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Abstract: Conservation of traditional olive groves through effective monitoring of their health state
is crucial both at a tree and at a population level. In this study, we introduce a comprehensive
methodological framework for estimating the traditional olive grove health state, by considering
the fundamental phenotypic, spectral, and thermal traits of the olive trees. We obtained phenotypic
information from olive trees on the Greek island of Lesvos by combining this with in situ measure-
ment of spectral reflectance and thermal indices to investigate the effect of the olive tree traits on
productivity, the presence of the olive leaf spot disease (OLS), and olive tree classification based on
their health state. In this context, we identified a suite of important features, derived from linear
and logistic regression models, which can explain productivity and accurately evaluate infected
and noninfected trees. The results indicated that either specific traits or combinations of them are
statistically significant predictors of productivity, while the occurrence of OLS symptoms can be
identified by both the olives’ vitality traits and by the thermal variables. Finally, the classification of
olive trees into different health states possibly offers significant information to explain traditional
olive grove dynamics for their sustainable management.

Keywords: traditional agroecosystems; phenotypic traits; infrared thermography; Lesvos; Olea
europaea var. pyriformis

1. Introduction

In agricultural landscapes, the continuous and complex coevolutionary process among
natural and agricultural production systems has led to the formation of traditional agroe-
cosystems [1]. These are considered essential sanctuaries of agrobiodiversity [2,3] of a high
conservation value [4]. The values of traditional agroecosystems, along with the great
variety of traditional practices implemented in these areas, are gradually recognized in
the context of the European agroenvironmental policies; they are referred to as “High
Nature Value farmland areas” (hereafter HNVf) [5,6], and have contributed to enhancing
the implementation and effectiveness of conservation actions [7].

In the Mediterranean basin, a variety of traditional agroecosystems can be found, in-
cluding traditional olive groves [8–10], which are considered a type of HNVf in Europe [11].
Traditional olive groves are characterized by the presence of old trees growing at low
densities, absence of irrigation, nonregular pruning, grazing of seminatural vegetation
under and between the olive trees, low or no input of fertilizers and biocides [12,13], and in-
frastructures such as terraces and dry stone walls [14] that contribute to preserving natural
habitats and viable animal diversity populations of the highest conservation value [6,15],
supporting conservation and/or creating a stable and high-value agricultural ecosystem. In
parallel, the ineffective European Union regulations and policies towards the intensification
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of olive and olive oil production of the past [16–18] have changed and shifted towards
sustainable practices, supporting traditional olive grove conservation and acknowledging
the importance of traditional practices for alleviating biodiversity loss, soil erosion, and
land degradation [19–21].

Despite these positive steps, traditional olive groves of the Mediterranean basin, espe-
cially terraced ones, are progressively deteriorating due to the continuous intensification of
agriculture [22–24], as well as land depopulation and abandonment [20,25,26]. Land aban-
donment, in particular, exerts additional indirect abiotic (e.g., hydrogeological instability,
water stress, loss of soil organic matter, soil erosion) [27,28] and pathogenic (fungi, bacteria,
viruses) pressures on terraced olive trees. At the same time, gradual renaturalization
processes are an added factor directly influencing the dynamics of these ecosystems and
can lead to terrace collapse [29] and microclimate alterations (e.g., humidity), resulting
in increased incidence of airborne fungi, such as the olive leaf spot [30], and a combined
further degradation of these HNVf areas.

In order to sustain the conservation of terraced olive groves, European countries
should (a) identify, characterize, and map the HNVf olive groves in their territory, (b) sup-
port their maintenance and their socioecological values, and (c) monitor the pressures and
their overall state [31,32]. In this regard, despite the effort that has been made both through
legal instruments and through targeted research, monitoring the state and pressures exerted
on traditional olive groves is still a challenge.

Recent advances in monitoring methodologies combine field data and multispec-
tral sensors of various spatial resolutions [33], enabling the rapid detection of land-use
changes and ecosystem degradation [34,35]. This set of rapid and noninvasive plant
phenotypic techniques [36] is mainly used towards agricultural productivity increase
and disease detection [37–39], while it can also adequately support effective conserva-
tion strategies [40–42]. At individual tree level, a relevant nondestructive technique is
infrared thermography (IRT) [43], a fast-growing type of aerial and/or ground optical
remote sensing technique [44–46]. To date, IRT is widely used in various agroecological
systems [44,47], in monitoring crop vegetation [48–50], in detecting water stress [51–53]
and fungal infestation [54,55], and in assessing the health state of various woody vegetation
species [56].

Along with IRT, plant phenotyping spectral reflectance indices related to plant photo-
synthetic status such as leaf and crown chlorophyll concentration [57–60], obtained in situ
and noninvasively, can reflect the health state of plants. After all, chlorophyll as a pivotal
photosynthetic pigment on which plant growth and productivity depend [60,61], is con-
sidered a hallmark index to plant health estimation [62–64]. Low chlorophyll content may
mean exposure to biotic and/or abiotic stresses, diseases, and senescence [65–67], and pro-
vides significant information about plant photosynthetic potential and primary production.

The above noninvasive monitoring techniques can be further enhanced with the
support of traditional methods of measuring plant structural and functional traits, such as
height, diameter, leaf area and its related indices (e.g., leaf area index—LAI), and canopy
architecture. Specifically, in terraced olive groves, as in any other agroecosystem, LAI is
considered one of the fundamental biophysical traits and is directly associated, among
others, with olive growth and productivity [68,69]. A combination of these traits can
provide a variety of different composite indices and equations that describe the overall
condition of trees in traditional olive groves.

Thus, the main aim of our research was to assess traditional olive grove health state,
with the emphasis on estimating productivity, using nondestructive phenotypic techniques,
in a typical Mediterranean environment. We obtained phenotypic information from olive
trees on the Greek island of Lesvos by combining this with in situ measurement of spectral
reflectance indices and collection of IRT images to investigate the following objectives:
(a) to quantify the effect of the olive tree phenotypic traits and indices on productivity, (b) to
examine if olive tree phenotypic parameters can explain the presence of one of the most
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common biotic stressors, the olive leaf spot disease (OLS), and (c) to examine whether olive
trees can be classified into groups of different health state, based on the above information.

2. Materials and Methods
2.1. Study Area and Sites Selection

Lesvos, the third largest island of Greece in the NE Aegean Sea, with an area of
1632.8 km2, encompasses geographical, biogeographical, and ecological features that pro-
mote the existence of traditional olive groves [8]. The climate of the island is typical
Mediterranean with a mean monthly temperature of 10.4 ◦C in January and 26.1 ◦C in
July at Mytilini Airport [70]. Lesvos is one of the main olive-growing parts of Greece. Its
olive groves cover approximately a quarter of its total area, 415.7 km2 and 87.4% of its
agricultural area, according to the 2019 report of the Hellenic Statistical Authority, while
the number of olive trees is estimated at between eight and eleven million [26], with most
of them located on hilly or mountainous and lowland areas [71].

Study site selection was founded on two main criteria: (a) location within the officially
delineated island’s HNVf area, and (b) the existence of terraces and dry stone walls,
essential elements associated with this particular type of HNVf. To meet the first criterion,
we combined spatial data derived from the following sources: (a) the 2008 European HNVf
dataset for Greece [72], (b) the CORINE Land Cover (CLC) dataset [73], and (c) the tree type
and density data available in the Tree Cover Density (TCD) subset of the COPERNICUS
high-resolution layers [74,75]. To identify areas of HNVf olive groves, the olive groves cover
was extracted, by intersecting the Broadleaves data of COPERNICUS with the agricultural
areas layer of CLC, and then retaining the olive grove cells contained in the Lesvos HNVf
dataset (Figure 1). Based on the above, we estimated that the total area of HNVf olive
groves of the island is 130.06 km2. The entire process was performed with ESRI ArcGIS
software (v. 10.2). In order to meet the second criterion, we carried out an in situ inspection
of HNVf sites extracted with the first criterion, focusing on the absence of cultivation
practices such as severe pruning, irrigation, fertilization, ploughing of understory, chemical
disease protection, and harvesting of understory grasses for at least five years.

Figure 1. Map of the island of Lesvos showing the two study sites and the distribution of olive groves
within and outside the island’s HNVf.
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Thus, we selected two terraced olive grove sites, one in the Pyrgi region (39◦05′51.1′′ N
26◦30′48.2′′ E, 10 m a.s.l.), with an area of 1.84 ha and an average slope of 18.6%, and one in
the Agiasos region (39◦06′28.9′′ N 26◦21′48.5′′ E, 230 m a.s.l.), having an area of 1.41 ha and
a slope of 31.7% (Figure 1). At these sites, the two main varieties of the island’s olive trees
can be found, the variety “Kolovi” (Olea europaea var. pyriformis), which covers 85% of the
two sites, while the remaining 15% is of the variety named “Adramytini” (Olea europaea var
med. subrotunda). Tree density was 102 trees per ha at Pyrgi and 107 trees per ha at Agiasos.

2.2. Metrics of Olive Trees’ Architecture and Vitality Traits

The two study sites were monitored from 2017 to 2020 during four olive harvest
seasons. At each site, we randomly selected 40 olive trees (80 in total); for uniformity, all
were the commoner “Kolovi” variety, and we measured a set of typical phenotypic traits
related to their architecture and vitality. In order to estimate annual crop productivity
(Pr—kg), the most essential metric for our study, we collected the olives from each tree
during the harvest period (November–December) of each year. We weighed the olives in
situ, using a field precision scale. We calculated the mean productivity of each tree (Prmean)
as the mean of productivity values for all four years.

During the first harvest season, we recorded traits directly related to the trees’ archi-
tecture: (a) height (H—m), (b) diameter at breast height (DBH—cm), and (c) crown area
(CA—m2), using a clinometer, measuring tapes, and the vertical sighting method, respec-
tively [76]. Regarding tree vitality, we recorded, by visual examination and an olive tree
expert’s judgement, three additional phenotypic traits for each olive tree: (a) the number of
productive shoots (medium-sized current year shoots, with high flowering and fruit set,
about 25 cm long—PS), (b) the number of unproductive shoots (strong vertical branches
in the inner part of the crown—US), and (c) the number of structural defects (external
indications of rotten wood, missing bark, cavities, and hollows). We used the ration of this
number to the tree’s estimated age (SDV) instead of the absolute number to avoid any bias,
given that structural defects accumulate with age. SDV is a critical parameter for olive
trees as they develop deep grooves and cavities; this affects their health state and their
productivity as they age. From the first two vitality traits, we extracted the tree shoots ratio
(SR) variable (SR = PS/(PS + US)) as another proxy of tree productivity, while we measured
PS, US, and SR at each harvest season.

Another factor of great significance, directly related both to tree health and produc-
tivity, is ageing [77]. Olive tree senescence is associated with processes typical of tree
ageing, such as a decrease in vegetative activity and the expansion of the root system, with
a concomitant increase in susceptibility to diseases [78]. As olive tree age estimation by
annual growth ring measurement is problematic, due to the inner part of the tree trunk
having cavities and rotten tissues [79,80], we resorted to an allometric equation described
by Arnan et al. [80] (Age = 2.11 × Diameter (cm) + 88.93; R2 = 0.80), for its estimation.

Thereafter, we estimated the mean LAI (LAImean) of each olive tree using the SunScan
plant canopy analyzer (Delta-T Devices, Cambridge, UK), by averaging five measurements
taken from a height of 1.3 m from the ground, at equal distances below the crown of each
tree. We also calculated the range of LAI values for each tree (LAIrange) from the same LAI
measurements, as another indirect metric of tree health state; greater LAIrange shows greater
nonuniformity of the tree crown indicative of lower productivity. LAI measurements were
taken at the end of November when all shoot growth had stopped. Since our approach was
to rely on fast and accurate field measurements, we did not include other ecophysiological
parameters, such as stomatal conductance, that would require repeated measurements over
a long time period.

Estimation of Olives’ Chlorophyll Concentration

As a further metric of tree vitality, we estimated chlorophyll concentration in olive
tree leaves as an index of photosynthetic capacity, using a handheld chlorophyll meter
(CCM—200 plus, OPTI-Sciences, Inc., Hudson, NH, USA). This optical device estimates
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chlorophyll concentration by extracting a spectral index, termed the chlorophyll content
index (CCI), of leaf light absorbance and/or reflectance in the visible and near-infrared
regions, as a ratio of transmittance percentages at 931 nm to 653 nm [65]. This index is
strongly related to the actual amount of chlorophyll [81].

To measure CCI, we randomly selected fifty mature leaves from the parts of the
crown used for the LAI measurements (10 leaves at each LAI measurement point). We
calculated the CCI value for each leaf as the mean of three measurements of this leaf. We
took all measurements in early hours so as to avoid metric fluctuations resulting from the
movement of the chloroplasts [82]. In order to have an estimate of the mean chlorophyll
content for each tree (MCLL), we transformed CCI, which is a relative value, to chloro-
phyll concentration (µmol/m2), using the universal equation described by Parry et al. [81]
(µmol m−2 = −84.3 + 98.6 × (CCI) 0.505); we then converted this value to mg/m2 of leaf
surface by multiplying with the weighted average mass of both types of chlorophyll
(0.9 mg/µmol). Finally, we estimated the total chlorophyll of each tree (TCLT), in g, using
the formula TCLT = MCLL × CA × LAImean × 10−3. We used LAImean in the previous
equation because when multiplied by CA, it gives the best possible estimation, in m2, of
the total foliage area of each tree. As adult olive trees have very slow growth rates [83], we
measured the other phenotypic traits (H, DBH, CA, SDV, LAI, CCI) only in the first year.

2.3. Olive Leaf Spot Disease Detection

Among many different diseases affecting olive trees, one of the most widespread, both
worldwide and in Lesvos, is the olive leaf spot (OLS) or Cycloconium leaf spot, a foliar
disease caused by the fungus Spilocaea oleagina (Castagne) Hughes. The main symptoms
of OLS can be detected visually and include dark green to black round spots surrounded
by a yellow halo on leaves [84]. OLS causes defoliation and progressive death of shoots
and branches, leading to degrowth and productivity reduction of up to 20% [85]. In trees,
such as those found in traditional olive groves, the lack of management practices, and
competition for resources, leads to the formation of a tall and dense crown, which, in
combination with the renaturalization processes, increases humidity within the groves and
raises the infection likelihood [86]. At the same time, chemical fungicides are avoided for
obvious reasons, and thus, the infection remains in the trees.

To investigate the presence of the disease, we visually examined the leaves in which
we measured CCI (50 leaves per tree) at the end of November. This is within the peak
growth period of the fungus, when cool, humid conditions prevail [85]. We evaluated
OLS severity by recording the percentage of infected leaves per tree (PIL), then estimating
the total infected leaf area of each tree (TIA) by multiplying PIL with CA and LAImean
(TIA = PIL × CA × LAImean). We further calculated OLSPA to show the presence or absence
of the disease for each tree.

2.4. Collection and Processing of Olive Trees’ Infrared Images

We photographed the trunks of the 80 sampled olive trees using a handheld thermal
camera (Testo 875-1i, Testo SE & Co. KGaA, Lenzkirch, Germany), with a thermal resolution
of < 0.08 ◦C and thermal sensitivity of <50 mK, which extracts infrared images with a spatial
resolution of 160 × 120 pixels. To avoid errors resulting from (a) the effect of atmospheric
composition (e.g., floating particles, soil dust) [87] and (b) temperature inaccuracies due to
the entrance of solar radiation through the tree canopy, we set the orientation of the camera
for each olive tree individually to avoid patches of direct solar radiation or shading, and
we carried out IRT only on rainless and windless days and in the early morning hours, at a
standard distance of 5.0 m from the trunk and at a height of 1.3 m, ensuring that the entire
tree trunk was captured. We kept the emissivity value at the constant level of 0.95 suitable
for tree trunks [88], and we calibrated the collected infrared images using meteorological
data: ambient temperature (Tamb), relative humidity (RH), and solar irradiance (SI), which
we obtained, under each olive tree canopy, with a portable weather station and a solar
radiation meter (Amprobe SOLAR-100).
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We initially processed the collected infrared images using the TESTO IRSoft® (v. 4.3)
software package and, afterward, we distinguished the areas of interest (tree trunks and
lower part of main branches) from other objects in the background by using the ArcGIS
Analysis toolbox (v. 10.2) (ESRI Inc., Redlands, CA, USA). Specifically, we exported the
calibrated infrared images from the TESTO software, and then imported them into the
ArcGIS software in a text file format (Figure 2). Thereafter, we converted each text file to a
raster layer, and we selected the tree trunk and branches area and manually bounded them
by a unique polygon in shapefile format. In this process and in order to avoid errors caused
by leaf surfaces, we selected branches that had the least possible leaf cover. Finally, we
extracted the temperature values within the tree trunk areas (Figure 3a,b) and organized
them into a database for statistical analysis.

Figure 2. Main methodological procedure of an individual olive tree sample for extracting the trunk
temperature data: upper left is the RGB (visible) image (a); upper right is the infrared image after
calibration using the TESTO software (b); lower left is the calibrated image after imported in ArcGIS,
as a raster layer (c); lower right is the final infrared image (d), as a raster layer, after converting each
pixel to correspond to the temperature difference of the tree trunk from the environment (∆Tpixel).

Estimation of Olive Trees’ Thermal Profile

In order to define the trees’ thermal profile, we derived a set of thermal variables
describing the response of the tree trunk and branches to ambient temperature by analysis
of the trunk temperature histograms. In correspondence with the canopy temperature
depression index [89], we subtracted the trunk temperature value of each pixel (Tpixel)
from Tamb (∆Tpixel = Tpixel − Tamb) to obtain a unique pixel value in response to Tamb, thus
creating a new histogram for each tree based on ∆T (Figure 3).

In order to assess the state of each olive tree as a whole, the effect of outliers and
skewed data had to be avoided, hence, from each histogram, we calculated the interquartile
range (IQR) instead of the range. However, assessing the state of individual characteristics
that appear on the tree trunk and which are directly associated with the tree’s health,
such as wounds or other external abnormal indications, requires the study of the extreme
∆Tpixel values. In any case, the trunk’s structural defect patches are expected to exhibit
high dissimilarity of their ∆T distribution compared to the healthy part of the trunk, and
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therefore we used the interpercentile ranges of each trunk histogram (∆T05 − ∆T25 (IPR1)
and ∆T75 − ∆T95 (IPR2)) separately as the most appropriate statistical metric to assess
trunks’ individuality. Furthermore, when these values are added together, they define the
outer percentile range (OPR), which represents the required information regarding all the
external or/and internal abnormalities of the trunk. Lastly, we calculated the extent of
∆T defect patches (E∆T) using the ratio of the actual number of pixels contained between
the limits µ − 3σ ≤ np ≤ µ − 2σ and µ + 2σ ≤ np ≤ µ + 3σ to the total pixels of each tree
trunk surface.

Figure 3. Trunk of an individual olive tree sample which was exported with the use of ArcGIS Analy-
sis toolbox, as well as the histogram of its pixel values; (a,c) refers to the actual trunk temperature
along with its histogram, while (b,d) refers to the trunk ∆T along with its histogram distribution. The
blue line in the two histograms corresponds to the mean trunk (c) and ∆T (d) temperature values.
The green line corresponds to Tamb in both histograms.

2.5. Statistical Analysis

We used SPSS software (v. 25.0. Armonk, NY: IBM Corp.) for all statistical analyses.
All the assumptions required were met and statistical significance was assumed at the 5%
level. Summary statistics are expressed as means ± standard deviation (SD).

Prior to further analysis, we tested for possible differences in microclimate between
the two sites due to the existing small differences in topography and altitude. Using
independent sample t-tests to compare microclimate variables recorded during infrared
image collection, we did not find any statistically significant differences between the two
sites (Tamb (t (40) = −0.169, p = 0.866); SI (t (40) = 0.730, p = 0.468)), with the exception of
relative humidity (RH (t (40) = 8.252, p = 0.001)). Therefore, we decided that treating the
two sites separately was not justified and, thus, we pooled the data for the two sites.
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For modeling the relationship of tree productivity with tree architectural and vitality
metrics, chlorophyll concentration, and OLS infected area, as well as tree thermal variables,
we visually examined their associations in scatterplots and assessed their relationship
using Pearson’s correlation coefficient (r). Next, we used multiple linear regression, with
a backward elimination procedure for significant variable selection. To check for linear
dependence, all independent variables were correlated to each other and we used the
variance inflation factor (VIF), with a threshold value of <3 [90] as an indicator of multi-
collinearity. Variables with the highest VIF were sequentially dropped from the model.
We implemented this analysis both separately for each set of variables (architectural and
vitality set, OLS set, thermal variables set) and by combining them all together for (a) each
year’s productivity and (b) for the mean productivity of all harvest years.

For examining the potential effect of OLS on tree vitality, we chose a generalized linear
model. In correspondence with the previous procedure, we used architectural, vitality, and
thermal metrics as predictor variables, both separately and in combination; final models
were reached with backward stepwise elimination, while Nagelkerke’s R2 was used as an
indication of the amount of variation explained by the model, while the overall significance
of the model was tested with the Hosmer and Lemeshow goodness of fit test. To assess the
discrimination ability of the model, a classification table of observed and predicted values
regarding the OLS was computed and evaluated by receiver operating characteristic (ROC)
curve analysis.

Finally, we used hierarchical clustering to identify any homogeneous tree groups
with an analysis of variance approach to assess intercluster distances (Ward’s method).
To avoid problems caused by different measuring scales, we standardized the variables
using Z-scores and we conducted one-way ANOVA, as well as Tukey’s post hoc, tests to
determine which phenotypic traits and thermal variables of olive trees are significantly
differentiated between cluster groups.

3. Results
3.1. Descriptive Statistics of Sample Olive Trees and Leaves

As recorded during data collection, mean Tamb was 13.63 ± 2.16 ◦C, mean RH was
67.72 ± 18.75%, and mean SI was 390.45 ± 136.77 W/m2. The sampled olive trees had
a mean height of 7.25 ± 2.74 m, mean DBH of 74.41 ± 35.45 cm, and mean CA of
51.78 ± 24.69 m2. Descriptive statistics of olive tree architecture, vitality, and thermal
profile traits are presented in Table 1.

In terms of the total annual productivity, the sampled olive trees produced a total of
4335 kg, 3035 kg, 3050 kg, and 2259 kg in the 2017, 2018, 2019, and 2020 harvest years. The
variation of productivity for each site is presented in Figure 4, while a detailed description
of the productivity of both sites, as well as PS, US, and SR per harvest season, is presented
in Table A1 in the Appendix A.

3.2. Relationships among the Olive Tree Traits

The analysis of tree trait variables revealed significant associations between them, both
positive and negative (Figure 5). Productivity exhibited (a) significant positive correlations
with SR (r = 0.34; p = 0.002), LAImean (r = 0.56; p < 0.001), MCLL (r = 0.63; p < 0.001), and
TCLT (r = 0.36; p < 0.001), and (b) significant negative correlations with SDV (r = −0.51;
p < 0.001), LAIrange (r = −0.58; p < 0.001),, and PIL (r = −0.58; p < 0.001). Concerning the
relationship between productivity and tree thermal profile variables, there were significant
negative correlations with almost all of the thermal variables (IQR: r = −0.69, p < 0.001;
IPR1: r = −0.47, p < 0.001; IPR2: r = −0.55, p < 0.001; OPR: r = −0.59, p < 0.001; ETD:
r = −0.35, p = 0.002), except for ∆T.
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Table 1. Descriptive statistics for olive tree traits (N = 80).

Variables
Mean SD S.E. Min Max CV

Olive Tree Architecture
H (m) 7.25 2.74 0.30 2.60 17.20 37.79

DBH (cm) 74.41 35.45 3.96 21.66 192.99 47.64
CA (m2) 51.78 24.69 2.76 14.19 125.88 47.68

Olive Tree Vitality
Pr (kg) (4 years

mean) 39.60 16.49 1.84 5.00 77.50 41.64

PS (4 years mean) 5.91 2.14 0.24 1.00 12.00 36.20
US (4 years mean) 3.50 1.87 0.20 0.00 9.00 53.42
SR (4 years mean) 0.60 0.15 0.01 0.29 1.00 25.00

SDV 0.014 0.011 0.001 0.00 0.07 78.57
Age 245.94 74.80 8.36 134.62 496.15 30.41

LAImean 2.11 0.75 0.17 0.10 6.80 35.54
LAIrange 2.53 1.16 0.13 0.90 5.50 45.84

Chlorophyll Concentration
CCI (n = 400) 105.37 34.67 3.87 39.29 159.45 32.90
MCLL (g/m2) 0.84 0.16 0.02 0.49 1.07 19.04

TCLT (g) 98.58 72.20 11.78 3.01 598.42 73.24
OLS Parameters

PIL 0.24 0.28 0.03 0.00 0.80 116.66
TIA (m2) 20.36 32.36 3.61 0.00 190.00 158.93

Thermal Variables
∆T −1.72 1.32 0.14 −4.77 1.98 −76.74

IQR 0.72 0.33 0.03 0.21 2.46 45.83
IPR1 0.51 0.21 0.02 0.15 1.14 41.17
IPR2 0.46 0.21 0.02 0.14 1.33 45.65
OPR 0.98 0.38 0.04 0.29 2.33 38.77
ETD 0.31 0.03 0.004 0.23 0.42 9.67

Figure 4. Box plot showing the mean annual productivity for the four harvest seasons. Horizontal
lines: medians; boxes: interquartile ranges (25–75%); whiskers: data ranges.
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Figure 5. Pearson’s r correlation matrix showing the relationships between olive tree architectural,
vitality, OLS, and thermal variables. For clarity, CCI, which refers to leaves, is omitted. Red and
blue colors indicate positive and negative correlations, respectively, while intensity of color indicates
the strength of the relationship. All correlation coefficients above 0.3 or below −0.3 are statistically
significant (p < 0.05).

The analyzed architecture and vitality traits showed different relationships among
them, which are presented in detail in Figure 5. Focusing on individual relationships
of thermal variables with architecture and vitality traits of the olive trees, the thermal
variability measures (IQR, IPR1, IPR2, OPR) were positively correlated with SDV, LAIrange,
and PIL, and negatively correlated with LAImean, MCLL, and TCLT (Figure 5). With regard
to OLS variables, the percentage of infected leaves per tree (PIL) and the total infected area
of each tree (TIA) followed the same pattern, showing positive correlation with DBH, age,
and LAIrange, and negative correlations with MCLL (Figure 5).

3.3. Effect of Tree Traits on Productivity

The above examination of traits is a generalized depiction of existing associations.
However, to explain and predict the annual productivity of traditionally cultivated olive
trees, it is necessary to form a network of variables that can provide the basis for sustainable
agricultural practices, which may provide essential information on the resilience and health
state of the traditional olive groves.

To obtain prediction models for productivity based on tree traits, we performed
multiple linear regression analysis with backward elimination. We tested each set of
variables separately, as well as all variables together. We also calculated the squared
semipartial coefficient as a measure of the proportion of total variance uniquely explained
by each trait. The analyses for productivity for each harvest season resulted in a total of
20 statistically significant models; four for each season (Tables A2–A5 in the Appendix A),
and another four concerning the average tree productivity of those harvest seasons (Table 2).

The results indicate that either specific traits or combinations of them, depending
on each variable set, are statistically significant predictors of productivity. Specifically,
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for the mean annual olive tree productivity, the model for architecture and vitality traits
was significant (F (4, 75) = 31.85, p < 0.001), with an adjusted R2 of 61%.The final mod-
els for the OLS and thermal variables were also significant (F (2, 77) = 23.98, p < 0.001,
R2 = 0.368; F (1, 78) = 69.122, p < 0.001, R2 = 0.463), as was the final model with all variables
(F (6, 73) = 31.98, p < 0.001). This last model had the greatest explanatory power (R2 = 0.702)
of all final models. The predictors’ individual importance, evaluated by sr2, showed that:
(a) for the “architecture and vitality traits” model, LAImean—controlling for the effects of the
other predictors—expressed 8.23% of the model’s total variance, (b) for the “OLS” model,
PIL had a unique contribution of 37.6%, (c) for the “thermal” model, IQR contributed by
46.9%, and (d) for the “combination” model, MCLL uniquely contributed by 13.7%.

Table 2. Final models obtained from multiple linear regression analyses for estimating Prmean. All
multiple regression models were statistically significant (p < 0.05). The slope of the predictor variable
for the response variable (B), the standard error for the slope (SE B), the standardized beta (β), the
t-test statistic (t), the probability value (p), the squared semipartial coefficient (sr2), the regression-
adjusted coefficient for the multiple regression model (R2), and the predictive capability of the models
(F). The regression equations for each model are presented in italics.

Variables
Set

Response
Variable

Predictor
Variables B SE B β t p sr2 Adj. R2 F

Architecture
and Vitality

Traits
Prmean

(constant) 21.50 8.84 2.43 0.01

0.610 31.85
SDV −282.49 114.39 −0.20 −2.47 0.01 0.030

LAImean 3.42 0.83 0.32 4.08 0.00 0.082
LAIrange −4.04 1.23 −0.28 −3.27 0.00 0.053
MCLL 28.36 8.72 0.28 3.25 0.00 0.052

Regression equation Prmean = 21.50 − 282.49 × SDV + 3.42 × LAImean − 4.04 × LAIrange + 28.36 ×MCLL

OLS Prmean

(constant) 46.99 1.97 23.77 0.00
0.368 23.98PIL −39.57 5.76 −0.69 −6.86 0.00 0.376

TIA 0.12 0.05 0.24 2.37 0.02 0.044

Regression equation Prmean = 46.99 − 39.57 × PIL + 0.12 × TIA

Thermal Prmean
(constant) 63.65 3.19 19.95 0.00

0.463 69.12IQR −33.33 4.00 −0.68 −8.31 0.00 0.469

Regression equation Prmean = 63.65 − 33.33 × IQR

Combination Prmean

(constant) 5.55 10.86 .51 0.61

0.702 31.98

CA −0.16 0.04 −0.25 −3.75 0.00 0.052
SR 16.26 6.78 0.15 2.39 0.02 0.021

LAIrange −2.31 1.10 −0.16 −2.10 0.04 0.016
MCLL 54.23 9.16 0.55 5.91 0.00 0.137

TIA 0.18 0.04 0.36 4.58 0.00 0.072
IQR −14.81 3.91 −0.30 −3.78 0.00 0.054

Regression equation Prmean = 5.55 − 0.16 × CA + 16.26 × SR − 2.31 ×LAIrange + 54.23 ×MCLL + 0.18 × TIA −14.81 × IQR

3.4. Modeling the Incidence of OLS

To examine if olive tree phenotypic traits can explain the incidence of OLS disease, we
used binary logistic regression models (BLR); we tested three distinct models to explain
the presence of the disease, based on (a) architectural and vitality variables, (b) thermal
variables, and (c) the combination of the significant traits and thermal variables, which had
emerged from the first two models.

Regarding the olive tree architectural and vitality traits, a preliminary analysis sug-
gested that the assumption of multicollinearity was met (tolerance = 0.741), while the
inspection of standardized residuals values showed that there were no outliers. To correctly
discriminate between trees with and without OLS symptoms, we selected the area under
the ROC curve (AUC) as a measure of the average value of sensitivity for all possible values
of specificity, with a threshold (0.513) resulting from Youden’s index [91]. The area under
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the ROC curve (AUC = 0.988; S.E. = 0.001; 95% CI 0.967–1.000; p = 0.0001; Figure A1a in the
Appendix A) correctly classified trees with and without symptoms in 97.5% of cases. The
BLR model identified MCLL as the one important factor which best separates trees with
OLS disease symptoms from those without symptoms (χ2 (1, N = 80) = 89.04; p < 0.0001;
Table 3), with a predicted classification accuracy of 95.7% for infected and 100% for nonin-
fected olive trees. The Nagelkerke R2 value indicated that the model could explain 90.5%
of the total variance of MCLL, while the Hosmer–Lemeshow test gave a chi-square value of
1.926 (p > 0.05), meaning that the model fits the data at an acceptable level.

Table 3. Logistic regression models for the prediction of infected and noninfected olive trees.
B = logistic coefficient; S.E. = standard error of estimate; Wald = Wald chi-square; df = degree
of freedom; p-value = significance.

Architecture and Vitality Traits

Predictor B S.E. Wald’s χ2 df p-Value

MCLL −112.33 39.62 8.03 1 0.005
Constant 105.37 37.43 7.92 1 0.005

Thermal Variables

Predictor B S.E. Wald’s χ2 df p-Value

IQR 6.94 1.82 14.40 1 0.0001
Constant −4.18 1.17 12.75 1 0.0001

Focusing on detecting the occurrence of OLS symptoms using the thermal variables,
the BLR model identified IQR as the most significant among the six variables entered
in classifying olive trees with or without symptoms (χ2 (1, N = 80) = 27.37; p = 0.0001;
Table 3). The model’s classification accuracy was 80%; 72.7% for noninfected and 85.1% for
infected trees, as estimated by the area under the ROC curve (AUC = 0.833; S.E. = 0.046;
95% CI 0.743–0.923; p = 0.0001; Youden’s index = 0.506; Figure A1b in the Appendix A).
The Nagelkerke R2 showed that IQR can explain 39% of the total variance of the data,
while the Hosmer–Lemeshow test showed that the model’s goodness-of-fit can be accepted
(χ2 = 16.685; p > 0.05).

Finally, considering the possibility of combining the variables from previous models,
the BLR model identified only MCLL as the factor which best classifies infected and
noninfected trees, giving the same results as the first model.

3.5. Cluster Analysis of Olive Trees

With the aim of identifying homogeneous tree groups with similar phenotypic traits,
we carried out hierarchical classification, using Ward’s hierarchical clustering method.
In order to display the number of potential clusters, we initially chose variables that
had the greatest impact both in estimating olive tree productivity and explaining the
incidence of OLS disease. Thereafter, we separated each case (case = olive tree) into its
own individual cluster (agglomerative approach), and we used a dendrogram plot based
on the squared Euclidean distance for cluster visualization. The resulting dendrogram
showed that the olive trees examined could be classified into three general groups with
similar characteristics (Figure 6); Group 1 (G1) included 39 trees, Group 2 (G2), 21, and
Group 3 (G3), 20.

The trees of G1 group exhibited greater height, crown area, LAImean, productivity, and
chlorophyll concentration and low OLS parameters. On the contrary, trees in the G3 group
displayed characteristics that describe a poor condition; high OLS parameters, greater
age, and higher SDV, as well as low vitality metrics (LAImean, MCLL, TCLT) and lower
productivity. The G2 group were intermediate between the other groups (Table 4). One-way
ANOVA gave statistically significant differences among groups, concerning almost all the
olives’ phenotypic traits (DBH, Prmean, PS, US, SDV, age, LAImean, LAIrange, CCI, MCLL,
TCLT, PIL, TIA) (p < 0.05).
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Figure 6. Dendrogram of the 80 olive trees that illustrates the dissimilarity as evaluated between
Pyrgi and Agiasos sites. Numbers along branches indicated different groups.

Table 4. Descriptive statistics for olive trees’ traits according to the three clustering groups.

G1 (n = 39) G2 (n = 20) G3 (n = 21)

Variables Mean SD Mean SD Mean SD

Tree Architecture

H (m) 8.01 3.06 6.50 2.52 6.54 1.93
DBH (cm) 72.21 30.64 51.49 18.68 100.31 40.10
CA (m2) 54.52 24.63 48.99 30.87 49.36 17.91

Tree Vitality

Pr (kg) 45.01 12.52 44.85 15.17 24.63 15.44
PS 6.55 2.00 5.71 2.29 4.92 1.93
US 3.79 1.80 2.50 1.00 4.04 2.29
SR 0.60 0.15 0.65 0.16 0.55 0.14

SDV 0.012 0.009 0.012 0.010 0.019 0.015
Age 241.31 64.66 197.58 39.43 300.60 84.62

LAImean 3.61 1.11 1.82 1.10 1.23 1.19
LAIrange 2.29 1.09 2.11 .79 3.39 1.19

Tree and Leaf Chlorophyll Concentration

CCI (n = 400) 125.10 20.74 117.77 18.98 56.93 14.57
MCLL (g/m2) 0.93 0.088 0.90 0.08 0.60 0.08

TCLT (g) 190.76 103.11 51.04 19.77 37.90 42.73

OLS Parameters

PIL 0.06 0.09 0.16 0.16 0.67 0.13
TIA (m2) 15.28 25.76 8.69 9.48 40.89 46.48

Thermal Variables

∆T −1.77 1.15 −2.36 1.38 −1.00 1.28
IQR 0.59 0.18 0.66 0.20 1.00 0.47
IPR1 0.47 0.18 0.53 0.19 0.58 0.26
IPR2 0.40 0.13 0.37 0.08 0.66 0.29
OPR 0.88 0.26 0.90 0.23 1.25 0.53
ETD 0.30 0.03 0.31 0.03 0.32 0.05

Furthermore, examining the effect of cluster groups on thermal variables, one-way
analysis of variance showed significant relationships with ∆T (F (2, 77) = 6.18, p = 0.03),
IQR (F (2, 77) = 13.82, p = 0.001), IPR2 (F (2, 77) = 16.54, p = 0.001), and OPR (F (2, 77) = 8.30,
p = 0.001). Tukey’s HSD test for multiple comparisons found that the mean value of (a) ∆T
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was significantly different between G2 and G3 (p = 0.002, 95% C.I. = −2.29, −0.43), (b) IQR
differentiated between G1 and G3 (p = 0.001, 95% C.I. = −0.60, −0.22), as well as between
G2 and G3 (p = 0.001, 95% C.I. = −0.56, −0.12), (c) IPR2 was different among G1 and G3
(p = 0.001, 95% C.I. = −0.37, −0.13) and G2 and G3 (p = 0.001, 95% C.I. = −0.43, −0.15),
and (d) OPR was also significant different between G1 and G3 (p = 0.001, 95% C.I. = −0.59,
−0.14) and G2 and G3 (p = 0.006, 95% C.I. = −0.60, −0.08).

4. Discussion

Our study represents the first attempt to monitor the pressures and the overall state of
trees in traditional olive groves which are located on the island of Lesvos, within a part
of the recognized European HNVf. For this, a crucial step was to separate the island’s
extensive olive groves into traditional and nontraditional. However, their identification was
challenging, as their exact boundaries were not mapped, and there was no accompanying
information on the individual cultivation methods used at the grove level nor any informa-
tion on criteria used to define each olive grove as a traditional one. Having determined
the boundaries of the traditional olive groves, our analysis focused on areas with a clear
long-term absence of cultivation practices so that we have the unequivocal image of the
island’s traditionally grown olive tree state. After all, the agricultural landscape of the
island of Lesvos has changed since the 1990s due to land abandonment [26] and, with it,
cultivation practices have differentiated; nowadays, “cultivation” is often restricted to the
mere harvest of olives. In some cases, pruning is also carried out, which abruptly modifies
the vegetative–productive balance of the tree (pers. obs.). Therefore, an attempt was made
to find traditional olive groves with clear features of cultivation practices of the past, obtain-
ing a glimpse into the state of olive groves in the Mediterranean basin, as well as of Lesvos
terraced groves, of previous decades [92]. These practices involved forming the trees’ shape
to a great height and crown area, in order to overcome environmental stress and to produce
larger biennial crops, by being able to accumulate water and nutrients in their large trunk
and branches, and their extensive canopy and root system. Modern cultivation practices
are substantially differentiated in terms of techniques (irrigation, fertilization, mechanical
harvesting, pruning) [92] and shape of trees, aiming at low-growing irrigated trees, with a
specific leaf area that produces a constant crop annually [30].

Having identified and located traditional olive groves, we introduced a comprehensive
methodological framework for traditional olive grove productivity prediction, including
both easily obtainable tree trait information, which can be recorded with simple tools even
with the knowledge and experience of an average olive grower, and additional information
obtained with more specialized, but noninvasive, tools and techniques. Contrary to inten-
sive agricultural systems, assessing productivity in traditional olive groves is acceptable
without continual monitoring of a large set of physiological and environmental variables
because immediate interventions are not possible and, occasionally, even not desirable. It
should be noted that traditional olive groves tend to be less easily accessible than more
intensively grown olive groves, thus, minimizing the number of necessary field visits is
important. We selected techniques that can be used to collect field data in one or a few ses-
sions, at the correct time of year, to increase the applicability of our results by both growers
and cooperatives as well as by land management and nature conservation authorities.

As the main concern of all those involved in olive growing is tree productivity, we
placed particular emphasis on this parameter, bearing in mind that a typical olive tree in
favorable environmental conditions and with the proper management practices (regular
pruning, fertilization, soil management, pest and disease control) can be productively
efficient for more than 100 years [93]. However, in traditional olive groves, in which the
trees are much older, the absence of effective cultivation practices, in conjunction with
biotic and abiotic pressures (e.g., phloem shoot-to-root flow depression due to wood decay),
leads to inner crown leaf drop and retention of foliage on the outer part of the crown.
Simultaneously, the inner branches start to be replaced by others on the outside and,
thus, the available resources are invested in nonproductive structures [94,95], resulting in
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decreased productivity as trees trade reproductive for vegetative activity [30,95]. Thus,
in contrast with other studies [96,97], we took into account four consecutive years for
estimating average annual productivity as well as the average renewal of productive shoots.
Theoretically, we should be able to consider only two productivity years, due to biennial
fruiting, but we noticed that, in our case, the alternate bearing was not very clear (Figure 4),
so we chose to include all four years. Moreover, the activation of metabolic pathways
related to the expression of alternate bearing is affected by a wide range of climatic events
which influence the vegetative and reproductive development of olives [98], especially
traditional ones, which we could not control.

The investigation of the relationship between productivity and the architecture and
vitality traits of the olive trees revealed significant evidence in linking these traits and with
traditional olive grove functioning as a productive system. Of the twelve distinct traits that
were either measured or calculated (e.g., MCLL, TCLT), five were found to be positively
related (PS, SR, LAImean, MCLL, TCLT) and two negatively related (SDV, LAIrange) to
productivity (Figure 5). Resistance mechanisms against biotic and abiotic stressors are
reduced in aged olive trees [99], such as ours, and physiological adaptation mechanisms
(e.g., high photosynthetic rate with low stomatal conductance) are affected by reduced
vegetative activity [100,101]; these effects are compatible with the negative productivity
relationships with OLS variables.

On the one hand, the highest positive correlations which were observed between
productivity and MCLL and LAImean confirmed the already established view that these
traits are considered ideal biophysical indices for the description of these relationships [102].
Regarding MCLL, it is well known that, despite being the essential driver of photosynthesis,
and consequently olive productivity, it should be used in combination with LAI [103],
which is an important criterion in evaluating olive trees’ state, as it shows the degree
to which a tree can photosynthesize. In our case, the LAImean for the 80 olive trees was
particularly low (2.11 ± 0.75), compared with the optimal value of 6 for achieving high
olive yields [30]. Apart from this, we consider that the LAI values that we found are more
representative of old, rather than young, olive groves, as similar studies for measuring LAI
in an old olive grove in Italy found a value of 3.5 [104] and, in an intensive mature grove in
Tunisia, a value of 2.8 [105].

On the other hand, the negative correlations between productivity and SDV and
LAIrange, and both the relationship between them (r = 0.427; p < 0.0001) and their relation-
ship with other significant traits (e.g., MCLL, PIL), identify two very important parameters
for estimating olive tree health. To the best of our knowledge, there is no other relevant
study to use both of these traits as estimators of olive tree health. Nevertheless, we consider
that it is of great importance, as LAIrange highlighted the deviation of olive trees from a
healthy state, with extreme differences in LAI values taken into account, while SDV esti-
mated the possible extent of the trees’ phloem shoot-to-root flow depression, by quantifying
its structural abnormalities. In parallel, SDV is a crucial connecting link between olive tree
vitality metrics and infrared thermography; it describes trunk growth patterns, which may
exhibit cracks, wounds, detached bark, and cankers, and it shows a positive correlation
with almost all the thermal statistical variables which describe the thermal profile of olive
trees (Figure 5).

These relationships result from olive tree hydraulic physiology, as olive trees have de-
veloped different strategies to sustain a balance between water supply and water loss [106],
by either adapting their leaf and root distribution [107] or by entire branch failure [108].
Regarding their trunks, the alteration of their hydraulic properties due to less plasticity
leads to interrupting the water supply to all trunks’ neighboring segments [109]. Thus,
possible hydraulic failure in conductive tissues, related to both water supply conditions and
xylem anatomical characteristics [110], causes the surface temperature of the tree trunk to
fluctuate [111] and reflects tree health. IRT can detect these fluctuations, indicating potential
disturbances, when temperature distribution is uneven, or a healthy state when surface
temperature is homogenous [56,112]. In our case, the exported thermal variables allowed
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the reliable detection of SDV, while their association with other significant phenotypic traits
provided critical insights into the conservation state of traditional olive groves.

Given the prominence of traditional olive groves both on the island of Lesvos and
in other parts of Greece [113], a detailed analysis regarding their productivity estimation
based on both trees’ phenotypic traits and their thermal properties is required. However,
for productivity assessment, it is important to take into account the possible susceptibility
of traditionally grown olive trees to disease infestations. In this context, we have created
a suite of important features, derived from the linear and the logistic models, which can
satisfactorily explain traditional olive grove dynamics.

The high explanatory nature of the four linear models, using different predictor
groups, showed that the four-year average productivity of the traditional olive trees can
be explained to a very high degree. This high explanatory power, as indicated by the
coefficient of determination values, especially in the “architecture and vitality traits” model
(R2 = 0.610) and in the “combination” model (R2 = 0.702), showed that there are specific
features of olive trees that can disclose the variation levels of their productivity (Table 2).
We consider this to be extremely important if one considers that parameters that would
potentially enhance our models, such as slope and aspect at individual tree level, slope
and aspect of terraced sites, soil nutrient content, and trees’ competition levels, which
were essential in other predictive models for olive tree productivity [97], were not taken
into account. The separate examination of each harvest season, although with a lower
explanatory power in three out of four years, followed a similar pattern: the “architecture
and vitality traits” and the “combination” models showed an explanatory power ranging
from 41.5% to 60.2% (Tables A2–A5).

It is noteworthy that, even though the model based on thermal variables showed
moderate interpretive power in estimating of Prmean (R2 = 0.463) (Table 2), lower still
for individual years (24.5–35.4%) (Tables A2–A5), infrared thermography appears to be
a valuable method for obtaining precise data for productivity estimation. Among the
extracted thermal variables, only IQR had an important contribution to Prmean in the
“thermal” model, while in the “combination” model, IQR showed the third-largest unique
contribution (5.4%) out of the six predictive factors. Additionally, the negative coefficient
of IQR demonstrates an inverse relationship of IQR with productivity, supporting the view
that a uniform tree trunk surface temperature distribution is associated with a healthy tree
state and higher productivity.

The dependence of productivity from OLS severity metrics indicated a moderate to
low inverse effect (R2 = 0.368; Table 2), which strengthens the argument, also reported by
MacDonald et al. [114], that this fungal disease is probably responsible for the reported low
productivity of the infected olive trees. Indeed, by repeating the multiple linear regression
with the poor condition group of trees (G3), the explanatory power of the model rises
to 46.5% (F (2, 19) = 18.41, p < 0.001, R2 = 0.465), having TIA as the only statistically
significant explanatory variable in the final model. Following the same procedure for
the G1 and G2 groups did not yield any significant results. The age of the G3 olive trees
(300.60 ± 84.62 years) also played an important role; controlling for the effect of age, the
correlation of Prmean with PIL had a negative nonsignificant coefficient (r =−0.44; p = 0.053)
and a positive nonsignificant coefficient with TIA (r = 0.26; p = 0.254).

Assessing the olive tree infection by OLS indicated that 58.75% of the studied trees
were infected. The presence of fungal pathogens is difficult to control as their populations
show spatiotemporal and genetic variability, depending, to a large extent, on humidity and
ambient temperature, while climate change increases the risk of infection in trees [115]. The
logistic regression models had a high discriminatory performance and were quite informa-
tive regarding the predictors of both architecture and vitality traits and thermal variables
groups, indicating that the probability of OLS infection could be predicted accurately by
MCLL and IQR. On the extremely high predicted classification accuracy of MCLL (95.7%),
trees with no symptoms presented a mean MCLL of 0.98± 0.03 g/m2, while those classified
as infected had a much lower value of MCLL (0.73± 0.14 g/m2). This differentiation occurs
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as the infected leaves undertake a gradual deterioration of their cytoplasmic contents,
resulting in the degradation of chloroplasts and the progressive disappearance of chloro-
phyll [116]. From the standpoint of assessing OLS presence using thermal variables, it is
understood that both the classification accuracy (80%) and the degree of explanatory power
of the model (39%) are not ideal to suggest the use of IRT for detecting infection in olive
trees. However, we must keep in mind that the examined thermal variables (IQR) (a) had a
substantial difference between infected (0.85 ± 0.38) and noninfected trees (0.55 ± 0.13),
and (b) were calculated from infrared images of the tree trunk and not from the leaves,
which is the main organ that this disease affects. In addition, IRT has been proved to be
a valuable method for identifying biotic stresses by analyzing temperature alterations in
plant leaves [44].

The classification of the 80 trees in three classes (G1, G2, G3) enabled tree health state
categorization at a population level, as the group G1 includes olive trees that are in a
good condition, G2 includes trees in an intermediate state, and group G3 contains trees
which are in poor condition. Moreover, specific traits of the olive trees’ groups can be
adequately described, to some extent, by the extracted thermal variables, as shown by the
initial examination of the relationships between them (Figure 5). In particular, it is noted
that G1 and G3 display the lowest and highest values in all thermal variables, respectively,
while G2 lies somewhere in between, except for ∆T (Table 4).

The high ∆T value of the G3 trees indicated their low temperature distance from Tamb;
this means that the tree trunk has a faster response to ambient temperature indicative of
hollows within the trunk where the air enters and heats the trunk surface faster. Paradoxi-
cally, regarding a particularly important thermal variable describing the actual extent of
defect patches (E∆T), we did not find any statistically significant differences between the
examined groups (F (2, 77) = 2.97, p = 0.057); this suggests that the area of any abnormalities
is not as important, at least for traditional olive groves, as their intensity, described by
the IQR for the whole tree and by the OPR for individual elements of the trunk. Hence,
the three classes that describe the health state of olive trees (good, intermediate, poor)
correspond to specific value ranges of these thermal variables. Poor condition corresponds
to the highest values of the extracted thermal variables, while good condition corresponds
to the lowest values.

Thus, combining the results of productivity assessment, infected trees’ identification,
and hierarchical classification, we can conclude that mainly IQR and secondarily OPR can be
considered as indicators of olive trees’ health state. The low value of these indices confirms
the homogeneous temperature distribution on the tree trunk, as originally described by
Catena and Catena [56], and identifies high values of vitality traits simultaneously with
the absence of the OLS disease. Therefore, these indices are appropriate for measuring the
thermal profile of each olive tree and for assessing its health state.

In conclusion, our results provide evidence for a combinatory methodological frame-
work for traditional olive grove productivity prediction, taking into account typical phe-
notypic, spectral, and thermal tree traits. We further demonstrate that it is possible to
detect the incidence of OLS in traditional olive groves and to classify olive trees into dif-
ferent health state categories using the same variables. Although infrared images did not
provide the best prediction of tree productivity, nor the optimal classification for OLS
incidence, nonetheless, they could give satisfactory information for a rapid first assessment
of the health and productivity of a traditional olive grove noninvasively. Combined with
long-established methods and tools of assessing health and productivity, such as LAI
and chlorophyll concentration, they can further improve the predictive power to a very
high level. Overall, this study establishes a foundation for the design and application of
appropriate management measures of traditional olive groves using a relatively simple and
time-saving, but sufficiently accurate, methodology.
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Appendix A

Figure A1. The ROC curves for logistic regression models using (a) the architecture and vitality traits
and (b) the thermal variables.
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Table A1. Descriptive statistics for olive tree productivity for all the examined harvest years (N = 80).

Year
Pyrgi Site Agiasos Site Both Sites

Pr (kg) PS US SR Pr (kg) PS US SR Pr (kg) PS US SR

2017 53.50 ± 21.72 4.92 ± 2.54 3.6 ± 2.14 0.56 ± 0.22 54.88 ± 21.59 4.87 ± 2.77 3.47 ± 1.58 0.55 ± 0.19 54.19 ± 21.53 4.9 ± 2.64 3.53 ± 1.87 0.55 ± 0.20
2018 37.12 ± 18.00 6.12 ± 2.72 3.6 ± 2.14 0.62 ± 0.19 38.75 ± 18.21 4.95 ± 2.70 3.47 ± 1.58 0.56 ± 0.18 37.93 ± 18.01 5.53 ± 2.76 3.53 ± 1.87 0.59 ± 0.19
2019 38.87 ± 16.23 6.72 ± 3.29 3.6 ± 2.14 0.64 ± 0.16 37.37 ± 21.72 7.62 ± 4.36 3.47 ± 1.58 0.65 ± 0.17 38.12 ± 19.06 7.17 ± 3.87 3.53 ± 1.87 0.64 ± 0.17
2020 25.32 ± 23.81 5.6 ± 4.51 3.6 ± 2.14 0.61 ± 0.22 31.15 ± 21.52 6.52 ± 3.74 3.47 ± 1.58 0.61 ± 0.17 28.23 ± 22.74 6.06 ± 4.14 3.53 ± 1.87 0.61 ± 0.20

Table A2. Final models obtained from multiple linear regression analyses for estimating productivity of 2017 harvest season. All multiple regression models were
statistically significant (p < 0.05). The slope of the predictor variable for the response variable (B), the standard error for the slope (SE B), the standardized beta (β),
the t-test statistic (t), the probability value (p), the squared semipartial coefficient (sr2), the regression-adjusted coefficient for the multiple regression model (R2), and
the predictive capability of the models (F).

Variables Set Response Variable Predictor Variables B SE B β t p sr2 Adj. R2 F

Architecture and
Vitality Traits Pr2017

(constant) 66.19 6.03 10.97 0.00

0.418 19.93
SDV −490.30 182.26 −0.26 −2.69 0.00 0.053

LAImean 4.21 1.24 0.31 3.40 0.00 0.085
LAIrange −6.11 1.75 −0.33 −3.48 0.00 0.089

OLS Pr2017

(constant) 60.56 2.81 21.50 0.00
0.246 13.921PIL −43.15 8.21 −0.58 −5.25 0.00 0.263

TIA 0.21 0.07 0.32 2.92 0.00 0.081

Thermal Pr2017
(constant) 79.87 4.73 16.88 .00

0.306 35.91IQR −35.63 5.94 −0.56 −5.99 .00 .310

Combination Pr2017

(constant) 89.66 5.83 15.37 0.00

0.447 13.76

CA −0.18 .08 −0.21 −2.39 0.02 0.040
LAIrange −4.06 1.95 −0.22 −2.08 0.04 0.030

PIL −24.66 8.77 −0.33 −2.81 0.00 0.055
TIA 0.23 0.06 0.35 3.52 0.00 0.086
IQR −19.58 6.73 −0.31 −2.90 0.00 0.059
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Table A3. Final models obtained from multiple linear regression analyses for estimating productivity of 2018 harvest season. All multiple regression models were
statistically significant (p < 0.05). The slope of the predictor variable for the response variable (B), the standard error for the slope (SE B), the standardized beta (β),
the t-test statistic (t), the probability value (p), the squared semipartial coefficient (sr2), the regression-adjusted coefficient for the multiple regression model (R2), and
the predictive capability of the models (F).

Variables Set Response Variable Predictor Variables B SE B β t p sr2 Adj. R2 F

Architecture and
Vitality Traits Pr2018

(constant) 42.71 5.01 8.51 0.00

0.425 20.46
SDV −393.50 151.61 −0.25 −2.59 0.01 0.048

LAImean 4.48 1.03 .39 4.34 0.00 0.137
LAIrange −4.07 1.46 −0.26 −2.78 0.00 0.056

OLS Pr2018

(constant) 43.17 2.41 17.88 0.00
0.209 11.42PIL −33.6 7.04 −0.54 −4.77 0.00 0.228

TIA 0.15 0.06 0.28 2.45 0.01 0.060

Thermal Pr2018
(constant) 60.97 3.82 15.96 0.00

0.354 44.31IQR −31.96 4.80 −0.60 −6.65 0.00 0.362

Combination Pr2018

(constant) 35.18 7.27 4.83 0.00

0.464 23.80
SR 17.84 7.82 .19 2.28 0.02 0.035

LAImean 3.64 1.00 .32 3.50 0.00 0.083
IQR −23.5 4.85 −0.44 −4.84 0.00 0.159
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Table A4. Final models obtained from multiple linear regression analyses for estimating productivity of 2019 harvest season. All multiple regression models were
statistically significant (p < 0.05). The slope of the predictor variable for the response variable (B), the standard error for the slope (SE B), the standardized beta (β),
the t-test statistic (t), the probability value (p), the squared semipartial coefficient (sr2), the regression-adjusted coefficient for the multiple regression model (R2), and
the predictive capability of the models (F).

Variables Set Response Variable Predictor Variables B SE B β t p sr2 Adj. R2 F

Architecture and
Vitality Traits Pr2019

(constant) 12.26 16.413 0.74 0.45

0.415 15.03
DBH 0.18 0.06 0.34 3.07 0.00 0.070
CA −0.15 0.07 −0.20 −2.12 0.03 0.033

LAIrange −7.03 1.68 −0.43 −4.16 0.00 0.128
MCLL 45.06 14.03 0.39 3.21 0.00 0.076

OLS Pr2019

(constant) 43.33 2.63 16.42 0.00
0.157 8.34PIL −31.46 7.7 −0.47 −4.08 0.00 0.178

TIA 0.13 0.07 0.22 1.87 0.06 0.037

Thermal Pr2019
(constant) 61.12 4.17 14.66 0.00

0.313 37.2IQR −31.90 5.24 −0.57 −6.09 0.00 .322

Combination Pr2019

(constant) 59.35 5.99 9.90 0.00

0.452 22.73
LAImean 2.55 1.11 0.21 2.29 0.02 0.036
LAIrange −6.71 1.61 −0.41 −4.17 0.00 0.120

IQR −14.66 5.99 −0.26 −2.44 0.02 0.041



Sustainability 2022, 14, 391 22 of 27

Table A5. Final models obtained from multiple linear regression analyses for estimating productivity of 2020 harvest season. All multiple regression models were
statistically significant (p < 0.05). The slope of the predictor variable for the response variable (B), the standard error for the slope (SE B), the standardized beta (β),
the t-test statistic (t), the probability value (p), the squared semipartial coefficient (sr2), the regression-adjusted coefficient for the multiple regression model (R2), and
the predictive capability of the models (F).

Variables Set Response Variable Predictor Variables B SE B β t p sr2 Adj. R2 F

Architecture and
Vitality Traits Pr2020

(constant) 46.55 5.34 8.71 0.00

0.60.2 30.86
DBH −0.39 0.04 −0.61 −8.46 0.00 0.361
SDV −428.23 148.24 −0.22 −2.89 0.00 0.042

LAImean 3.75 1.51 0.26 2.49 0.01 0.031
TCLT 0.06 0.02 0.30 3.00 0.00 0.045

OLS Pr2020
(constant) 40.84 2.59 15.77 0.00

0.407 55.26PIL −50.56 6.80 −0.64 −7.43 0.00 0.414

Thermal Pr2020
(constant) 52.62 5.21 10.09 0.00

0.245 26.65IQR −33.83 6.55 −0.50 −5.16 0.00 0.255

Combination Pr2020

(constant) 46.556 5.34 8.71 0.00

0.602 30.86
DBH −0.39 0.046 −0.61 −8.46 0.00 0.361
SDV −428.23 148.24 −0.22 −2.89 0.00 0.042

LAImean 3.75 1.51 0.26 2.49 0.01 0.031
TCLT 0.06 0.02 0.30 3.00 0.00 0.045
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104. Čermák, J.; Gašpárek, J.; De Lorenzi, F.; Jones, H.G. Stand biometry and leaf area distribution in an old olive grove at Andria,

southern Italy. Ann. For. Sci. 2007, 64, 491–501. [CrossRef]
105. Mezghani, M.A.; Hassouna, G.; Ibtissem, L.; Labidi, F. Leaf area index and light distribution in olive tree canopies (Olea europaea L.).

Int. J. Agron. Agric. Res. 2016, 8, 60–65. [CrossRef]
106. Johnson, D.M.; Wortemann, R.; McCulloh, K.A.; Jordan-Meille, L.; Ward, E.; Warren, J.M.; Palmroth, S.; Domec, J.C. A test of

the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 2016, 36, 983–993.
[CrossRef]

107. Van Hees, A.F.M. Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation
to shading and drought. Ann. Sci. For. 1997, 54, 9–18. [CrossRef]

108. Rood, S.B.; Patiño, S.; Coombs, K.; Tyree, M.T. Branch sacrifice: Cavitation-associated drought adaptation of riparian cottonwoods.
Trees Struct. Funct. 2000, 14, 248–257. [CrossRef]

109. Domec, J.C.; Lachenbruch, B.; Pruyn, M.L.; Spicer, R. Effects of age-related increases in sapwood area, leaf area, and xylem
conductivity on height-related hydraulic costs in two contrasting coniferous species. Ann. For. Sci. 2012, 69, 17–27. [CrossRef]

110. López-Bernal, Á.; Alcántara, E.; Testi, L.; Villalobos, F.J. Spatial sap flow and xylem anatomical characteristics in olive trees under
different irrigation regimes. Tree Physiol. 2010, 30, 1536–1544. [CrossRef]

111. Burcham, D.C.; Leong, E.C.; Fong, Y.K.; Tan, P.Y. An evaluation of internal defects and their effect on trunk surface temperature in
Casuarina equisetifolia L. (Casuarinaceae). Arboric. Urban For. 2012, 38, 277–286. [CrossRef]

112. Omran, E.S.E. Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Arch. Agron. Soil Sci. 2017, 63, 883–896.
[CrossRef]

113. Giourga, C.; Loumou, A.; Tsevreni, I.; Vergou, A. Assessing the sustainability factors of traditional olive groves on Lesvos Island,
Greece (Sustainability and traditional cultivation). GeoJournal 2008, 73, 149–159. [CrossRef]

http://doi.org/10.5897/JYFR11.004
http://doi.org/10.1098/rsbl.2014.0235
http://doi.org/10.1007/BF00258374
http://doi.org/10.1111/j.2041-210X.2009.00001.x
http://doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106&gt;3.0.CO;2-3
http://doi.org/10.3390/agriculture11060494
http://doi.org/10.3390/agronomy11020295
http://doi.org/10.1016/j.heliyon.2021.e06949
http://www.ncbi.nlm.nih.gov/pubmed/34013085
http://doi.org/10.3390/s17081743
http://doi.org/10.3390/agriculture10090385
http://doi.org/10.5194/hess-12-293-2008
http://doi.org/10.1016/S0098-8472(99)00024-6
http://doi.org/10.1007/s13593-011-0078-1
http://doi.org/10.1016/j.isprsjprs.2019.03.016
http://doi.org/10.1051/forest:2007026
http://doi.org/10.13140/RG.2.1.3193.5600
http://doi.org/10.1093/treephys/tpw031
http://doi.org/10.1051/forest:19970102
http://doi.org/10.1007/s004680050010
http://doi.org/10.1007/s13595-011-0154-3
http://doi.org/10.1093/treephys/tpq095
http://doi.org/10.48044/jauf.2012.037
http://doi.org/10.1080/03650340.2016.1247952
http://doi.org/10.1007/s10708-008-9195-z


Sustainability 2022, 14, 391 27 of 27

114. MacDonald, A.J.; Walter, M.; Trought, M.C.; Frampton, C.M.; Burnip, G. Survey of olive leaf spot in New Zealand. N. Z. Plant
Prot. 2000, 53, 126–132. [CrossRef]

115. Garrett, K.A.; Nita, M.; Wolf, E.D.D.; Gomez, L.; Sparks, A.H. Plant Pathogens as Indicators of Climate Change, 1st ed.; Elsevier:
Amsterdam, The Netherlands, 2016; ISBN 9780444533012.

116. Lanza, B.; Ragnelli, A.M.; Priore, M.; Aimola, P. Morphological and histochemical investigation of the response of Olea europaea
leaves to fungal attack by Spilocaea oleagina. Plant Pathol. 2017, 66, 1239–1247. [CrossRef]

http://doi.org/10.30843/nzpp.2000.53.3664
http://doi.org/10.1111/ppa.12671

	Introduction 
	Materials and Methods 
	Study Area and Sites Selection 
	Metrics of Olive Trees’ Architecture and Vitality Traits 
	Olive Leaf Spot Disease Detection 
	Collection and Processing of Olive Trees’ Infrared Images 
	Statistical Analysis 

	Results 
	Descriptive Statistics of Sample Olive Trees and Leaves 
	Relationships among the Olive Tree Traits 
	Effect of Tree Traits on Productivity 
	Modeling the Incidence of OLS 
	Cluster Analysis of Olive Trees 

	Discussion 
	Appendix A
	References

