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Abstract: Accurate forecasting of solar radiation (Rs) is significant to photovoltaic power generation
and agricultural management. The National Centers for Environmental Prediction (NECP) has re-
leased its latest Global Ensemble Forecast System version 12 (GEFSv12) prediction product; however,
the capability of this numerical weather product for Rs forecasting has not been evaluated. This
study intends to establish a coupling algorithm based on a bat algorithm (BA) and Kernel-based
nonlinear extension of Arps decline (KNEA) for post-processing 1–3 d ahead Rs forecasting based
on the GEFSv12 in Xinjiang of China. The new model also compares two empirical statistical meth-
ods, which were quantile mapping (QM) and Equiratio cumulative distribution function matching
(EDCDFm), and compares six machine-learning methods, e.g., long-short term memory (LSTM),
support vector machine (SVM), XGBoost, KNEA, BA-SVM, BA-XGBoost. The results show that
the accuracy of forecasting Rs from all of the models decreases with the extension of the forecast
period. Compared with the GEFS raw Rs data over the four stations, the RMSE and MAE of QM
and EDCDFm models decreased by 20% and 15%, respectively. In addition, the BA-KNEA model
was superior to the GEFSv12 raw Rs data and other post-processing methods, with R2 = 0.782–0.829,
RMSE = 3.240–3.685 MJ m−2 d−1, MAE = 2.465–2.799 MJ m−2 d−1, and NRMSE = 0.152–0.173.

Keywords: forecasting; solar radiation; Global Ensemble Forecast System; bat algorithm

1. Introduction

Solar radiation is the primary source of surface energy, which drives carbon and water
exchanges between the atmosphere and terrestrial ecosystems [1]. Population growth,
limited fossil fuels, and environmental pollution have caused the rapid development of
renewable energy sources such as solar and wind power. However, in many solar energy
applications, accurate information about the presence of solar energy is required [2]. So-
lar measuring equipment is much more expensive than other meteorological parameters
such as temperature, relative humidity and wind speed. More than 2400 weather sta-
tions in China record meteorological data, while only about 5% of stations observe global
solar radiation (Rs). Therefore, models need to be developed for stations with no solar-
radiation records, to estimate solar radiation [3]. Three main methods are used to calculate
daily global solar radiation, i.e., satellite-derived, stochastic and meteorological-based
processes [4]. The satellite-derived method can receive the reflectivity of the Earth’s atmo-
sphere of the irradiation, invert the daily radiation value and estimate the solar radiation in
a large area.
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Nevertheless, the uncertainty of satellite-based solar-radiation remote sensing can be
high in cloudy and polluted areas. Stochastic algorithms depend on history; a statistical
summary of radiation information is used to infer the probability of future radiation, which
requires the support of existing high-quality historical radiation-observation data. Weather-
based approaches aim to establish relationships between solar radiation and other, more
readily available, meteorological elements. This method is by far the most widely used.

Recently, machine-learning models, due to their super nonlinear fitting ability, have
been widely used in the simulation of natural phenomena, agriculture, engineering and
the economy, also including Rs predicting/forecasting. Rehman and Mohandes [5] used
an artificial neural network (ANN) to estimate solar radiation in Abha of Saudi Arabia.
They found an ANN model with air temperature and relative humidity as inputs can
capably estimate Rs. Quej et al. [6] assessed three approaches (SVM, ANN and ANFIS)
to predict daily Rs in Yucatán, México. They declared that SVM models performed well
in warm sub-humid regions. Ghimire et al. [7] explored the feasibility of using numerical
weather prediction to forecast Rs. Deo et al. [8] used geo-temporal and satellite images
as input data to feed the ELM method to develop an Rs model in Australia. The results
show that the ELM model outperformed RF, M5T and MARS methods. Hassan et al. [9]
evaluated the ability of four ML algorithms (MLP, ANFIS, SVM and RT) in modeling
Rs. Based on these algorithms, sunshine-, temperature-, meteorological parameters- and
day-number-based models were examined in Egypt. They verified that the MLP algorithm
excelled in comparison to other models. On the other hand, many studies also show
that ML is not always better, for example, as it has less precision than the dependency
model [10]. Mohammadi et al. [11] compared the performance of an SVM model and ANFIS
in predicting Rs under temperature data only with the data of Iran. It was found that the
SVM model using an RBF kernel function had the highest accuracy. Feng et al. [12] used six
machine-learning models to map daily global solar radiation and photovoltaic power in the
Loess Plateau of China. In addition, the prediction of Rs by kernel-based machine-learning
models has been widely reported in northwest China [12], humid regions of China [13],
air-pollution regions of north China [14,15], Algeria [16], Spain [17], other regions around
the world [18], also including diffuse radiation [19]. The kernel-based model also been
used to map the solar photovoltaic potential of China [20,21].

Recently, deep-learning models have been gradually applied to the prediction of solar
radiation, including LSTM algorithms, which are good at mining time-series informa-
tion [22–24], and spatial processing information [25]. In addition, ML models can also be
used to identify the most significant input parameters to better understand the relationship
between common meteorological factors and Rs.

Voyant et al. [26] reviewed different machine-learning technologies used for solar-
radiation forecasting. They pointed out that methods such as ANN and SVM were primarily
used in the early stage, while methods such as regression tree and boosting tree have been
used more recently. Compared with ANN, SVM, ANFIS, and decision-making, the most
significant advantage tree-based methods have is processing larger data sets faster [9].
Sun et al. [27] applied an RF method to estimate Rs in an air-pollution environment.
Ibrahim and Khatib [28] coupled an RF model with FFA to predict radiation on an hourly
scale. Prasad et al. [29] designed a new approach named the EEMD-AOC-RF method for
Rs forecasting. Firstly, this method decomposed the time lagging (t-1) data into signal
data and noise data by EEMD; the data was brought into the RF model and optimized
by AOC algorithm. Wu et al. [13] compared six machine-learning models (M5T, KNEA,
MLP, CatBoost, RF and MARS) for predicting Rs in a sub-humid region in China. They
found that the KNEA model had the highest accuracy, MLP model had the best stability,
and CatBoost model had the fastest speed.

Recently, The National Centers for Environmental Prediction (NECP) released its new
product, Global Ensemble Forecast System version 12 (GEFSv12) [30]. This product has up
to 35 days ahead of Rs forecast data, however, its accuracy has not been evaluated. A new
model-based bat algorithm and KNEA was used to forecasting Rs, and the input data was
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from the GEFSv12 output for the 1–3 d ahead. Therefore, the objectives of this study were:
(1) to evaluate the 1–3 d ahead solar-radiation-prediction performance of GEFSv12 at four
stations in northwest China; (2) to build a coupling model based on the bat algorithm and
KNEA (BA–KNEA) model; and (3) compare the newly developed BA-KNEA model with
the traditional empirical model and five other machine-learning models.

2. Materials and Methods
2.1. Study Region

This study uses observational data from four radiation stations in Xinjiang of China,
whose geographical locations are shown in Figure 1. The region is rich in solar-radiation
resources, with an annual average 5200–6400 MJ m−2 y−1. The annual average air tempera-
ture is 9 ◦C and annual precipitation is less than 200 mm y−1. These stations are affiliated
with the Meteorological Data Center of the China Meteorological Administration, and the
data include the total daily surface radiation from 2006 to 2015. The data was divided into
two parts, the first part (2005–2010) was used for training the model and the other was
used to test the model. When the Rs of a day was higher than the extraterrestrial radiation,
the data of that day were deleted [31]. The global solar radiation for different months at
each station is outlined in Table 1.
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NCEP implemented its next Global Ensemble Forecasting System (GEFSv12) in sum-
mer 2020. This model upgrade, based on a deterministic and ensemble prediction system,
is very different from the previous upgrade. In the NCEP operation model, a new dynamic
core (FV3) is used for the first time to replace the previous spectral dynamic core [32]. The
previous three categories of Zhao–Carr microphysics schemes have also been replaced by
the more advanced six categories of GFDL microphysics schemes. From the perspective of
the ensemble model, GEFSv12 extends the prediction period to 35 days. To better repre-
sent the considerable uncertainty related to this time scale, random physical-disturbance
trends and random kinetic-energy-backscattering stochastic schemes replaced the original
random general-disturbance-trend stochastic scheme, which is also a significant upgrade
of the system [33]. Its spatial resolution is 25 km and its temporal resolution is 3 h. In this
study, we used grid data from the mean of the four grid points around the site, including
forecasting solar radiation (Rsf), maximum temperature (Tmaxf), minimum temperature
(Tminf), relative humidity (RHf) at 2 m height and wind speed (Uf) at 10 m height every
3 h for the next 72 h, and converted the 3 h time-resolution data into daily data. That means
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that, for 3 h to 24 h (27 h to 48 h and 51 to 72 h), the eight data points were converted to
daily scale. Tmaxf and Tminf are the highest and lowest temperature of the eight time scale
in one day. RHf and Uf are the mean of the eight-point time scale in one day. Rsf is the
sum of the eight-point time scale in a day. The output of the models is the measured Rs
corresponding to the GEFS data on the same day.

Table 1. Global solar radiation in different months of stations in this study.

Station Period Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Altay Train 7 ± 2.7 11.1 ± 3.5 15.7 ± 4.8 20.3 ± 5.9 23.8 ± 7.5 25.3 ± 7.1 24.2 ± 7 21.3 ± 6.3 17 ± 5.7 10.2 ± 4.6 6.1 ± 3.1 5.3 ± 2.4
Test 6 ± 2.7 9.6 ± 3.6 15 ± 4.4 18.7 ± 5.9 22.5 ± 6.7 24.6 ± 5.6 23.7 ± 5.5 20.4 ± 5.1 15.9 ± 4.4 10 ± 4 6.1 ± 2.7 4.9 ± 2.3

Kashgar Train 8.3 ± 2.5 9.6 ± 3.8 13.8 ± 4.6 19 ± 5.8 22.3 ± 6.2 26.4 ± 5 25.2 ± 4.6 21.3 ± 5 17.3 ± 4.4 13.1 ± 3.2 8.3 ± 2.4 6.2 ± 1.9
Test 6.8 ± 2.4 9.1 ± 3.5 13 ± 4.7 17.2 ± 5.6 20.7 ± 6.1 24.7 ± 5 22.9 ± 5.6 19.7 ± 4.5 16.1 ± 4.1 12.3 ± 3.3 8.5 ± 2.5 6.4 ± 2

Ruoqiang Train 9.3 ± 2.5 10.9 ± 2.7 16 ± 4.3 20.1 ± 4.7 22.1 ± 5.9 22.9 ± 6.6 24.1 ± 6.7 21.9 ± 6.1 19 ± 3.5 14.8 ± 3.1 9.5 ± 2.7 8 ± 1.8
Test 8.6 ± 2.6 11.2 ± 2.8 15.4 ± 3.8 18.8 ± 5.2 21.8 ± 6 23 ± 5 21.5 ± 5.9 20.3 ± 5.5 17.9 ± 4 14.2 ± 2.8 10.6 ± 2.2 7.8 ± 1.9

Khotan Train 10.1 ± 2.5 11.6 ± 3.3 15.5 ± 4 19.8 ± 5.4 23.4 ± 5.8 23.9 ± 6 22.3 ± 6.3 20.1 ± 5.4 18.6 ± 4.8 16.3 ± 2.8 11.1 ± 2.3 8.8 ± 2.6
Test 9.1 ± 3 11.2 ± 3.8 15.2 ± 4.6 18.9 ± 5.2 21.5 ± 5.1 22.1 ± 5.4 21.3 ± 5.9 19.2 ± 4.6 16.2 ± 4.9 14.9 ± 2.8 10.8 ± 2.2 8.7 ± 1.7

Note: the unit of the data is MJ m−2 d−1.

The data were also divided into two parts, from 2006 to 2010 for the training model,
and from 2011 to 2015 for validation.

2.2. Quantile Mapping (QM)

QM algorithms are commonly used to correct forecasting and observed data [34,35].
The QM method assumes that forecast data has the same cumulative frequency distribution
(CDF) as observed data. The general equation of the QM method is defined as follows:

x̂m, f (t) = F−1
o,h

{
Fm,h

[
xm, f (t)

]}
(1)

where x̂m, f (t) is the model forecast data at the t time. Fm,h is the CDF of the observed
history data. F−1

o,h is the inverse of CDF observed historical data.

2.3. Equiratio Cumulative Distribution Function Matching (EDCDFm)

EDCDFm is also a method based on quantile mapping. However, unlike the QM
method, EDCDFm believes that observed value and forecast value have different CDFs [36].
The difference in CDF function needs to be considered, which is defined as follows:

x̂m, f (t) = xm, f (t) + F−1
o,h

{
Fm, f

[
xm, f (t)

]}
− F−1

m,h

{
Fm, f

[
xm, f (t)

]}
(2)

where Fm, f is the CDF of the model forecasting data in the future, and F−1
m,h is the inverse of

CDF model forecasting historical data.

2.4. Machine-Learning Algorithms
2.4.1. Long-Short Term Memory (LSTM)

In recent years, due to the advantages of LSTM model in dealing with sequential
tasks, researchers have carried out a lot of research on it [37–39]. LSTM is a deep-learning
architecture that aims to solve the long-term dependence problem of existing recurrent
neural networks (RNNs) by introducing forgetting gates. LSTM model can recall previous
data and evaluate the correlation of features based on past data.

As shown in Figure 2, a typical LSTM network consists of one unit and three gates
(input gate, forget gate and output gate). The input gate adjusts the amount of new data
stored in the unit. The output gate determines which information to obtain from the cell,
while the forgetting gate determines which information can be discarded. The LSTM model
will consider all this information and make judgments. These gates control cell state Ct and
output ht; the input gate can be calculated as follows:

gate( fi) = σs(wixt + uiht−1 + bi) (3)
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where σs is the sigmoid activation function, ht−1 is the cell output at the previous time step,
wi and ui are the weighting factors, and bi is the bias. The forget gate can be calculating
as follows:

gate( ft) = σs(w f xt + u f ht−1 + b f ) (4)

where w f and u f are the weighting factors, and b f is the bias. The equation of output gate
is as follows:

gate( fo) = σs(woxt + uoht−1 + bo) (5)

where wo and uo are the weighting factors, and b f is the bias.
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In this study, LSTM is used to forecast Rs, and the input data includes Rsf, Tmaxf,
Tminf, RHf and Uf for the forecast target day and observed Rs values during the previ-
ous 3–6 days. To achieve this model, Python 3.7 (https://www.python.org/downloads/
release/python-370/ (accessed on 25 April 2022)) was used to develop the model.

2.4.2. Support Vector Machine (SVM)

SVM is an advanced statistical method based on the structural risk minimization
principle and Vapnik–Chervonenkis dimension theory [40]. This method can be used to
deal with classification and regression problems. Support vector regression (SVR) is an
extension of a support vector machine in the field of regression. It has the advantages
of solid generalization ability and fast convergence speed. It also has the advantages of
dealing with small samples and nonlinear problems. By introducing the structural error
minimization criterion, SVR has good robustness, generalization and learning ability. The
SVR function is defined as follows:

f (x) = wψ(x) + b (6)

where f (x) is the output, w is the weight vector, ψ(x) is the high-dimensional nonlinear
mapping function, and b is the constant. This equation is equivalent to the following
objective function:

min R(F) =
1
2
‖ w ‖2 + C

n

∑
i=1
| f (xi)− yi|ε (7)

where C is the penalty parameter, n is the number of the samples for develop the model, ε
is the maximum allowable error which depending on the samples, and | f (xi)− yi| is the
residual error, defined as follows:

| f (x)− y|ε = max{0, | f (x)− y|−ε} (8)

By introducing two relaxation variables (ζ and ζ* ), Equation (5) can be rewritten as:

min
1
2
‖ w ‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (9)

https://www.python.org/downloads/release/python-370/
https://www.python.org/downloads/release/python-370/
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s.t. =


yi − f (xi) ≤ ε + ξi
f (xi)− yi ≤ ε + ξ∗i

ξi, ξ∗i > 0
(10)

Equation (6) can be converted into a duality problem as:

f (x) =
n

∑
i=1

(αi − α∗i )K
(

xi, xj
)
+ b (11)

where αi and α∗i are the Lagrange multipliers, and K(·) is a kernel function.

K
(
xi, xj

)
= exp

(
− 1

2σ2

∥∥xi − xj
∥∥2
)

(12)

There are many kinds of kernel functions. In this study, we used radial basis function
as kernel function, which has certain advantages in nonlinear aspect.

2.4.3. Extreme Gradient Boosting (XGBoost)

XGBoost is the first parallel gradient enhanced tree (GBDT) algorithm. XGBoost,
based on classification and regression tree (CART) theory, has been widely proven to be a
very efficient approach to regression and classification problems [41]. After optimization,
XGBoost’s objective function consists of two different parts, representing the deviation
and regularization terms of the model to prevent overfitting. The objective function can be
written as follows:

Obj =
m

∑
i=1

l
(

yi, ŷ(t−1)
i + fi(xi)

)
+ Ω( fk) (13)

Ω( fk) = γT +
1
2

λ‖w‖2 (14)

where γ and λ are parameters that measure model complexity. T is the number of leaves
on the CART tree, and w is also a weight parameter; in XGBoost, this is the weight of each
leaf. More details can be found in the reference [41].

2.4.4. Kernel-Based Nonliear Extension of Arps Decline (KNEA)

KNEA is a new time-series model which has been applied in oil-production estimation,
ET0 prediction and groundwater-level prediction [42,43]. The KNEA synthesizes nonlinear
models of past state and present effects. The main function of KNEA algorithm can be
expressed as:

f (x) = a f (x− 1) + g(u(x)) + b (15)

where f (x) is the output at present; f (x− 1) is the output of the previous step; u(x) is the
variables that can affect the output; g(u(x)) is a function of variables; and a and b are the
constants. Usually, the g(u(x)) is unknown, so it should be converted to:

g(u(x)) = ωT ϕ(u(x)) (16)

where ϕ(u(x)) is the nonlinear mapping of variable into a new space.
After transformation, a small value ex can be introduced in the function and the

original problem is transformed into a minima problem:

ex = f (x)− a f (x− 1)−ωT ϕ(u(x))− b (17)

min ς(a, ω, e) =
1
2

a2 +
1
2
‖ w ‖2 +

δ

2

n

∑
x=2

e2
x (18)

s.t. f (x) = a f (x− 1) + g(u(x)) + b + ex (19)
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Similar to SVM, this equivalent form can also be solved by introducing Lagrange
multipliers and kernel functions.

2.4.5. Bat Algorithm

Yang and He [44] proposed the bat algorithm by imitating the predation law of bats.
Bat algorithm has high efficiency in parameter optimization. Velocity and position changes
are critical for bats to find optimal solutions in space, and these values are obtained by the
following equation:

fi = fmin + ( fmax − fmin)β0 (20)

Vt
i = Vt+1

i +
(

Xt+1
i +

(
Xt

i − X∗
)

fi (21)

Xt
i = Xt−1

i + Vt
i (22)

where β0 is a random vector and its value range is [−1, 1]; X∗ is the current optimal position
in all the bats; and fmin and fmax are adjust the coefficient of speed. After each generation,
each bat produces a new position, as follows:

Xnew = Xold + µAt (23)

where µ is also a random vector and its value range is [−1, 1]; the following steps implement
conditional updates of bat positions. A random number is generated and every bat of this
generation is traversed. When the random number is greater than rt

i and the fitness of the
bat is higher than the optimal fitness of the current population, the generated new solution
is accepted, and rt

i as well as At
i are updated:

At+1
i = vAt+1

i (24)

rt+1
i = r0

i [1− e(−ρt)] (25)

where A1
i = 0.99, and r0

i = 0.5ri
0. Equations (20)–(25) are repeated until the maximum

generation is reached. BA has been used to optimize the parameters of the machine-
learning models, e.g., SVM, XGBoost and KNEA. In this study, the population of BA
algorithm was set to 50 and the number of iterations was 200.

The range of parameters of the three machine-learning models are shown in Table 2.

Table 2. Parameters of the three machine-learning models.

Model Parameter Names Range

SVM Regularization coefficient [0.01, 10,000]
Kernel parameter [0.01, 10,000]

XGBoost Number of trees [50, 1000]
Maximum tree depth [2, 50]

Learning rate [0.01, 0.3]

KNEA Regularization coefficient [0.1, 10,000]
Kernel parameter [0.1, 10,000]

2.4.6. Particle Swarm Optimization Algorithm (PSO)

PSO is an algorithm developed by simulating group predation to find the optimal
solution [45,46]. The particle swarm optimization algorithm designs a massless particle
with only two attributes: speed and position, in which speed represents the speed of
movement and position represents the direction of movement. Each particle searches for
the optimal solution separately in the search space and records it as the current individual
extreme value. The position of the extreme value is shared with other particles in the
whole particle swarm. After other particles find the optimal individual extreme value, they
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update it to the whole particle swarm’s current global optimal solution. The formula of
position and speed of the PSO algorithm is as follows:

Zt
i = Zt−1

i + ut
i (26)

ut
i = ωt × ut−1

i + c1 × θ1 ×
(

pbesti − Zt−1
i

)
+ c2 × θ2 ×

(
gbesti − Zt−1

i

)
(27)

where Zt
i is the location of the i-th particle during t-th iteration, ut

i is the speed of the
i-th particle during t-th iteration, c1 and c2 are study factors and the value was set as 2.
θ1 and θ2 are random data ranged [−1, 1]. pbesti is the best location of the i-th particle
among different iterations. gbesti is the globally best location of all the particles. ωt is the
momentum factor, which can be calculated as follows:

ωt = (ωini −ωend)(Imax − t)/Imax + ωend (28)

where ωini and ωend are the initial and the end momentum factors, and the values were set as
0.9 and 0.4, respectively. Imax is the maximum iteration. In this study, the population of PSO
algorithm was set to 50 and the number of iterations was 200. The range of machine-learning
parameters optimized by PSO is the same as the BA algorithm. Figure 3 presents the flow
chart of three machine-learning models optimized by evolutionary algorithms. To achieve
these models, except LSTM, R language (R language v4.4, https://www.r-project.org/
(accessed on 25 April 2022)) was used.
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2.5. Statistical Indicators

In this study, four commonly used statistical indicators were used to evaluate the
prediction performance of total surface radiation, which are determination coefficient (R2):

R2 =

[
n
∑

i=1

(
Rs,m − Rs,m

)(
Rs, f − Rs, f

)]2

n
∑

i=1

(
Rs,m − Rs,m

)
2

n
∑

i=1

(
Rs, f − Rs, f

)2 (29)

Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
Rs,m − Rs, f

)2
(30)

Mean absolute error:

MAE =
1
n

n

∑
i=1

∣∣∣Rs,m − Rs, f

∣∣∣ (31)

Normalized RMSE:
NRMSE = RMSE/Rs,m (32)

where Rs,m is measured Rs, Rs,f is forecasting Rs , Rs,m is the mean of the measured Rs,
and Rs, f is the mean of forecasting Rs.

3. Results
3.1. Empirical Statistics Methods

Table 3 presents the statistical indicators of the GEFSv12 NWP raw Rsf forecasting
data and the results from QM and EDCDFm methods. In general, with the extension
of the forecast period, the errors of NWP raw Rsf data and the Rsf correct by QM and
EDCDFm methods gradually increase. In Altay, the performance of the QM and EDCDFm
methods were very similar, and both of them were slightly better than that of the NWP
raw Rsf data. In Kashgar, the error of the raw Rsf data was relatively large. However,
the QM and EDCDFm methods were superior to the raw Rsf, with RMSE decreased by
28.2–31% and 28.6–31.5%, and MAE decreased by 27.9–31.1% and 27.7–31.1%, respectively,
during 1–3 d ahead. In Ruoqiang, the error of the raw Rsf was large, and its RMSE was
more than 5 MJ m−2 d−1. After correcting by QM and EDCDFm method correction,
RMSE decreased by 17.4–18.5% and 19.7–20.1% for 1–3 d ahead, and MAE decreased
by 16–17.7% and 17.7–19.4%, respectively. However, the R2 of the raw Rsf was slightly
higher than that of the two statistical methods. This indicates that the statistical method
improved the overestimation (or underestimation) problem. The performance for Khotan
station was similar to that of Ruoqiang station. Compared with the raw Rsf over the four
stations, the RMSE and MAE of QM and EDCDFm models decreased by 20% and 15%,
respectively. It can be seen from the above results that empirical statistical methods can
improve forecasting accuracy.

As can be seen from the scatter plot of raw Rs vs. ground observed Rs (Figure 4), the
discrete points increased slightly from 1 d to 3 d, indicating a slight decrease in inaccuracy.
The forecasting value of Rsf in the future 1–3 d was not higher than 30 MJ m−2 d−1, which
was slightly lower than the extreme value of Rs. The main problem of the GEFS data set lay
in the existence of many overestimated discrete points when the observed value was lower
than 25 MJ m−2 d−1. However, the QM and EDCDFm methods can alleviate this problem,
and the R2 of the two methods was slightly higher than the corresponding value of raw
Rsf data.
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Table 3. Statistical indicators of solar-radiation forecast by GEFS NWP raw data and two empirical-
statistics methods.

ID 1 d 2 d 3 d

Model R2 RMSE MAE NRMSE R2 RMSE MAE NRMSE R2 RMSE MAE NRMSE

51076 Altay
NWP 0.816 3.939 3.120 0.250 0.766 4.313 3.417 0.274 0.745 4.582 3.482 0.292
QM 0.821 3.843 3.077 0.246 0.787 4.194 3.304 0.269 0.768 4.387 3.442 0.281

EDCDFm 0.820 3.838 3.071 0.246 0.788 4.189 3.301 0.268 0.768 4.384 3.437 0.281
51709 Kashgar

NWP 0.795 5.016 3.822 0.327 0.772 5.214 3.955 0.340 0.757 5.378 4.080 0.351
QM 0.816 3.460 2.633 0.217 0.792 3.707 2.798 0.233 0.776 3.862 2.943 0.243

EDCDFm 0.820 3.437 2.633 0.216 0.795 3.699 2.815 0.232 0.780 3.841 2.950 0.241
51777 Ruoqiang

NWP 0.753 4.547 3.102 0.280 0.726 4.859 3.312 0.299 0.697 5.156 3.478 0.317
QM 0.754 3.708 2.553 0.224 0.713 4.002 2.762 0.241 0.681 4.257 2.920 0.257

EDCDFm 0.758 3.632 2.499 0.219 0.719 3.912 2.709 0.236 0.688 4.138 2.864 0.250
51828 Khotan

NWP 0.701 4.822 3.398 0.296 0.668 5.127 3.628 0.315 0.650 5.354 3.788 0.329
QM 0.720 3.674 2.750 0.219 0.665 4.057 3.048 0.241 0.649 4.178 3.143 0.249

EDCDFm 0.721 3.637 2.733 0.216 0.669 4.012 3.044 0.239 0.652 4.145 3.151 0.247

Note: the value in bold is the best statistical indicator among the different methods. The same as follow.
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3.2. Machine-Learning Methods

Table 4 shows the statistical indicators of Rs-forecasting results by seven different
machine-learning methods during 1–3 d ahead. In Altay, the third day’s R2 average in-
creased by 0.046, and the average RMSE and MAE increased by 13.4% and 13.1%, compared
with the first day. Among the seven machine-learning models, the BA-KNEA model was
superior to other machine−learning models each day, and the RMSE, MAE and NRMSE of
the BA-KNEA model decreased by 2.1–10.3%, 2.5–12.0% and 2.8–12.4% than other machine-
learning models for 1 d ahead, decreased by 1.8–8.8%, 1.7% to 10.1% and 1.6–9.9% for 2 d
ahead, and decreased by 2.2–8.2%, 2.2–9.6% and 2.0–9.5% for 3 d ahead. The performance of
the BA-SVM model was ranked second, followed by BA-XGBoost, PSO-KNEA, PSO-SVM,
LSTM and PSO-XGBoost models.

Table 4. Statistical indicators of solar-radiation forecasts by different machine-learning models.

ID 1 d 2 d 3 d

Model R2 RMSE MAE NRMSE R2 RMSE MAE NRMSE R2 RMSE MAE NRMSE

51076 Altay
LSTM 0.813 3.889 3.086 0.202 0.798 4.178 3.314 0.216 0.787 4.258 3.168 0.207

PSO-SVM 0.817 3.875 2.988 0.191 0.792 4.116 3.181 0.204 0.773 4.292 3.319 0.213
BA-SVM 0.837 3.627 2.854 0.183 0.811 3.91 3.032 0.194 0.793 4.091 3.174 0.203

PSO-XGBoost 0.816 3.917 3.118 0.2 0.79 4.178 3.28 0.21 0.773 4.33 3.403 0.218
BA-XGBoost 0.833 3.685 2.893 0.185 0.803 4.005 3.114 0.199 0.786 4.171 3.243 0.208
PSO-KNEA 0.826 3.723 2.903 0.186 0.794 4.053 3.088 0.198 0.77 4.281 3.268 0.209
BA-KNEA 0.844 3.552 2.785 0.178 0.819 3.839 2.98 0.191 0.803 4.002 3.105 0.199

51709 Kashgar
LSTM 0.834 3.485 2.81 0.177 0.808 3.735 2.75 0.173 0.799 3.908 3.033 0.191

PSO-SVM 0.838 3.436 2.641 0.166 0.809 3.735 2.863 0.18 0.789 3.824 2.886 0.181
BA-SVM 0.861 3.38 2.707 0.17 0.838 3.596 2.854 0.179 0.799 3.923 3.136 0.197

PSO-XGBoost 0.84 3.445 2.7 0.17 0.811 3.754 2.933 0.184 0.8 3.808 2.982 0.187
BA-XGBoost 0.845 3.345 2.55 0.16 0.819 3.661 2.775 0.174 0.808 3.677 2.796 0.176
PSO-KNEA 0.841 3.231 2.438 0.153 0.824 3.45 2.629 0.165 0.801 3.618 2.748 0.173
BA-KNEA 0.869 3.056 2.37 0.149 0.837 3.434 2.654 0.167 0.834 3.487 2.733 0.172

51777 Ruoqiang
LSTM 0.784 3.401 2.431 0.147 0.74 3.821 2.547 0.159 0.719 3.852 2.749 0.168

PSO-SVM 0.796 3.313 2.331 0.141 0.76 3.603 2.528 0.153 0.732 3.796 2.711 0.164
BA-SVM 0.803 3.266 2.296 0.139 0.764 3.592 2.542 0.153 0.733 3.811 2.693 0.163

PSO-XGBoost 0.787 3.423 2.429 0.147 0.75 3.688 2.614 0.158 0.731 3.822 2.746 0.166
BA-XGBoost 0.796 3.319 2.304 0.139 0.753 3.639 2.542 0.153 0.721 3.853 2.728 0.165
PSO-KNEA 0.785 3.552 2.41 0.145 0.739 3.86 2.6 0.157 0.717 4.069 2.736 0.165
BA-KNEA 0.819 3.123 2.196 0.133 0.791 3.354 2.387 0.144 0.752 3.674 2.624 0.158

51828 Khotan
LSTM 0.762 3.331 2.619 0.155 0.717 3.739 2.74 0.161 0.696 3.873 2.822 0.166

PSO-SVM 0.752 3.459 2.665 0.159 0.71 3.731 2.815 0.167 0.697 3.81 2.883 0.172
BA-SVM 0.771 3.384 2.664 0.159 0.737 3.755 2.968 0.177 0.704 3.969 3.116 0.185

PSO-XGBoost 0.755 3.32 2.621 0.151 0.723 3.885 3.003 0.179 0.703 3.991 3.197 0.189
BA-XGBoost 0.754 3.37 2.678 0.157 0.734 3.689 2.847 0.167 0.722 3.788 2.895 0.175
PSO-KNEA 0.743 3.506 2.587 0.154 0.689 3.834 2.8 0.167 0.671 3.929 2.899 0.172
BA-KNEA 0.783 3.227 2.509 0.149 0.754 3.483 2.676 0.159 0.737 3.576 2.732 0.163

In Kashgar, the BA-KNEA model did not have a significant advantage over the PSO-
KNEA model on the first two days, but performed slightly better than the PSO-KNEA
model on the third day. In addition, the BA-KNEA model was generally superior to other
models. RMSE, MAE and NRMSE decreased by 3.8–7.0%, 0–6.2% and 0–6.3% for 1 d ahead,
3.8–8.4%, 2.8–8.6% and 2.4–8.2% for 2 d ahead, and 5.4–12.5%, 2.3–14.7% and 2.3–14.5% for
3 d ahead. In addition, the BA-XGBoost model slightly outperformed the BA-SVM model.

In Ruoqiang, the BA-KNEA model performed better than the other six models. Com-
pared with the BA-KNEA model, the RMSE, MAE and NRMSE of the other six models
increased by 4.6–9.6%, 4.6–10.6% and 4.5–10.5% for 1 d ahead, 7.1–10.0%, 4.9–9.5%, 6.3–9.7%
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for 2 d ahead, and 3.3–4.9%, 2.6–4.6%, 3.2–5.1% for 3 d ahead. The BA-SVM model per-
formed better than the other four models on 1 d, but the advantage in the other models,
except BA-KNEA, was not obvious on the other two days. In Khotan, the BA-KNEA model
also achieved the highest accuracy, and the RMSE, MAE and NRMSE of the other five mod-
els increased by 2.6–6.9%, 4.8–7.1% and 1.3–6.7% for 1 d ahead, 3.5–9.0%, 1.6–8.4%, 1.2–8.5%
for 2 d ahead, and 3.0–8.5%, 1.8–12.8%, 1.8–11.8% for 3 d ahead. The performance of the
BA-SVM model was still better than the other four models, except for the BA-KNEA model.

The scatter plots of observed Rs vs. Rsf by seven machine-learning models are shown
in Figure 5. Among all the machine-learning models, it can be seen that the BA-KENA
model performed slightly better than other models, followed by the BA-SVM model. The
slope of all the regression equations in the Figure was less than 1, and the intercept was
greater than 0, which means that all the models exhibit the problem that when Rs is very
large, the model will underestimate the result, and when Rs is very small, the model will
underestimate the result.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 
Figure 5. Scatter plots of measured Rs vs. forecasting Rs at Kashgar station during the testing period, 
LSTM method forecasting data on (a) 1 d ahead, (b) 2 d ahead, (c) 3 d ahead; PSO−SVM method 
forecasting Rs on (d) 1 d ahead, (e) 2 d ahead, (f) 3 d ahead; BA-SVM method forecasting Rs on (g) 
1 d ahead, (h) 2 d ahead, (i) 3 d ahead; PSO−XGBoost method forecasting Rs on (j) 1 d ahead, (k) 2 
d ahead, (l) 3 d ahead; BA−XGBoost method forecasting Rs on (m) 1 d ahead, (n) 2 d ahead, (o) 3 d 
ahead; PSO−KNEA method forecasting Rs on (p) 1 d ahead, (q) 2 d ahead, (r) 3 d ahead; BA-KNEA 
method forecasting Rs on (s) 1 d ahead, (t) 2 d ahead, (u) 3 d ahead. 

Figure 6 shows the distribution of the absolute error of the forecast Rs for different 
machine-learning models 1–3 days ahead. As can be seen, at 1 d ahead, the proportion of 
days with AE < 2 MJ m−2 d−1 for the six models was around 60%; the proportion of 
PSO−KNEA and BA−KNEA was slightly higher than in other models; and had a AE > 6 

Figure 5. Scatter plots of measured Rs vs. forecasting Rs at Kashgar station during the testing period,
LSTM method forecasting data on (a) 1 d ahead, (b) 2 d ahead, (c) 3 d ahead; PSO-SVM method
forecasting Rs on (d) 1 d ahead, (e) 2 d ahead, (f) 3 d ahead; BA-SVM method forecasting Rs on (g) 1 d
ahead, (h) 2 d ahead, (i) 3 d ahead; PSO-XGBoost method forecasting Rs on (j) 1 d ahead, (k) 2 d
ahead, (l) 3 d ahead; BA-XGBoost method forecasting Rs on (m) 1 d ahead, (n) 2 d ahead, (o) 3 d
ahead; PSO-KNEA method forecasting Rs on (p) 1 d ahead, (q) 2 d ahead, (r) 3 d ahead; BA-KNEA
method forecasting Rs on (s) 1 d ahead, (t) 2 d ahead, (u) 3 d ahead.
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Figure 6 shows the distribution of the absolute error of the forecast Rs for different
machine-learning models 1–3 days ahead. As can be seen, at 1 d ahead, the propor-
tion of days with AE < 2 MJ m−2 d−1 for the six models was around 60%; the propor-
tion of PSO-KNEA and BA-KNEA was slightly higher than in other models; and had a
AE > 6 MJ m−2 d−1 days ratio, the BA-KNEA had a slight advantage over the other models.
The performance on 2 d ahead was slightly worse than that on 1 d ahead: the proportion
of days with AE < 2 MJ m−2 d−1 for all six models was below 60%, while the number of
days with AE > 6 MJ m−2 d−1 showed little change compared with 1 d ahead, with the
BA-KNEA model having a slight advantage over the other models in the number of days
with AE > 6 MJ m−2 d−1. In the 3 d ahead, the accuracy of the six models continued to
decline compared with the previous 2 d, and the BA-KNEA model had a slightly lower
proportion of days with AE > 6 MJ m−2 d−1 than the other models.
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Figure 7 shows the Taylor diagram of different methods over the four stations. It can
be seen that the BA-KNEA model outperformed the other methods over the all stations.
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3.3. Comparison of Statistical Models and Machine-learning Models

To evaluate the performance of different categories of models, we ranked the four
statistical indicators of all models over the four stations (Table 5). With the highest R2

or the lowest RMSE, MAE or NRMSE would rank first, and so on. When the ranking
of different statistical indicators is different, the model with more indicators at the top
ranks first. It can be seen that the rank of different models in 1–3 d ahead were the same.
The BA-KNEA model was the best, followed by the BA-SVM, BA-XGBoost, PSO-KNEA,
PSO-SVM, LSTM, PSO-XGBoost, EDCDFm and QM models. The above results prove that
the machine−learning model is superior to the empirical-statistical model, and the new
BA-KNEA model has the best performance in accuracy. In addition, the Taylor plots of
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different stations on the first day of the forecast period are shown in Figure 6. It can also be
seen that the results of the BA-KNEA model were the closest to the observations, while the
GEFS raw data had the largest error.

Table 5. Rank of empirical-statistical and machine-learning models.

Model 1 d 2 d 3 d

GEFS raw 10 10 10
QM 9 9 9

EDCDFm 8 8 8
LSTM 6 6 6

PSO-SVM 5 5 5
BA-SVM 2 2 3

PSO-XGBoost 7 7 7
BA-XGBoost 3 3 2
PSO-KNEA 4 4 4
BA-KNEA 1 1 1

3.4. BA-KNEA with Different Input Combinations

In order to analyze the difference in the forecasting ability of different meteorological
factors on the results, we used the BA-KNEA model to set up different input combina-
tions. Through the results, we explored the contribution differences of different factors.
Table 6 shows the statistical indicators of the different input combinations of the BA-KNEA
model in the forecast period 1–3 d. When the input factor is Rsf, the accuracy of the
BA-KNEA model was better than that of the QM and EDCDFm methods with the same
input at four stations (Table 3), and the RMSE and MAE of the BA-KNEA model was
1.7–7.9% and was 1.6–7.6% lower in the forecast period of 1–3 days, relative to the EDCDFm
method. This model was also better than the model established with temperature and
extraterrestrial radiation as inputs (Combination 5), which shows that the solar radiation
accuracy of the GEFSv12 dataset is better than that of the traditional temperature-based
machine-learning model method. In Altay, when only the maximum and minimum air
temperature was used as input, the error was larger than the model with Rs input: R2 was
between 0.712–0.723, RMSE was between 4.705–4.812 MJ m−2 d−1, and MAE was between
3.766–3.799 MJ m−2 d−1, and NRMSE was between 0.241–0.243. Adding RHf, Uf, Tmaxf
and Tminf based on the Rsf can improve the prediction accuracy of Rs, among which the
increase in wind speed was the largest, followed by air temperature, and, finally, relative
humidity. Compared with Combination 2, 3, and 4, the accuracy of combination 6 was
higher, and it can be seen that the accuracy of the multi-factor was higher than that of
the two-factor combination. This shows that the multi-factor combination contains more
nonlinear information related to Rs than the two-factor combination, which helps improve
the model accuracy further. At Kashgar station, adding relative humidity based on Rs did
not improve the accuracy significantly, and when the forecast period was 2 and 3 days,
adding wind speed based on Rs slightly improved the accuracy. Adding the temperature
model based on Rs improves the model’s accuracy to a certain extent, but it is not much
different from the accuracy of the complete combination (Combination 6). This is mainly
due to the limited contribution of RH and U to improving the accuracy of the model.
The performance of the BA-KNEA model on the first two days of Ruoqiang Station was
similar to that on Altay, but on the third day, Combination 3 outperformed the complete
input combination. Due to poor forecast accuracy of wind speed and relative humidity,
adding these factors will increase the noise in the model. At Khotan station, on the first
day, the complete combination was close to the Combination 2, 3, and 4 but superior to
those during the other two days. The complete combination is slightly better than the other
combinations. As seen from the above, the complete combination was slightly better than
the other combinations over the four stations.
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Table 6. Statistical indicators of BA-KNEA model under different input combinations.

ID Input 1 d 2 d 3 d

R2 RMSE MAE NRMSE R2 RMSE MAE NRMSE R2 RMSE MAE NRMSE

51076 Altay
1 Rsf 0.824 3.778 3.019 0.193 0.789 4.139 3.23 0.207 0.771 4.312 3.382 0.217
2 Rsf, RHf 0.828 3.741 2.978 0.191 0.799 4.051 3.164 0.203 0.781 4.226 3.305 0.212

3 Rsf, Tmaxf,
Tminf

0.832 3.687 2.913 0.187 0.805 3.983 3.079 0.197 0.787 4.178 3.269 0.209

4 Rsf, Uf 0.835 3.651 2.862 0.183 0.808 3.943 3.057 0.196 0.792 4.097 3.169 0.203
5 Tmaxf, Tminf, Ra 0.723 4.705 3.766 0.241 0.721 4.757 3.737 0.239 0.712 4.812 3.799 0.243
6 All 0.844 3.552 2.785 0.178 0.819 3.839 2.98 0.191 0.803 4.002 3.105 0.199

51709 Kashgar
1 Rsf 0.852 3.21 2.499 0.157 0.829 3.494 2.711 0.17 0.814 3.663 2.87 0.18
2 Rsf, RHf 0.859 3.23 2.551 0.16 0.84 3.456 2.705 0.17 0.823 3.632 2.869 0.18

3 Rsf, Tmaxf,
Tminf

0.867 3.185 2.535 0.159 0.846 3.388 2.634 0.165 0.832 3.488 2.741 0.172

4 Rsf, Uf 0.87 3.223 2.55 0.16 0.841 3.464 2.701 0.17 0.826 3.502 2.705 0.17
5 Tmaxf, Tminf, Ra 0.796 3.958 3.09 0.194 0.785 3.809 2.93 0.184 0.776 3.838 2.954 0.186
6 All 0.869 3.056 2.37 0.149 0.837 3.434 2.654 0.167 0.834 3.487 2.733 0.172

51777 Ruoqiang
1 Rsf 0.789 3.403 2.352 0.142 0.755 3.64 2.504 0.151 0.73 3.818 2.663 0.161
2 Rsf, RHf 0.798 3.302 2.286 0.138 0.767 3.527 2.479 0.15 0.741 3.732 2.639 0.159

3 Rsf, Tmaxf,
Tminf

0.811 3.199 2.296 0.139 0.782 3.467 2.467 0.149 0.756 3.649 2.616 0.158

4 Rsf, Uf 0.814 3.222 2.245 0.135 0.774 3.511 2.445 0.148 0.74 3.746 2.649 0.16
5 Tmaxf, Tminf, Ra 0.745 3.764 2.792 0.168 0.724 3.875 2.871 0.173 0.702 4.035 2.96 0.179
6 All 0.819 3.123 2.196 0.133 0.791 3.354 2.387 0.144 0.752 3.674 2.624 0.158

51828 Khotan
1 Rsf 0.747 3.44 2.607 0.155 0.694 3.787 2.827 0.168 0.671 3.948 2.998 0.178
2 Rsf, RHf 0.769 3.293 2.523 0.15 0.719 3.645 2.767 0.165 0.705 3.729 2.818 0.168

3 Rsf, Tmaxf,
Tminf

0.782 3.236 2.5 0.149 0.751 3.564 2.771 0.165 0.731 3.678 2.833 0.169

4 Rsf, Uf 0.763 3.337 2.504 0.149 0.725 3.643 2.786 0.166 0.708 3.765 2.867 0.171
5 Tmaxf, Tminf, Ra 0.73 3.602 2.775 0.165 0.716 3.718 2.857 0.17 0.697 3.823 2.919 0.174
6 All 0.783 3.227 2.509 0.149 0.754 3.483 2.676 0.159 0.737 3.576 2.732 0.163

4. Discussion

Different machine-learning models perform differently in solar-radiation prediction.
This is mainly due to two reasons. Firstly, different machine-learning models have different
sensitivities to data distribution. For example, kernel-based machine-learning methods can
perform well in low-dimensional data sets [47]. However, the tree-based model performs
better with high dimensions and a large amount of typed data. The deep-learning model
has better performance in image processing [48]. Another reason is that the parameter
selection of machine-learning models did not achieve the optimal global solution. Fan
et al. [31] compared the performance of SVM and XGBoost when the input factors were
temperature and precipitation and found that SVM was slightly better than the XGBoost
model. Ghimire et al. [7] compared ANN, SVR, GPML and GP models for forecasting
solar radiation with reanalysis data in Queensland, Australia. They highlighted that the
ANN model outperformed other ML models. Shin et al. [49] used a deep-learning model
to short-term forecast solar radiation for photovoltaic power generation. Hu et al. [50] used
ground-based images and an ANN model to forecast solar radiation. However, there is
limited study of using weather-forecast products to forecast solar radiation in China. In
this study, we evaluated the capability of the GEFSv12 product in the solar-resource-rich
region of China. We found that the raw solar-radiation forecast data in GEFSv12 has poor
performance and uncertainty for indirect use. Thus, we built a coupling model based on
the bat algorithm and KNEA model. The result shows that the newly developed model is
superior to other empirical-statistical and machine-learning models. The LSTM had been
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used to forecast Rs on hourly and other time scales [51,52]. However, we found that the
LSTM did not perform better than the BA-KNEA model nor other models. The daily Rs
fluctuated widely on an hourly scale in the arid regions of the northwest of China, and
historical information is not as important as the WRF data for future. Thus, the LSTM did
not achieve enough information to forecast 1–3 d Rs.

Many scholars have found that various meteorological factors, such as air tempera-
ture, relative humidity, wind speed, and precipitation, are closely related to solar radia-
tion [53,54], but the effects of these factors vary in different regions of the globe [55,56].
In northwest China, air temperature is the closest meteorological variable to solar ra-
diation [57]. Thus, many scholars have established solar-radiation models based on air
temperature. In addition, relative humidity and wind speed have also been used to improve
the accuracy of solar radiation prediction [58,59]. Although the forecast data set was used
in this study, similar results have been obtained, which means that the forecast data set and
observation data have similar results. The most significant difference between the forecast
data set and observation data lies in the forecast precision of different forecast factors. In
general, the temperature has a very high forecast accuracy, but the relative humidity and
wind-speed forecast accuracy are low, a fact mainly caused by two data mismatches. That
is to say, the forecast data is the average of a large area, while the relative humidity and
wind speed observed by the weather station is a minimal point value. We found that, in
the four stations of this study, the model’s accuracy with temperature factor is generally
better than that of wind speed and relative humidity, and the prediction performance of
relative humidity and wind speed of GEFSv12 needs to be improved.

5. Conclusions

Accurate forecasting of solar radiation (Rs) is significant to photovoltaic power gener-
ation and agricultural management. For the first time, this study evaluated and improved
the capability of the newly released National Centers for Environmental Prediction Global
Ensemble Forecast System version 12 (NECP GEFSv12) for short-term forecasting of Rs.
To achieve this goal, a new coupling model based on the bat algorithm (BA) and kernel-
based nonlinear extension of Arps decline (KNEA) was established. The data used four
solar-radiation stations in Xinjiang, China as the benchmark. The new model was also
compared with two empirical statistical methods (quantile mapping and Equiratio cumu-
lative distribution function matching) with five machine-learning methods, e.g., support
vector machine (SVM), XGBoost, KNEA, BA-SVM, BA-XGBoost. The results show that
the accuracy of forecasting Rs from all of the models decreases from 1 d to 3 d ahead.
Compared with the GEFS raw Rs data over the four stations, the RMSE and MAE of the
QM and EDCDFm models decreased by 20% and 15%, respectively. In addition, the BA-
KNEA model was superior to the GEFSv12 raw Rs data and other post-processing methods,
with R2 = 0.782–0.829, RMSE= 3.240–3.685 MJ m−2 d−1, MAE = 2.465–2.799 MJ m−2 d−1,
NRMSE = 0.152–0.173.
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