. 

As can be seen from Figure 7, when the flow rate is low, the calculation results of the 

equivalent model can basically correspond to the test results for the flow characteristics 

in the oil cooler. With the increase of the flow rate, the accuracy of the numerical simula-

tion decreases to some extent, but it is still within the range of credibility. 

In order to verify the effectiveness of the whole model for heat transfer process sim-

ulation, the heat transfer obtained from experimental conversion and numerical simula-

tion are studied, and the results are shown in Figure 8. 

Figure 7. The pressure drop of test and simulation varies with the flow rate of oil side and cold side.

As can be seen from Figure 7, when the flow rate is low, the calculation results of the
equivalent model can basically correspond to the test results for the flow characteristics in
the oil cooler. With the increase of the flow rate, the accuracy of the numerical simulation
decreases to some extent, but it is still within the range of credibility.

In order to verify the effectiveness of the whole model for heat transfer process simu-
lation, the heat transfer obtained from experimental conversion and numerical simulation
are studied, and the results are shown in Figure 8.

It can be seen from Figure 8 that the heat transfer results obtained by numerical
simulation and experiment basically fit, and the errors are all within an acceptable range,
with the maximum error of 9.2%. Therefore, it can be concluded that the model can simulate
the actual situation of oil cooler. Further analysis shows that when the temperature of
the selected working condition is 130 ◦C, the error of simulation and test of heat transfer
increases to a certain extent, which may be caused by the great influence of temperature
boundary conditions on the model. In general, the parameter setting in the analysis process
is also in line with the actual situation, and the equivalent model has high accuracy in the
simulation results of macro performance, which can accurately predict the flow and heat
transfer process of the oil cooler.
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5. Result and Discussion

For oil cooler, flow resistance and heat transfer are two important performance eval-
uation criteria. For plate-fin oil cooler, the flow performance is mainly divided into two
aspects: first, in the same flow channel, uniform fluid velocity is conducive to fin heat
transfer; The second is the uniformity of fluid velocity in different layers. In the calculation
process, in order to simplify the calculation, the fluid flow velocity of different layers is
usually approximately equal, but in the actual working condition, the flow velocity be-
tween different layers is different, so in this simulation, the flow performance of these two
aspects should be studied. In this analysis, a friction factor f is introduced, as shown in
Formula (11):

f =
2∆pA
ρv2

mL
(11)

where, ∆p is the pressure difference on both sides of the flow passage, A is the cross-
sectional area of the flow passage, ρ is the density of the liquid, vm is the average velocity
of the fluid in the flow passage, and L is the length of the flow passage. It can be seen that
several factors affect flow performance: the cross-sectional area and the length of the flow
passage. Since it is not easy to directly observe the oil cooler, the dispersion trend needs to
be quantified. Therefore, variance, a statistic that can represent the dispersion trend of data,
is selected to represent the flow uniformity. The heat transfer performance was evaluated
according to the definition of heat transfer, and then the heat transfer performance under
the same flow condition was evaluated according to the dimensionless heat transfer j factor.

And according to the definition of heat transfer (12):

Q = K · A · ∆T (12)

where, Q is the total heat transfer of the heat exchanger, K is the heat transfer coefficient of
the fluid, A is the heat transfer area, and ∆T is the temperature difference between the inlet
and outlet of the hot side of the oil cooler.

Heat exchange j factor is used to evaluate the heat exchange performance of oil
cooler [29], as shown in Formula (13):

j =
Nu

Re · Pr
1
3

(13)

where Nu is the Nusselt number, Re is the Reynolds number, Pr is Prandtl number.
The ratio of j and f factors can be used to comprehensively evaluate the compre-

hensive effect between heat transfer performance and flow performance. When the oil
cooler is started, the index j/ f can be used to quantitatively evaluate the comprehensive
performance at the same flow rate.
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5.1. Flow Heat Transfer Performance Analysis

For plate-fin oil cooler, the flow performance is mainly divided into two aspects: first,
in a flow channel, the distribution of fluid velocity in different areas, in the same flow
channel, uniform fluid velocity is conducive to fin heat transfer; Secondly, the uniformity of
fluid velocity in different layers; In studying the influence of structural parameters on heat
transfer performance, the structural parameters in Table 4 will be used for parameter setting
of oil cooler. According to the j factor, the heat transfers under different runner lengths of
6 mm and 60 mm in height and width can be obtained. The change of heat transfer with
runner lengths is shown in Figure 9a. It can be obviously seen that the total heat rejection
of oil cooler increases with the increase of runner lengths. It is easy to understand that with
the increase of the length of the flow passage, the contact area of the flow passage is also
increasing, so as to the total contact area.

Table 4. Overall model parameter.

The Length of
the Channel Channel Width Oil Domain

Channel Height
Water Channel

Height
Number of

Layer

90 mm 60 mm 6 mm 6 mm 6
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The influence of height changes on heat transfer of oil cooler is shown in Figure 9b. It
can be seen that under the premise of constant channel length, the heat transfer decreases
with the increase of channel height. This is because when the flow rate is constant, the flow
velocity decreases with the increase of the height, and the disturbance of the corresponding
flow velocity on the wall also decreases. In addition to these influencing factors, during
the operation of plate-fin oil cooler, the shell side flow will pulsate, and with the increase
of pulsation frequency and relative amplitude, the power consumption will increase ac-
cordingly. Therefore, with the pulsation of flow, the flow resistance will increase but at the
same time, mass exchange between the mainstream and the boundary layer will also be
enhanced, thereby enhancing heat transfer [30].

5.2. Performance at Different Cross-Sectional Areas

In the analysis of different flow channels, we can change the cross-sectional area of
the flow channel by changing the width and height of the flow channel. It is expected
that the uniformity of velocity distribution in the same passage will change when the
cross-sectional area changes. The analysis results are shown in Figure 10. It can be seen
from Figure 10a,b that the flow factor f decreases, and the variance of the velocity in the
flow passage also decreases, indicating that the flow performance is better. It can be seen
from Figure 10c that with the decrease of j, the heat transfer gradually decreases, indicating
that the smaller the cross-sectional area, the better the heat transfer performance. Figure 10d
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shows that the flow exchange performance of heat exchanger decreases with the increase
of cross-sectional area.
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5.3. Performance at Different Flow Path Lengths

It can be seen from Figure 11a,b that as the length of the flow passage increases, the
velocity variance in the flow passage also decreases, and the fluid velocity distribution
in the flow passage becomes more uniform. Therefore, in order to ensure the uniformity
of flow rate in the flow channel, the length of the flow channel should be increased as
long as possible on the premise of guaranteeing the heat transfer score. As can be seen
from Figure 11a,c,d, the flow and heat transfer performance gets better and better with the
increase of length.

5.4. Performance with Different Number of Flow Channel Layers

From Figure 12c,d, it is obvious that when the number of layer increases, the velocity
of the fluid in the flow channel decreases obviously, and the flow rate in the same flow
channel is more uniform, which is conducive to the heat transfer of the heat exchanger.
In addition, the flow velocity distribution between different layers in these two working
conditions needs to be studied and discussed further. Calculation results of flow field and
temperature field of oil cooler are shown in Figure 12a,b. By comparing Figure 12c,d as
well as the data can be found in Figure 13b, with the increase of flow channel layer, the
average flow velocity of each flow layer not only changed, but also the speed of the fluid
flow layer gap is in constant decreases.
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Figure 12. Velocity distribution diagram of oil cooler and flow channel velocity distribution diagram:
(a) 4-layer heat exchanger speed distribution diagram; (b) 11-layer heat exchanger temperature
distribution diagram; (c) Velocity distribution of flow channel with 4 layers; (d) Velocity distribution
of flow channel with 11 layers.
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5.5. Optimization of Structural Parameters 

Figure 13. Study of the influence factor of oil cooler:(a) f -factor; (b) variance; (c) j-factor; (d) j/f.

It can be seen from Figure 13a,b that the number of flow channel layers has a certain
relationship with the variance of the distribution of flow channel velocity. With the increase
of the number of flow channel layers, the variance gradually decreases. Therefore, in
the actual design process, under other conditions, the number of flow channel layers
should be increased as many as possible to improve the flow performance. In addition,
it can be seen from Figure 13c,d that with the decrease of j, the heat transfer gradually
decreases, indicating that the smaller the cross-sectional area, the better the flow and heat
transfer performance.

5.5. Optimization of Structural Parameters

Through the ratio of j/f index of each part under different structural parameters, it can
be concluded that when the cross-sectional area is 3 mm2, it is 142% higher than the original
parameter, when the length is 90 mm, it is 119% higher than the minimum parameter, and
when the number of layers is 11, it is 134% higher than the original parameter. Therefore, the
optimal structural parameters are proposed as follows: cross-sectional area is 3× 10−4 mm2,
length is 90 mm, number of layers is 11. According to the calculation in Figure 14a,b, under this
parameter, the heat transfer is increased by 47%, and with the total pressure drop increased by
only 30%.
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6. Conclusions

In this paper, the equivalent simulation method of the automotive oil cooler is studied
based on the non-uniform permeable flow model with a multi-scale approach. Firstly, the
unit heat transfer model in different directions is established and calculated, the anisotropic
flow fitting correlation is obtained. Under this base, the overall equivalent model is
simplified with non-uniform permeable flow model and local thermal non-equilibrium
model. A few interesting conclusions can be obtained, as follows:

(1) First, a multi-scale coupling method based on unit heat transfer model is proposed to
simulate the flow and heat transfer performance of heat exchanger. The flow of the
whole heat exchanger is simulated by the non-uniform seepage flow model, and the
heat transfer is simulated by the local thermal non-equilibrium model.

(2) Next, a vehicular oil cooler is used to verify the effectiveness of this method. By
comparing with the experimental results, the maximum error of this equivalent
simulation model for flow and heat transfer under different working conditions is
9.2%, which proves the validity of the equivalent model.

(3) Finally, the flow and heat transfer performance under different structural parameters
was studied. At the same time, the best structural parameters could applicable to the
present oil cooler are proposed, namely: cross-sectional area of 3× 10−4 mm2, length
of 90 mm, number of layers is 11. Comparing with the original structure, the heat
transfer performance is increased by 47%, while the total pressure drop increased by
only 30%.
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Abbreviations

µ Dynamic viscosity
u Velocity vector
ρ Fluid density
p Pressure
I Identity orthogonal matrix
εp Void fraction
κ Permeability of porous media
Cp Specific heat capacity
Tin Inlet temperature
Qm Quality of the source
F Volume force
κ Porosity matrix
CF Dimensionless Faux-Hemmel
θs Volume fraction of a solid
ks Thermal conductivity of solids
kf Thermal conductivity of a liquid
Tout Outlet temperature
T Temperature
Q Heat exchange amount, total heat exchange of heat exchanger
ρs Solid density
ρf Liquid density
m Mass quality
K Heat transfer coefficient of fluid
A Heat exchange area, cross-sectional area
∆T Temperature difference between the inlet and outlet of the hot side of the oil cooler
Nu Nusselt number
Re Reynolds number
Pr Prandtl number
vm Average velocity of the fluid in the flow channel
L Length of flow channel
∆p Pressure difference on both sides of the flow passage
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