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Abstract: There is a certain level of predictive uncertainty when hydrologic models are applied for
operational purposes. Whether structural improvements address uncertainty has not well been
evaluated due to the lack of observational data. This study investigated the utility of remotely sensed
evapotranspiration (RS-ET) products to quantitatively represent improvements in model predictions
owing to structural improvements. Two versions of the Soil and Water Assessment Tool (SWAT),
representative of original and improved versions, were calibrated against streamflow and RS-ET. The
latter version contains a new soil moisture module, referred to as RSWAT. We compared outputs from
these two versions with the best performance metrics (Kling–Gupta Efficiency [KGE], Nash-Sutcliffe
Efficiency [NSE] and Percent-bias [P-bias]). Comparisons were conducted at two spatial scales by
partitioning the RS-ET into two scales, while streamflow comparisons were only conducted at one
scale. At the watershed level, SWAT and RSWAT produced similar metrics for daily streamflow
(NSE of 0.29 and 0.37, P-bias of 1.7 and 15.9, and KGE of 0.47 and 0.49, respectively) and ET (KGE
of 0.48 and 0.52, respectively). At the subwatershed level, the KGE of RSWAT (0.53) for daily ET
was greater than that of SWAT (0.47). These findings demonstrated that RS-ET has the potential
to increase prediction accuracy from model structural improvements and highlighted the utility of
remotely sensed data in hydrologic modeling.

Keywords: hydrologic model; predictive uncertainty; model structure improvements; remotely
sensed evapotranspiration products

1. Introduction

Water resource management is important for resource allocation in agricultural and
mixed land-use watersheds, to accommodate for the rising water demand as a result of
population increase. An improved understanding of water resource dynamics aids the
development of effective adaptation strategies [1]. Hydrologic models are often used
as a means to design and manage water resource systems [2–4]. Although the use of
these models for operational purposes may provide practical solutions, there is a need for
continuous effort to reduce uncertainty involved in operational applications of hydrologic
models [5,6].
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Hydrologic models include a large number of parameters that represent physical and
biogeochemical processes with high spatio-temporal heterogeneity within landscapes [7].
Most parameters cannot be measured via in-situ observations; calibration of these pa-
rameters produces the best goodness-of-fit between simulated and monitored fluxes at
the watershed outlet [8]. This typical calibration approach may not replicate physical
and biogeochemical fluxes within watersheds, resulting in less reliable simulations [9,10].
Improvements in calibration may involve monitoring multiple fluxes at the outlet (e.g.,
streamflow and nutrient loads), and including additional soft data (e.g., intra-watershed
measurements, expert knowledge, remotely sensed data, and local statistics) [11,12]. For
example, soft data use in hydrological modeling may involve limiting parameter spaces
with an additional constraint [13], semi-spatially explicit characterization of inundation
parameters [14], use of local knowledge to constrain nutrient concentrations in different
pathways [10], modification of the denitrification parameter based on local knowledge
to better represent landscape biogeochemistry [15], and constraints on parameter spaces
based on the remotely sensed leaf area index [16]. Furthermore, model calibration against
satellite-driven vegetation data led to advanced prediction of vegetation growth and recov-
ery from fire [17]. The addition of root zone soil moisture to model calibration was proven
to reduce parameter sampling spaces as well as uncertainty [18].

In addition to improved parameterization, model structure refinements to better
describe hydrological processes have been suggested to reduce model uncertainty [5,19].
Cho et al. [20] modified a bacterial module to improve the prediction of fecal contamination.
The development of a physically based soil-temperature module enabled the improved
representation of soil temperature conditions [21]. A modified hydrologic model with
a discretized aquifer representation produced better characterization of baseflow in a
lowland catchment [22]. Water volume storage within depressional wetlands was also well
captured by improved representation of vertical and horizontal water movement within a
hydrologic model [23]. The addition of a new external module in a hydrologic model that
simulates the hydrological connection between riparian wetlands and adjacent streams
has enabled the quantification of impacts from riparian wetlands on sediment loads and
streamflow [24]. A hydrologic model coupled with a module that represents the fate and
transport of carbon was found to effectively capture dissolved and particulate organic
carbon loads [25]. A recent study further improved the carbon cycling within in-streams
to better predict carbon fluxes [26]. A model coupled with a water temperature module
showed improved predictions of water quality variables affected by water temperature [27].
These model improvements have been quantitatively assessed with additional observations
to monitor specific refined processes.

It is often challenging to depict clear differences between existing and modified
model structures due to a lack of data. When model evaluation was largely dependent
on streamflow data, there was limited ability to distinguish the advantages of modified
model structures relative to the original structure [28,29]. For example, Evenson et al. [28]
reported that the performance metric (Nash-Sutcliffe Efficiency (NSE) and a ratio of the
root mean square error to the standard deviation (RSR)) for streamflow prediction was
almost similar between an existing model (0.67 and 0.58) and the improved model (0.66
and 0.58). Establishing in-situ monitoring instruments may address this issue; however,
these are often expensive and labor-intensive [30]. Alternatively, remotely sensed data
are capable of characterizing and monitoring land surface information across landscapes
over long periods of time, and the data collected may support hydrologic modeling by
providing additional constraints [31,32]. However, few studies attempted to use remotely
sensed data for demonstrating the contribution of model structure improvements.
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This study capitalizes on remotely sensed data to assess an improved soil mois-
ture module within a hydrologic model; the Soil and Water Assessment Tool (SWAT).
Qi et al. [33] incorporated a physically-based soil moisture module (i.e., the Richard
equation-based module) into SWAT, producing the RSWAT. Qi et al. [29] compared SWAT
and RSWAT to test the efficacy with which RSWAT replicates the partitioning of water
into surface runoff and infiltration. They found that SWAT and RSWAT were similar in
prediction capacity, likely due to the limitations of data sources that constrained model
outputs [29]. This study employs remotely sensed evapotranspiration (RS-ET) products as
an additional constraint to discern differences between SWAT and RSWAT. Evapotranspira-
tion (ET) is the sum of evaporation and transpiration, and a crucial component in water and
energy exchange between atmospheric and terrestrial systems [34]. ET may be an indicator
for accurately representing water partitioning on the land surface [35]. To quantitatively
assess model performance, we adopted the Kling–Gupta Efficiency (KGE) measure for
daily streamflow and ET as an objective function (see Section 2.5). Two metrics (NSE and
Percent-bias (P-bias)) were used as additional objective functions for daily streamflow.

First, SWAT and RSWAT were calibrated against streamflow and watershed level RS-
ET; their outputs were subsequently compared at the watershed level. Then, the ET outputs
from SWAT and RSWAT were compared at a finer spatial level using a subwatershed level
RS-ET. These comparisons were used to test the ability of RS-ET to further constrain outputs
from different versions of SWAT, and improve the ability to discern performance differences
resulting from different model structures.

2. Materials and Methods
2.1. Study Area

This study used the drainage area of Tuckahoe Creek, as defined by the United States
Geological Survey (USGS) gauge station located near Ruthsburg, Maryland
(USGS#01491500); this is referred to as the Tuckahoe Creek Watershed (TCW, 220 km2).
The TCW is located within the upper region of the Choptank River watershed (CRW)
within the Delmarva Peninsula (Figure 1a). This region is categorized as a temperate,
humid climate zone receiving an annual average precipitation of 1200 mm [36]. Seasonal
precipitation is evenly distributed throughout the year, while ET is low in the wet season
(December to May) and high in the dry season (June to November) [37]. Land use in the
TCW is dominated by croplands (54%) that cultivate corn, soybean, and winter wheat
(Figure 1b). The use of irrigated water for corn and soybean has been increasing in this
region, contributing to changes in ET dynamics during the dry season [38]. The remaining
area in the TCW is comprised of forest (33%), pasture (8%), urban (4%), and water bodies
(1%). Well-drained soils (hydrologic soil groups—A and B) account for a slightly greater
portion of the watershed (56%) relative to poorly drained soils (C and D, 44%).
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Figure 1. Characteristics of the study area (Tuckahoe Creek Watershed): (a) location; (b) land use type; and (c) hydrologic
soil groups (HSGs; adapted from Lee et al. [39]) Note: HSGs are characterized as follows: type A are well-drained soils
with a water infiltration rate of 7.6–11.4 mm·h−1; type B are moderately well-drained soils with 3.8–7.6 mm·h−1; type C are
moderately poorly-drained soils with 1.3–3.8 mm·h−1; and type D are poorly-drained soils with 0–1.3 mm·h−1 [40].

2.2. Description of SWAT

SWAT is a semi-distributed, watershed-scale water quality model capable of mon-
itoring the impacts of environmental and anthropogenic changes on physical processes
in an agricultural watershed [40]. The model partitions a watershed into subwatersheds,
and further into hydrologic response units (HRUs); the latter are a unique combination of
land use, soil, and slope within a subwatershed. All hydrological outputs were computed
for individual HRUs. The partitioning between surface runoff and infiltration may be
calculated using the Soil Conservation Service curve number (CN) procedure or the Green
and Ampt infiltration method in SWAT. The CN method was used in this study as it is
prevalent in the literature.

The CN method calculates the daily surface runoff (Qsur f , mm·d−1) using daily rainfall
depth (Rday, mm·d−1), and the retention parameter (S, mm·d−1). The latter is determined
by the CN and differs based on the land use, soil permeability, and antecedent soil water
conditions:

Qsur f =

(
Rday − 0.2·S

)2(
Rday + 0.8·S

) (1)

S = 25.4·
(

1000
CN

− 10
)

(2)

The retention parameter by soil profile water content is expressed as:

S = Smax·
(

1 − SW
[SW + exp(w1 − w2·SW)]

)
(3)
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where Smax is the maximum value of retention on a given day (mm·d−1); SW is the soil
water content of the entire profile excluding the amount of water held in the profile at
wilting point; and w1 and w2 are shape coefficients.

Infiltrated water affects the soil water dynamics in SWAT. The daily soil water content
in each layer was determined as follows:

∆SWi = Qp,i−l − Qp,i − Ql,i − Ee,i − Et,i (4)

where ∆SWi is the change in soil water content (mm) at the ith soil layer; Qp,i−l is the
percolation from the upper layer (mm); Qp,i is the percolation out of the current soil layer
(mm); Ql,i is the lateral flow generated from the current soil layer (mm); and Ee,i and Et,i
are the evaporation and transpiration drawn from the current soil layer (mm), respectively.
The percolation (Qp,i) for the ith layer is expressed as:

Qp,i = (SWi − FCi)

[
1 − exp

( −24Ksat,i

SATi − FCi

)]
(5)

where FCi is the soil water content at field capacity (mm); Ksat,i is the saturated hydraulic
conductivity (mm·h−1); and SATi is the amount of water required for the complete satura-
tion (mm) of the ith layer. Percolation from the bottom of the soil profile enters groundwater,
and lateral flow was modeled using a kinematic storage routing method based on the
slope, slope length, and saturated conductivity. SWAT has three methods for reference ET
calculations [40]: the Penman–Monteith, Priestley–Taylor, and Hargreaves methods. We
used the Penman–Monteith method to compute ETr as follows:

ETr =
∆·(Hnet − G) + ρair·cp·

[
e0

z − ez
]
/ra

∆ + γ·(1 + rc/ra)
(6)

where ETr is the maximum transpiration rate (mm·d−1); ∆ is the slope of the saturation
vapor pressure–temperature curve (kPa·◦C−1); Hnet is the net radiation (MJ·m−2 d−1); G is
the heat flux density to the ground (MJ·m−2 d−1); ρair is the density of air (kg·m−3); cp is
the specific heat at constant pressure (MJ·kg−1 ◦C−1); e0

z is the saturation vapor pressure
of air at height z (kPa); ez is the water vapor pressure of air at height z (kPa); γ is the
psychrometric constant (kPa·◦C−1); rc is the plant canopy resistance (s·m−1); and ra is the
diffusion resistance of the air layer (aerodynamic resistance) (s·m−1). Further details are
available in Neitsch et al. [40].

2.3. RSWAT

Qi et al. [33] generated a new version of SWAT by incorporating a modified Richards
equation into the model to physically represent soil water content and moisture movement
(Figure 2). The Richards equation-based soil moisture module was tested against field
measurements and compared with the original soil moisture module at 10 stations within
the CRW. The results show that the Richards equation-based module outperformed the
original module in terms of simulations of daily soil moisture based on the improved
R-squared and reduced biases [33]. Here, we briefly introduce the Richards-equation-
based soil moisture module; detailed information on model development and evaluation is
provided in Qi et al. [33].

The modified Richards equation incorporated in RSWAT is as follows:

∂θ

∂t
=

∂

∂z

[
k
(

∂(h − he)

∂z

)]
− Q (7)

where θ is the volumetric soil water content (mm3·mm−3); t is time (s); z is the depth below
the soil surface (mm; positive downward); k is the hydraulic conductivity (mm·s−1); h
is the soil matric potential (mm); Q is the soil water sink term (mm·mm−1 s−1); and he
is the equilibrium soil matric potential (mm). Equation (7) was discretized into a set of
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tridiagonal equations solved using the method of Patankar [41]. Infiltration was determined
using the surface boundary condition from the CN method, and assuming free-draining
conditions for the bottom boundary condition. Evaporation, transpiration, and lateral flow
are the sink terms in Equation (7) that were calculated using their corresponding SWAT
functions. Instantaneous hydraulic conductivity was estimated using the Community
Land Model [42], while saturated conductivity was measured and provided in each HRU
based on the US Department of Agriculture (USDA) Natural Resources Conservation
Service (NRCS) Soil Survey Geographic Database (SSURGO). According to Clapp and
Hornberger [43] and Cosby et al. [44], soil matric potential is a function of water content
and hydraulic conductivity. The equilibrium soil matric potential considers the impact
of fluctuations in the water table, and was determined based on the method of Zeng and
Decker [45].
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Figure 2. Schematic of the Richards equation-based soil moisture module integrated with the Soil
and Water Assessment Tool (SWAT) surface, infiltration, evapotranspiration (ET), and lateral flow
components.

2.4. SWAT Input Data and Model Constraints

Meteorological and geospatial data were used to run the SWAT (Table 1). SWAT
input data consisted of the National Aeronautics and Space Administration (NASA) North
American Land Data Assimilation System 2 (NLDAS2) forcing data, including hourly
precipitation, temperature, solar radiation, relative humidity, and wind speed. The NL-
DAS2 data is generated by multiple observations that provide continental-scale data at
a spatial resolution of 1/8◦ [46]. A light detection and ranging (LiDAR)-based digital
elevation model of the USDA-Agricultural Research Service (Beltsville, MD, USA) was
used to establish the topographic characteristics and divide modeling units. A soil map
was downloaded from the SSURGO database, while the land use map utilized in this study
was developed by Lee et al. [47]. This land use map characterized farmland configurations
and annually cultivated crops using multi-year cropland data layers (CDLs). The spatial
distribution of other types of land-use were identified using multiple geospatial datasets
(Table 1); Lee et al. [47] provides further details.
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Table 1. List of input data.

Data Type Source Description Year

Climatic NLDAS2 Hourly precipitation, temperature, solar
radiation, wind speed, and humidity 2008–2014

DEM MD-DNR LiDAR-based 1-m resolution 2006

Land use USDA-NASS Cropland Data Layer (CDL) 2008–2012
MRLC National Land Cover Database (NLCD) 2006

USDA-FSA-APFO National Agricultural Imagery Program
digital Orthophoto quad imagery 1998

US Census Bureau TIGER road map 2010

Soils USDA-NRCS Soil Survey Geographical Database
(SSURGO) 2012

Streamflow USGS Daily streamflow 2010–2014

ET Sun et al. [48] Daily ET 2010–2014
Note: NLDAS2: North American Land Data Assimilation System 2; DEM: Digital Elevation Model; MD-DNR:
Maryland Department of Natural Resources; LiDAR: light detection and ranging; MRLC: Multi-Resolution Land
Characteristics Consortium; USDA-FSA-APFO: USDA-Farm Service Agency-Aerial Photography Field Office;
and TIGER: Topologically Integrated Geographic Encoding and Referencing.

Streamflow and RS-ET were used as model constraints; daily streamflow records
from 2010 to 2014 were obtained from USGS gauge station #01491500 (Figure 1a). RS-
ET data were developed by the regional Atmosphere-Land Exchange Inverse (ALEXI)
model [49,50] and the associated flux spatial–temporal disaggregation scheme (DisALEXI,
Anderson et al., 2004). The 30 m daily RS-ET data from ALEXI/DisALEXI in the study area
has been previously validated against in-situ eddy covariance flux tower measurements,
with an average relative error of 10% [48]. Figure 3 presents examples of 30 m daily RS-ET
data for the TCW; this data spans from January 2010 to December 2014 and was utilized as
an additional model constraint. The watershed level average of the RS-ET was calculated
for model calibration.
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2.5. Model Calibration

SWAT and RSWAT were calibrated at a daily time step over five years (2010–2014),
as streamflow and RS-ET were available during this period. A warm-up period of two
years (2008–2009) was used for the calibration. The simulation periods were not split
into calibration and validation periods due to the short-term observations. The model
simulation guidelines outlined by Arnold et al. [51] recommends the inclusion of different
climate conditions (e.g., dry and wet) during the calibration period to identify optimal
parameter values for sites of interest. In addition, a study comparing performances between
two models often only considered a calibration period [28]. As RSWAT and SWAT were
tested at the same study site, we used a five-year calibration period to identify the best
parameter values for SWAT and RSWAT. Previous SWAT modeling studies conducted
in the study area have demonstrated the sensitivity of streamflow and water quality
parameters [36,52]. Based on these studies, we established 13 parameters to calibrate SWAT
and RSWAT against streamflow and RS-ET (Table 2). We prepared 1000 parameter sets
using the Latin hypercube sampling (LHS) method that efficiently identifies the optimal
parameter set [53]; thus, the parameter set producing the best model performance measures
was identified.

Table 2. List of calibrated parameters.

Parameter Description (Units) Range SWAT RSWAT

CN SCS runoff curve number −20–20% 0% −3%

GW_DELAY Groundwater delay (days) 0–100 0.14 88.63

ALPHA_BF Baseflow alpha factor (days−1) 0–1 0.43 0.83

GWQMN
Threshold depth of water in the

shallow aquifer required for return
flow to occur (mm H2O)

0–5000 13.85 1226.97

GW_REVAP Groundwater “revap” coefficient 0.02–0.2 0.17 0.15

REVAPMN
Threshold depth of water in the

shallow aquifer for “revap” to occur
(mm H2O)

0–500 450.95 68.69

SOL_AWC Available water capacity of the soil
layer (mm H2O ·mm soil−1) −50–50% −26% −43%

CH_K2 Manning’s “n” value for the main
channel 0–150 92.07 145.11

CH_N2 Manning’s “n” value for the tributary
channels 0.01–0.3 0.17 0.03

SURLAG Surface runoff lag coefficient 0.5–24 22.48 0.85

ESCO Soil evaporation compensation factor 0–1 0.92 0.69

EPCO Plant uptake compensation factor 0–1 0.21 0.40

CANM# Maximum canopy storage (mm H2O) 0–1 0.72 0.42

The KGE was used to simulate streamflow and ET against corresponding observations.
KGE diagnostically decomposes the NSE and mean squared error (MSE) to provide a
combined measure of the relative importance of correlation, bias, and variability for
hydrological modeling [54]. KGE values range from −∞ to 1, where values closer to
1 indicate a stronger model performance:

KGE = 1 −
√
(r − 1)2 − (σr/σo − 1)2 − (µr/µo − 1)2 (8)

where r indicates the Pearson product-moment correlation coefficient; σs/σo and µs/µo
indicate the variability ratio and bias between simulations and observations, respectively;
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σ and µ indicate the standard deviation and mean of the variables, respectively; and the
subscripts, s and o, indicate the simulations and observations, respectively. We additionally
used NSE and P-bias as the metrics for daily streamflow. NSE is an indicator of how
well simulated and observed values fit the 1:1 line and the range of NSE is from −∞ to
1 (one indicates a perfect fit) [55]. P-bias indicates a general tendency of model over-(or
under-) prediction relative to observations, and positive and negative values refer to model
underestimation and overestimation, respectively [55]. Lower and greater values refer
to increased and decreased accuracy, respectively. The two metrics have been frequently
adopted to assess daily performance measures [52,56] and they are calculated as follows:

NSE = 1 −
[

∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi − O

)2

]
(9)

P − bias =
[

∑n
i=1(Oi − Si)× 100

∑n
i=1 Oi

]
(10)

where Oi are observed and Si are simulated data; O are observed mean values; and n equals
the number of observations. The “hydroGOF” package of the R program [57] was used to
calculate KGE, NSE, and P-bias.

2.6. Comparing the Prediction Capacity of SWAT and RSWAT

To demonstrate how representative the modified model structure (i.e., RSWAT) was
for hydrologic variables, we conducted evaluations at two spatial levels (Figure 4). Sim-
ulated streamflow and watershed level ET simulations from SWAT and RSWAT were
first examined using observed streamflow and RS-ET, respectively. A flow duration
curve (FDC) was plotted using daily streamflow from SWAT and RSWAT to examine
how the two models replicate streamflow during high and low-flow periods compared
to observations. Then, subwatershed-level assessments were conducted by comparing
the subwatershed-level ET and the corresponding RS-ET divided by the subwatershed
boundary. There are 19 subwatersheds spanning from 0.09 to 32 km2 in the TCW. The
subwatershed boundary was delineated using the ArcSWAT interface for SWAT with an
input DEM [58]. Subwatershed-level model outputs were directly obtained from the SWAT
and RSWAT results, as they represent the best performance metrics at the watershed level.
Once the daily subwatershed-level average of RS-ET was determined, the KGE values
for individual subwatersheds over the simulation period were calculated for SWAT and
RSWAT. Evaluation of streamflow predictions at the subwatershed-level was not conducted
due to the absence of subwatershed-level streamflow observations.
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3. Results and Discussion
3.1. Streamflow and ET Predictions at the Watershed Level

Figure 5 presents the relationship between simulated streamflow and ET from SWAT
and RSWAT and the observed streamflow and watershed-level RS-ET. SWAT produced
KGE of 0.47, NSE of 0.29, and P-bias of 1.7% for daily streamflow and KGE of 0.48 for
daily ET. RSWAT had slightly higher metrics with KGE of 0.49 and NSE of 0.37 for daily
streamflow and KGE of 0.52 for daily ET while P-bias was 15.9% greater than SWAT.
Overall, SWAT and RSWAT showed similar metrics regarding that KGE values were
similar between two models, and NSE and P-bias of SWAT indicated lower and greater
accuracy than RSWAT, respectively.

Both models replicated the observations reasonably well. NSE and P-bias for daily
streamflow were acceptable when NSE > 0.2 and P-bias ≤±25%, respectively [52,56]. SWAT
and RSWAT satisfied those criteria for streamflow. Regarding KGE values, a previous
study defined KGE > 0.5 as an acceptable performance for monthly streamflow [59]. Our
streamflow results were slightly lower than KGE of 0.5. Daily simulations are evaluated
using relaxed criteria compared to longer time scale (e.g., monthly and annual) outputs
since daily outputs depict detailed extreme values [51]. Therefore, our KGE values for
daily streamflow seemed to be within an acceptable range. The KGE values for daily
ET were greater than one previous study (i.e., 0.26) [60] while being lower than another
previous study (i.e., 0.5–0.9) [61]. Less accurate results are likely due to the omission of
plant parameters that account for a substantial portion of ET [61], and the exclusion of the
impacts of irrigation. A study by [62] showed model parameterization of forest, resulting in
more accurate ET predictions relative to default parameters. For croplands, similar findings
were observed in a previous study [63]. Approximately 87% of the study watershed is
covered by either crops or forest and therefore non-adjusting plant parameters may be a
contributor of low accuracy. However, ET values from the two models reflected strong
seasonality (e.g., high ET in summer seasons and low ET in winter seasons) in ET in this
region [37] and were relatively well matched with RS-ET.
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Peak streamflow was not well captured by SWAT and RSWAT, largely due to inherent
model limitations. The CN method used in SWAT does not consider rainfall intensity
and duration in partitioning surface runoff and infiltration; as such, simulated peak flows
tend to be underestimated [64]. A localized precipitation not observed at weather stations
often caused model underestimation of peak streamflow in this region [36]. In addition,
a semi-distributed SWAT structure oversimplifies water routing at the subwatershed
level, producing inaccurate peak flow predictions [52]. This model error may also be
due to the climate input data, NLDAS2; Qi et al. [65] compared SWAT simulations with
different climate data finding that SWAT results driven by NLDAS2 climate input data
underestimated streamflow due to higher daily solar radiation, leading to overestimations
of ET.

A comparison between SWAT and RSWAT outputs using the FDC showed that the
latter output provided good agreement with observations. This was particularly the case
during low-streamflow conditions (i.e., flow intervals that exceed the greatest fraction of
time [>80%], Figure 6). This may be partially due to the use of a simplified soil moisture
conceptual model in SWAT, such as a bucket [40]. Shahrban et al. [66] also found that
a hydrologic model using a bucket concept for soil moisture poorly simulated low-flow
conditions relative to a model that used a continuous distribution of soil moisture according
to vertical depth. Based on this FDC result, we postulate that RSWAT may have a greater
capacity to replicate water partitioning processes than SWAT. In this region, low flows
correspond to baseflow conditions, and the amount of baseflow is determined from water
partitioning processes within upstream areas [67]. Another possible reason for this low-flow
discrepancy between SWAT and RSWAT is to simultaneously constrain model parameters
using streamflow and RS-ET. Tobin and Bennett [68] found that the inclusion of ET as
an additional constraint enabled the accurate capturing of actual flow patterns. Multiple
constraints were known to improve model ability to predict hydrologic variables [59].
It seemed that an original SWAT received less benefits of multiple constraints owing to
limited model structure. However, the greater accuracy of baseflow patterns in RSWAT
may be a due to a combination of the improved model structure, and use of RS-ET as an
additional constraint during model calibration.
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3.2. ET Predictions at the Subwatershed Level

Figures 7 and 8 present the KGE values from simulated ET and RS-ET for individual
subwatersheds, respectively. Overall, RSWAT provided accurate ET prediction results
with higher KGE values than SWAT. The average KGE values of SWAT and RSWAT were
0.47 (0.38–0.58) and 0.53 (0.37–0.68), respectively. Some of the subwatersheds showed
higher KGE values in SWAT than in RSWAT (Figure 6), potentially due to the direct use of
watershed level calibration results. A subwatershed-level calibration may better represent
the performance of RSWAT over SWAT. Rajib et al. [61] assessed subwatershed-level
ET predictions using four different model configurations, finding that the KGEs ranged
from 0.35 to 0.8. Compared to this study, Rajib et al. [61] had higher KGEs; this may be
because parameters were adjusted for individual subwatersheds and a greater number
of parameters affecting ET were considered [62]. However, the size of our study site was
too small to conduct a subwatershed-level calibration. Becker et al. [60] conducted model
calibration at a scale smaller than the subwatershed scale, finding that the average KGE
(0.4) was relatively low; such assessments may fail to show improved model predictions.
As per Becker et al. [60], model calibration at the finest spatial level (i.e., HRU) may be
unsuitable when RS-ET is utilized, as the size and configuration of the HRU is extremely
random for comparisons with RS-ET [60]. Conversion of HRU ET results to a grid was
found as a promising way to make comparison between SWAT results and grid-format
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ET, but a grid size should be carefully selected [69]. The approach adopted in this study is
considered reasonable to address our aim; however, the inclusion of parameters associated
with ET is recommended for future studies.

Overall, subwatershed-level metrics better quantified model improvements relative
to the watershed level metrics. Spatial pattern evaluation using remotely sensed data
was reported as a promising means to reveal improved model performance [70]. It is
recommended that future studies that adopt remotely sensed data should use finer spatial
scale metrics to effectively discern model output improvements.
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The advent of RS-ET availability has produced advances in hydrologic modeling ap-
proaches. Model calibration against RS-ET aids the prediction of future water demand for
agricultural activities via the enhanced representation of water consumption by crops [71].
By being a direct constraint, RS-ET is capable of supporting studies that assess the per-



Sustainability 2021, 13, 2375 14 of 18

formance of different ET calculation methods based on observed streamflow [72,73]. A
previous study observed enhanced model performance through the inclusion of RS-ET
for multi-objective model calibration [74]. Wambura et al. [13] set up RS-ET as an addi-
tional constraint in conjunction with a primary constraint (streamflow), concluding that
the addition of RS-ET reduced equifinality and predictive uncertainty. Parajuli et al. [75]
demonstrated that model calibration based on RS-ET may be used to characterize hydro-
logic cycles in regions with limited meteorological data. Spatial calibration informed by
RS-ET can increase overall model prediction accuracy [61]. The results from this study also
demonstrate the value of RS-ET in assessing improved model structures, suggesting the
added potential of RS-ET in advancing hydrologic modeling.

To better substantiate these findings, various improved model structures need to be
tested with remotely sensed data in landscapes with different topographic and climatic
conditions. As previously stated in the introduction section, ET is a key component of
hydrologic cycling. The use of RS-ET in hydrologic modeling is able to better characterize
hydrologic dynamics in various landscapes. In conjunction with RS-ET, remotely sensed
hydrologic data, including soil moisture [76], is becoming increasingly available. This
new data source provides opportunities for hydrologic modelers to better understand
hydrologic processes, establish spatially explicit parameters, assess model performance,
and improve the capacity of hydrologic modeling tools for water resource management.
Efforts to integrate remotely sensed data into hydrologic models will increase the credibility
of modeled outputs in operational applications.

4. Conclusions

We employed RS-ET to evaluate the predictive capability of a modified SWAT (i.e., the
RSWAT) that contains improved representation of soil moisture dynamics. Streamflow and
watershed-level RS-ET were used to calibrate SWAT and RSWAT. Simulations with the best
performance metrics from the two models (i.e., SWAT and RSWAT) were compared at the
watershed and subwatershed levels. The comparisons were made to determine the model
that best predicted streamflow and watershed-level ET, and to understand to what extent
the two models depict subwatershed-level ET. For subwatershed-level comparisons, RS-ET
was divided by the subwatershed boundary and then compared with the subwatershed-
level simulated ET. Three metrics (NSE, P-bias, and KGE) and one metric (KGE) were used
to assess model predictability for streamflow and ET, respectively. There were two keys
findings from the results of this assessment. First, SWAT and RSWAT produced similar
streamflow and ET at the watershed level with similar performance metrics. NSE, P-bias,
and KGE for daily streamflow were 0.47, 0.29, and 1.7% (SWAT) and 0.49, 0.37, and 15.9%
(RSWAT), respectively. SWAT and RSWAT had KGE values of 0.48 and 0.52 for daily ET,
respectively. Second, differences between SWAT and RSWAT were more evident at the
subwatershed level. RSWAT demonstrated increased prediction accuracy in most subwa-
tersheds relative to SWAT, with greater average KGEs (i.e., average KGE values of 0.47
and 0.53 for SWAT and RSWAT, respectively). Previous studies that demonstrate model
improvements using observations at the watershed outlet often failed to show significant
improvements of model predictions caused by upgrading model structures based on the
performance metrics mainly owing to limited observational data [28,29]. However, our
study overcame this limitation by inclusion of RS-ET, leading to improved disparity of the
performance metric between existing and modified SWATs. These findings demonstrate
that the use of RS-ET as a further model constraint improves the ability to discern model
prediction quality attributable to model structure improvements. Subwatershed-level met-
ric comparisons reinforce the value of RS-ET data in informing the calibration process and
discerning differences in model structure performance. Therefore, our study emphasizes
the applicable way of remotely sensed data to support hydrologic models, being toward
generating results approximating the realistic conditions.
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