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Abstract: Typhoons are a product of air-sea interaction, which are often accompanied by high winds,
heavy rains, and storm surges. It is significant to master the characteristics and pattern of typhoon
activity for typhoon warning and disaster prevention and mitigation. We used the Kernel Density
Estimation (KDE) index as the hazard index; the probability of exceeding, or reaching, return period
or exceeding a certain threshold was used to describe the probability of hazard occurrence. The results
show that the overall spatial distribution of typhoon hazards conforms to a northeast-southwest zonal
distribution, decreasing from the southeast coast to the northwest. Across the six typical provinces
of China assessed here, data show that Hainan possesses the highest hazard risk. Hazard index
is relatively high, mainly distributed between 0.005 and 0.015, while the probability of exceeding
a hazard index greater than 0.015 is 0.15. In light of the four risk levels assessed here, the hazard
index that accounts for the largest component of the study area is mainly distributed up to 0.0010, all
mild hazard levels. Guangdong, Guangxi, Hainan, Fujian, Zhejiang, and Jiangsu as well as six other
provinces and autonomous regions are all areas with high hazard risks. The research results can
provide important scientific evidence for the sustainable development of China’s coastal provinces
and cities. The outcomes of this study may also provide the scientific basis for the future prevention
and mitigation of marine disasters as well as the rationalization of related insurance.

Keywords: spatiotemporal pattern; typhoon disaster; kernel density estimation; risk analysis; China

1. Introduction

A typhoon is a pattern of severe, disastrous weather. These features are tropical
cyclones that occur on the ocean surface in the western North Pacific (i.e., west of the
International Date Line, including South China) and include maximum continuous wind
forces of more than 12 (wind speed 32.7 m/s) near to their centers [1–3]. China is one of a
small number of countries globally that are most influenced by typhoons, and especially in
southeast coastal areas. Statistics show that of the ten most significant natural disasters
to occur globally between 1947 and 1998, 499,000 people were killed by typhoons, 41%
of total deaths from natural disasters [4]. In one example, Typhoon ‘Lekima’ landed on
the coast adjacent to Wenling City (28◦22′00.00′ ′ N, 121◦20′00.00′ ′ E) in Zhejiang Province
on 10 August 2019, and was the third strongest typhoon to land in East China in 70 years.
Indeed, as of 13 August 2019 at 16:00 (UTC+8), this typhoon had adversely affected
12,884,000 people across nine provinces (cities), Zhejiang, Shanghai, Jiangsu, Shandong,
Anhui, Fujian, Hebei, Liaoning, and Jilin [5]. A total of 2,040,000 people were transferred
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urgently and resettled at the time, of which 1,417,000 have now returned. The typhoon
also caused the collapse of 13,000 houses and damaged 119,000 to some extent, while crops
were affected across an area of 9,960,000 hectares [6].

China is significant affected by typhoons globally due to its close proximity to an
active storm zone in the Northwest Pacific. Typhoon disasters are the most frequent and
destructive meteorological disasters to occur in China; these are characterized by high
frequency, range of impact, strong and sudden activity, significant mass occurrence, and
high disaster intensity [7,8]. The dominant hazards associated with typhoon disasters
include gale, heavy rain, and storm surges. Rainstorms caused by typhoon, in particular,
are extremely destructive. In addition to direct economic losses and casualties, typhoons
can also cause secondary disasters such as mountain torrents, mudslides, and collapses.
Extreme precipitation records across many parts of China are caused by typhoons; on
the islands of Taiwan and Hainan, typhoon-related annual average precipitation versus
climatic precipitation can reach up to around 30% [9,10].

Natural disaster risk assessment refers to the appraisal and estimation of hazard factor
intensity as well as the degree of potential damage caused by these events determined via
risk analysis or the observation appearance method [11–14]. Risk analysis technology can
also be applied to natural disasters [15–20].

Current research around the world describes the spatiotemporal characteristics of tropical
cyclones in the Northwest Pacific, including inter-annual and seasonal changes in tropical
cyclone frequency, typhoon sources, and the intensity distribution and path types of these
events landing in China. Significant progress has been made in terms of typhoon disaster risk
assessment in recent years [21–23]. The previous typhoon research mainly focused on the
typhoon numerical forecast technology [24,25], vulnerability assessment [26,27], post-disaster
loss estimation [28–30], and so on. With the advancing of typhoon research, more attention
should be paid to the overall structure of the typhoon disaster system. Disaster system theory
currently remains limited to the description of hazard spatiotemporal distributions, while
work on typhoon disasters has mainly focused on hazard factors and risk assessment across
small areas [31]. A limited number of disaster risk assessment studies across large areas have
been conducted from a probability perspective [32,33].

The aims of this paper are to: (1) Utilize the kernel density estimation index as a
hazard index and to use the probability of exceeding or reaching return period or exceed-
ing a certain threshold to describe the occurrence probability of hazards; and (2) Utilize
probability density, transcendence probability, and annual risk to perform national-scale
evaluation mapping and result analysis. These approaches have enabled us to compile a
disaster risk evaluation map for typhoon landings across China. The research can provide
important scientific evidence for the sustainable development of China’s coastal provinces
and cities and the formulation of disaster prevention and disaster prevention policies.

2. Data and Methodology
2.1. Data Sources

The typhoons studied in this research comprised the tropical examples listed in the
‘Tropical Cyclone Classification (GB)’ [34]. Data were taken from the China Meteorological
Administration (CMA) ‘Best-Track Tropical Cyclone (TC) Data Set’ provided by the China
Typhoon Network (www.typhoon.org.cn) [35]. Thus, subsequent to the annual tropical
cyclone season each year, according to the collected conventional and unconventional
meteorological observation data, the path and intensity data of tropical cyclones each year
were compiled to form a CMA tropical cyclone best path data set (Table 1).

The current version of the CMA best-track data set provides the position and intensity
of tropical cyclones across the Northwest Pacific (including the South China Sea, north
of the equator, and west of 180◦ E) since 1949. These data included typhoon name and
number, typhoon center location (latitude and longitude), lowest central pressure (hPa)
and two-minute average near-center maximum and average wind speed (m/s).

www.typhoon.org.cn
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Table 1. The data sources used in this analysis.

Database Contents Data Sources Data Period

CMA
TC database

Year, typhoon number, English name, date of
creation, end date, minimum central pressure,
maximum wind speed, landing longitude and

latitude, landing location, affected area,
maximum wind force, maximum wind speed,

and extreme wind value

Shanghai Typhoon Institute, CMA
http://tcdata.typhoon.org.cn/zjljsjj_sm.html 1949–2018

Typhoon disaster database

Year, typhoon number, wind power, starting
time, affected population, number killed,

emergency resettlement population, affected
area, disaster area, number of collapsed

houses, and direct economic losses.

Ministry of Emergency Management of the
People’s Republic of China 2000–2018

2.2. Methods
2.2.1. Typhoon Hazard Index-Kernel Density Estimation (KDE)

The KDE approach provides one non-parametric way to estimate the probability
density function of a random variable [36,37]. Thus, KDE is a fundamental data smoothing
problem where inferences about population are made based on a finite sample. One well-
known KDE application has been for estimating the class-conditional marginal densities
of data when using a naive Bayes classifier [38]. This approach dramatically improves
prediction accuracy.

We defined (x1, x2, . . . , xn) a univariate independent and identically distributed
sample drawn from some distribution with an unknown density f. We are interested in
estimating the shape of this function f, as follows:

f̂h(x) =
1

nh

n

∑
i=1

K(
x− Xi

h
) (1)

K(x) ≥ 0,
∫ +∞

−∞
K(x)dx = 1 (2)

In this expression, K denotes the kernel, a non-negative function, while h > 0 is
the bandwidth smoothing parameter. A kernel with subscript h is referred to as the
scaled kernel. Intuitively, it is necessary to define h as small as the data will allow and
there is always a trade-off between the bias of the estimator and variance. A range of
kernel functions are commonly used including uniform, triangular, biweight, triweight,
Epanechnikov, and normal. The Epanechnikov kernel is optimal in a mean square error
sense even though efficiency loss remains small in the other types [39]. As it has convenient
mathematical properties, the normal kernel is often used; this means that K(x) = φ(x),
where φ is the standard normal density function.

2.2.2. Cumulative and Exceeding Probability, and Return Period

A probability density function describes the relative likelihood that a random variable
will take on a given value. The probability of a random variable falling within a particular
range is given by the integral of density over that range; in other words, the area under
the density function but above the horizontal axis and between the lowest and greatest
values [40]. Cumulative frequency analysis is therefore the analysis of value occurrence
frequency of a phenomenon less than a reference value [41]. Cumulative frequency is also
referred to as the frequency of non-exceedance probability.

A return period, also known as a recurrence interval, provides an estimate of event
likelihood [42]. This is a statistical measurement typically based on historic data which
denotes the average recurrence interval over an extended period of time and is usually
used for risk analysis. Thus, on the basis of conversions from exceeding probability to a
certain year return period, typhoon hazard risk maps for once every two years, five years,
ten years, and 20 years were obtained.

http://tcdata.typhoon.org.cn/zjljsjj_sm.html
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The specific algorithm used in this study involved determining the exact number of
observations in each interval from the frequency histogram and then dividing the number
of observations in each interval by the total number of observations. The resultant graph is
the relative frequency histogram, plotted at time ordinates between 0 and 1. We then used
the sequence u1, u2, . . . , um to represent the midpoint of each interval in the histogram,
the standard interval point. The relative frequency was then divided by interval length
and the result is recorded as i = 1, 2, . . . , m. Points were then plotted as i = 1, 2, . . . , m;
these were connected to get an estimate of the overall probability density function p(x).

Over a certain period of time [0, t], the probability that typhoon disaster intensity is
equal to, or exceeds, S is defined as P, and so the cumulative probability function is CF(S).
Over the defined time period, the relationship between the probability of exceeding as well
as cumulative probability is as follows:

P(S) =
CF(S)

T
(3)

We therefore used P(S, t) to represent the probability that hazard intensity is equal to,
or exceeds, S within a period of time [0, t]. It therefore follows:

P(S, t) = 1−
[

1−
(

CF(S)
T

)]t
= 1− (1− P(S))t (4)

In one example, suppose that the cumulative number of typhoon disasters exceeding
0.5 over a 100-year period (T = 100) reaches ten, then CF(S) = 10 (Table 2). Thus, over this
time period, P(0.5) = 0.1; this means that the probability of one typhoon disaster intensity
exceeds 0.5 is 0.1 and the probability of occurrence within one year is 10%. Thus, if we
study a typhoon with a disaster intensity greater than 0.5, this formula can be used to
obtain the probability of typhoon occurrence at this intensity within a 100-year period.
In other words, if t = 10 years, then p(0.5) = 0.1 and p(0.5,10) = 0.75; this means that the
probability of a typhoon disaster greater than 0.5 within 10 years is 75%. A return period
corresponds to an extreme quantile which represents the numerical magnitude of extreme
variables of extreme events. Over a given return period, the larger the extreme quantile,
the smaller the probability of exceeding this level as well as the smaller the likelihood of
extreme events. The deeper color of the risk maps is represented, the higher relative risk is.
The flow of risk analysis of Chinese typhoon disasters is shown in Figure 1.

Table 2. Disaster occurrence, cumulative, and exceeding probability over certain return period times.

Return Period Exceeding Probability Cumulative Probability Occurrence Probability

2 0.50 0.50 0.50
5 0.20 0.80 0.30

10 0.10 0.90 0.10
25 0.04 0.96 0.06
50 0.02 0.98 0.02
100 0.01 0.99 0.01

0 1.00 0.01
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Figure 1. Flow chart for risk analysis of Chinese typhoon disasters.

3. Results
3.1. Typhoon Hazard Spatiotemporal Patterns

The KDE index of 70-year typhoon hazard factor was selected as a sample while 0.005
was determined as the interval length of each histogram. A histogram was then estimated
for each evaluation unit to enable us to calculate probability and exceeding probabilities.
Larger values of the search radius parameters produce a smoother, more generalized
density raster. Smaller values produce a raster that show more detail. The output cell size
can be defined by a numeric value or obtained from an existing rater database. By adjusting
the parameters and comparing the analysis results, the final search radius parameters is
selected as 100km, and the cell size is set as 1km. Thus, for display purposes, based on the
annual hazards data samples, annual average KDE indexes for six provinces (i.e., Guangxi,
Hainan, Guangdong, Fujian, Zhejiang, and Jiangsu) were calculated. The probability
density curves for these hazards were calculated (Figure 2) alongside exceeding probability
curves (Figure 3). The probability density curve can include any probability value on the
hazard index interval; this enabled us to estimate the probability of different hazard levels.
The exceeding probability refers to the chance that the intensity of a typhoon exceeds the
intensity of a given event within a certain area and time range. This also reflects the range
of hazard risk as well as its changes. Thus, the steeper the probability density curve, the
probability of hazard index is greater. The probability of occurrence of this factor is large
while the slowly changing section represents a small hazard probability event.

As seen in Figure 2, the hazard index for Jiangsu Province is mainly distributed
between 0 and 0.005, while these values for Fujian, Guangdong, and Zhejiang provinces are
mainly distributed between 0 and 0.007. The hazard index of Hainan Province is relatively
high, mainly between 0.005 and 0.015.
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The data presented in Figure 3 reveal that the steepest changes in hazard indexes
are seen in Fujian, Guangdong, Guangxi, Hainan, Jiangsu, and Zhejiang; 0.01, 0.01, 0.008,
0.015, 0.005, and 0.008, respectively. These points correspond to maximum values on the
probability density curve as well as to the enhanced probability of hazard events.

Across the six provinces surveyed here, Hainan is at highest risk. The exceeding
probability of the hazard index greater than 0.015 is relatively large in this region, 0.15,
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followed by Guangdong Province, where the exceeding probability of the hazard index
greater than 0.01 is 0.1. Values for exceeding probability greater than 0.005 in other regions
are 0.38 (Fujian Province), 0.3 (Zhejiang Province), 0.2 (Guangxi Province), and 0.08 (Jiangsu
Province).
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Figure 3. The exceeding probability curves of typhoon hazard index across typical areas of China: (a) Fujian Province;
(b) Guangdong Province; (c) Guangxi Province; (d) Hainan Province; (e) Jiangsu Province; (f) Zhejiang Province.
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We implemented the calculation formula for hazard index; thus, an annual typhoon
hazard index value for each grid cell was calculated. Data show the spatial distribution
of average hazard index across China between 1949 and 2018 (Figure 4). The spatial
distribution of typhoon landing density follows a northeast-southwest zonal distribution
across China, decreasing from the southeast coast to the northwest.
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Coastal areas are the main regions influenced by typhoons and extreme precipitation,
most severely in Chinese history. Areas with high hazard index are concentrated on Hainan
and Taiwan islands. Regions on the mainland that are severely affected include the coastal
areas of Guangdong, Guangxi, and Fujian as well as inland into the middle and lower
reaches of the Yangtze River and the middle reaches of the Yellow River. In addition, most
areas in Northeast China have also been affected by typhoons. The average values for
most hazard indexes are at a low level (0–0.0015), accounting for 67.81% of the total coastal
area of China. This area of hazard indexes (0–0.0003) accounts for about 37.51% of total
coastal area.

Areas with greater risk typhoon hazard indexes (0.0015–0.0098) are concentrated in
the Pearl River and Yangtze River deltas, regions which account for about 32.19% of total
coastal area. The high frequencies of typhoons as well as the high level of socioeconomic
development across these two regions are the main factors leading to high typhoon disaster
risk. The ability to prevent and reduce disaster risk has increased due to improvements in
the social economy while the level of typhoon disaster risk remains relatively high due high
social wealth concentration. In addition to these two high-risk areas, Shandong, Jiangsu,
and other places also have relatively high typhoon risks, followed by the Bohai Rim region.

In order to better reveal fluctuations in the Chinese typhoon hazard index over time
and on the basis of typhoon hazard index data for each grid cell, standard deviation was
calculated. A standard deviation distribution map for the Chinese typhoon hazard index
was then drawn (Figure 5). This map shows that the distribution of standard deviations
as a whole reveals obvious differences between east and west with the former larger than
the latter. The southern part of Guangdong Province as well as Guangxi Province and
Taiwan have the highest standard deviations; in these regions, standard deviations are
more than 0.0047 and typhoon hazard indexes exhibits the largest inter-annual fluctuations.
The proportion of hazard index standard deviation up to 0.0003 is 20.16%, while the
proportion of hazard index standard deviation between 0.0030 and 0.0061 is 23.32%.
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Figure 5. Standard deviations of typhoon hazard index distribution across China.

The annual frequency of tropical cyclones generated in the Northwest Pacific including
those affecting China has decreased significantly over time. The number of tropical cyclones
landing in China has gradually decreased (−0.4 per 10 years), while the frequency of
typhoons generated in the Northwest Pacific and the South China Sea has also decreased
over time. The frequency of typhoons landing in China has varied greatly year-on-year
and the proportion of landed typhoons is increasing. The average number of typhoons
that landed in China in the 1990s with wind forces level 12 or higher was 2.8; since 2000,
this number has been 4.1, an increase of 46% (Figure 6). From the end of the 1960s to the
beginning of the 1970s, the number of landing typhoons was mostly above the multi-year
average, and then fluctuated around the multi-year average. From the early 1970s to the
mid-1990s, there was a relatively stable fluctuation state. Since the end of the 1990s, there
has been a weak downward trend.
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Figure 6. Inter-annual changes in the number of typhoons landing in China.

3.2. Typhoon Hazard Index Based on Fixed Exceeding Probability

The typhoon hazard index database as well as fixed degrees of exceeding probabilities
was used to develop four typhoon hazard risk maps at different risk levels (Figure 7). These
results show that 91.52% of maize-planting areas across China fall within the light drought
hazard index range between 0 and 0.0010 and correspond with a risk level of one event
every two years.
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On the basis of four risk levels, the hazard index that accounts for the largest area is
mainly distributed within a range up to 0.0010, all light hazard levels. Thus, given levels of
once in five years, once in ten years, once in 20 years, and once in 30 years, the proportions
of regions with light hazard levels (up to 0.0010) across the study area were 57.40%, 40.41%,
31.74%, and 27.42%. Irrespective of risk level, Guangxi and southern Guangdong, Hainan,
and Taiwan all possess highest hazard intensities, reaching relatively severe levels; hazard
index ranges in these cases fall between 0.0178 and 0.0239. Analyses show that, as risk
levels increase, the proportion of extreme hazards (0.0113–0.0239) across the study area
also gradually increase from 2.73% once in five years, 4.31% once in ten years, 10.87% once
every 20 years, up to 13.51% once in 30 years. As risk levels increase, the proportion of
light-to-medium hazard levels (0–0.0028) in total areas have increased from 66.16% once in
five years, 53.18% once in ten years, 40.56% once in 20 years, to 35.54% once in 30 years.

The distribution of high-value areas, including high-value areas of the hazard index
once in five years, are concentrated in Guangdong, Guangxi, and Hainan provinces. These
values are determined by the fact that the southeast coastal area is the one mainly affected
by typhoon extreme precipitation. The hazard index value in parts of central and northern
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parts of China remain low, below the light hazard level. As risk levels increase, 10-year, 20-
year, and 30-year once-in-a-time levels feed into unchanged risk patterns while high-value
areas increase significantly. High-value areas of the hazard index gradually expand to the
northeast and northwest.

3.3. Probability Risk Based on Fixed Typhoon Hazard

Another type of hazard risk map was generated to calculate the probability of occurrences
under different hazard indexes using the exceeding probability of each grid cell. This was
then used to draw a corresponding series of risk maps, including four hazard index levels,
typhoon hazard index > 0.00125 (Figure 8a), typhoon hazard index > 0.0025 (Figure 8b),
typhoon hazard index > 0.0005 (Figure 8c), and typhoon hazard index > 0.01 (Figure 8d).
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Estimation (KDE) > 0.00125; (b) KDE > 0.0025; (c) KDE > 0.005; and (d) KDE > 0.01.

In light of different hazard index levels, data show that the southeast coastal area of
China is the area with highest typhoon occurrence probability. Indeed, amongst these areas,
Guangdong, Guangxi, Hainan, Fujian, Zhejiang, and Jiangsu provinces have the darkest
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colors. The coastal areas of China are not only densely populated but the economies in
these areas are most developed. Social wealth is high, but because these areas are close to
the Pacific Ocean, they are directly affected by typhoons and can therefore become high
risk regions.

4. Discussion

This research was initiated using typhoon track statistical data over many years. We
used the influence mechanisms of typhoon frequency and landing latitudes while our
knowledge regarding the main factors affecting typhoons currently remains unclear. A
typhoon is often accompanied by strong winds, heavy rains and high tide events [43,44].
Multivariate return period analysis can provide more adequate and comprehensive infor-
mation about risks than univariate return period analysis. The prevention measures such
as critical infrastructures design, should consider the multiple hazard factors of typhoon
disasters comprehensively, and give full consideration to the occurrence probability during
the design period. The principle of extreme value statistics was used to estimate the main
meteorological disaster factors of typhoons and the extreme value distribution probability
types of disaster indicators [45,46]. Probability information regarding hazard factors and
disaster loss information were linked to construct a disaster risk model. We strengthened
the application of typhoon risk assessment demonstration area and then used this to deter-
mine whether, or not, a disaster is caused. The magnitude of a disaster risk, how big this
risk is (disaster risk index), and whether a catastrophe occurs (the disaster risk index and
the probability of exceeding disaster loss based on smaller low frequency characteristics)
should be analyzed in the future.

As the foundation of the disaster risk prevention, disaster assessment is composed of
loss estimate and risk analysis [18,42]. The vulnerability analysis is an important component
in disaster assessment, connecting analysis of hazard and risk [47–49]. As the quantitative
and accurate assessment means of vulnerability, the vulnerability curve has been widely
used in disaster estimate, quantitative risk analysis and risk mapping. Some scholars have
given a deep research to the mechanism of typhoon-flood disaster chain and produce a house
damage assessment model of five southeast coastal provinces using comprehensive disaster
magnitude as parameter [4]. With the rapid development of modern information technology
and the in-depth study of disasters, theories that can reflect the nature of vulnerability—the
vulnerability curve will become the future development trend.

Due to the numerous and complex factors affecting the typhoon disaster risk, it
is difficult to analyze the risk completely objectively and quantitatively. The typhoon
hazard risk model based on the KDE index is only a preliminary exploration. When
making typhoon disaster risk zoning, more factors should be considered, such as people’s
awareness of disaster prevention and mitigation and disaster mitigation facilities. This
will be further studied in the future. A new method should also be developed to analyze
regional typhoon hazards. The frequency of typhoon influence should also be considered
alongside intensity and duration [50–52]. The comprehensive effect of typhoons on each
affected area can also be quantified more comprehensively and objectively. These can better
reflect the regional differentiation of typhoon hazards and enable more accurate regional
typhoon disaster risk assessment.

The disaster system theory should be used to analyze the risk of typhoons from four
aspects: hazard factors, disaster-affected body, disaster-inducing environment, and disaster
prevention and mitigation capacities [15–17]. For practical use, emergency management
interventions should be intensified from three aspects: hazard mitigation measures, emer-
gency preparedness measures, and recovery measures to minimize the impact of disasters.
Hazard mitigation measures refer to fully inspecting the intensity, scope, and continuity of
hazard factors before a disaster, and raising public awareness through emergency knowl-
edge publicity and education, and preventing and controlling the severity of disasters.
Emergency preparedness measures refer to the systematic preparations for disaster preven-
tion and mitigation before a disaster, including preparations by governments, enterprises,
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the masses, and non-governmental organizations. Recovery measures refer to the adoption
of active measures during the post-disaster recovery period to make the disaster social state
return to normal as soon as possible. Therefore, the conclusions could only give reference
opinions. The physical mechanism can be further explored in the following research to
better analyze the typhoon risks.

Coastal cities are highly vulnerable to typhoons due to the special geographical
location. Once affected by a typhoon, it will cause greater economic losses in coastal areas
of China, especially the impact on agriculture and fishery production. Under the influence
of a super typhoon, industry and tertiary industries may also be forced to be interrupted,
which will affect the entire city. Conversely, human activities may have a certain impact on
the intensity and path of a typhoon [3,4]. For example, the density of urban construction
and vegetation coverage affect the friction of the ground during typhoon activities. The
construction of major projects has profoundly changed the landscape of the city and will
also have a corresponding impact on the typhoon. The next step in this research will be
to analyze the causal relationships of typhoon events. Catastrophic losses and extremes
in typhoon hazards, the absence of disaster loss, and the normality of hazards also need
to be assessed. In term of mitigating hazards, we should strengthen the accuracy of
typhoon forecast, get through the “last one kilometer” of emergency management, reinforce
professional training and drills of emergency management personnel, and enhance the
masses emergency publicity and education.

5. Conclusions

We used the CMA TC database to select the southeastern coastal area of East China as
our research area. The data for various typhoon elements between 1949 and 2018 (a total
of 70 years) was statistically processed and the paths that landed in China were assessed.
We used the KDE as the hazard index; thus, the probability of exceeding, or reaching,
return period or exceeding a certain threshold was used to describe the probability of
hazard occurrence.

The results of this analysis reveal that the overall spatial distribution of typhoon haz-
ards conforms to a northeast-southwest zonal distribution, decreasing from the southeast
coast to the northwest. Thus, across the six typical provinces of China assessed here, data
show that Hainan possesses the highest hazard risk. Hazard index is relatively high, mainly
distributed between 0.005 and 0.015, while the probability of exceeding a hazard index
greater than 0.015 is 0.15.

In light of the four risk levels assessed here, the hazard index that accounts for the
largest component of the study area is mainly distributed up to 0.0010, all mild hazard
levels. Guangdong, Guangxi, Hainan, Fujian, Zhejiang, and Jiangsu as well as six other
provinces and autonomous regions are all areas with high hazard risks. The coastal areas
of China are not only densely populated, but their economies are most developed; social
wealth is high, these regions are close to the Pacific Ocean and are directly affected by
typhoons, and they are all high hazard areas.
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