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Abstract: To face the new challenges caused by modern industry, logistics operations managers
need to focus more on integrating sustainability goals, adapt to unexpected disruptions and find
new strategies and models for logistics management. The COVID-19 pandemic has proven that
unforeseen fragilities, negatively affecting the supply chain performance, can arise rapidly, and
logistics systems may confront unprecedented vulnerabilities regarding network structure disruption
and high demand fluctuations. The existing studies on a resilient logistics network design did
not sufficiently consider sustainability aspects. In fact, they mainly addressed the independent
planning of decision-making problems with economic objectives. To fill this research gap, this
paper concentrates on the design of resilient and sustainable logistics networks under epidemic
disruption and demand uncertainty. A two-stage stochastic mixed integer programming model is
proposed to integrate key decisions of location–allocation, inventory and routing planning. Moreover,
epidemic disruptions and demand uncertainty are incorporated through plausible scenarios using a
Monte Carlo simulation. In addition, two resiliency strategies, namely, capacity augmentation and
logistics collaboration, are included into the basic model in order to improve the resilience and the
sustainability of a logistics chain network. Finally, numerical examples are presented to validate the
proposed approach, evaluate the performance of the different design models and provide managerial
insights. The obtained results show that the integration of two design strategies improves resilience
and sustainability.

Keywords: demand uncertainty; epidemic disruptions; logistics; Monte Carlo; resilience; stochastic
programming; sustainability; optimization; freight transportation

1. Introduction

In recent years, supply chains have become more complex and very vulnerable to
various disruptions [1–4]. As a result, logistics networks have confronted uncertainties
significantly disrupt the supply chain operations [5,6]. The latter may be also influenced
by natural disasters, strikes, fluctuations in the electrical system, economic or political
crises and epidemic disruptions of infectious diseases [7–10]. For instance, the current
COVID-19 outbreak has severely affected different domains, especially the freight transport
sector, due to its rapid propagation [8,11,12]. In fact, disruption remarkably affects the
entire logistics system [13]. For example, any disruption in one region may influence
the neighboring or related regions. In addition, operational risks, caused by the inherent
uncertainty of the data and the fluctuating nature of the input data, can more or less
deteriorate the performance of the logistics systems [14]. Consequently, the epidemic
disruption propagation and operational risks in the logistics network design have become
key issues that should be dealt with in order to face uncertainty risks.

Recently, resilience has been studied by the research community as a strategic ap-
proach applied to design and evaluate logistics networks in order to avoid performance
degradation and disruption propagation [15–18]. It is defined as the ability of the supply
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chains to quickly return to their ideal performance level and preserve the continuity of
material flow after its interruption [19]. Indeed, resilience strategies can be classified into
two types: reactive strategies or proactive strategies. The first ones, such as resource
sharing and fortification of platforms, are implemented before the occurrence of disrup-
tions. However, proactive strategies, like capacity expansion and backup suppliers, are
applied after disruptions. Recent literature on supply chain resilience has shown that ripple
effect disruptions, such as the COVID-19 pandemic, have a high considerable impact and
low frequency that cascade downstream in the logistics network [20]. In addition, it has
suggested that the supply chains, particularly logistics systems, need to move towards
highly resilient logistics strategies and practices.

Along with the vulnerability of logistics chains, the concept of sustainable develop-
ment has increasingly become, in the last few decades, an important strategic concern due
to global competitiveness and tighter regulations in society [21–24]. Indeed, the logistics
network should evolve to create sustainable and modern society. Despite a rich literature on
logistics network planning, establishing sustainable logistics management with considered
disruptions is still an important topic that has not yet been widely dealt with by researchers
and industries. As a consequence, it is necessary to design effective strategies to overcome
disruption risks and sustainability challenges.

Sustainability and resilience are two relatively new practices that seek new develop-
ment and effectiveness improvement in the design and evaluation of logistics networks in
a wider angle [25,26]. In fact, logistics network design includes strategic, tactical and oper-
ational decisions, namely, location decisions, transportation and inventory planning. These
decisions are usually treated independently or sequentially [27]. However, as mentioned in
several works of the literature [20,28], epidemic disruptions affect remarkably all planning
decisions due to their ripple effects. Therefore, it is important to develop design models
integrating the different planning decisions. This topic has been a recent trend and has
proven to be highly effective in practice [29]. Moreover, the assessment of the performance
of logistics configurations is based mainly on economic criteria and ignores environmental
and social sustainability [30]. To the best of our knowledge, no attempt has been made to
address the stochastic inventory-location-routing problem, considering both sustainability
issues and epidemic disruptions. The main contributions of this paper that differentiate
our efforts from related studies are as follows:

• Modelling the integrated logistics network design problem that includes routing,
inventory and location–allocation decisions and considers demand fluctuations and
epidemic disruptions with ripple effects.

• Applying a Monte Carlo simulation to generate plausible scenarios and model the
different sources of uncertainty.

• Considering capacity augmentation and logistics collaboration as a strategy to reduce
the risk of disruption.

• Assessing three aspects of sustainability and investigating the interaction between
these aspects and resilience in the integrated design of two-echelon logistics networks
subject to epidemic disruptions.

The remainder of this paper is organized as follows. Section 2 provides a review
of the relevant works dealing with the resilient logistics network design problem. The
integrated design problem under epidemic disruptions and demand uncertainty and the
performance metrics are described and modelled in Section 3. Section 4 depicts the intro-
duced solution methodology applied to deal with the studied. The computational results
are presented in Section 5. Finally, Section 6 concludes this study and provides some future
research directions.

2. Literature Review

This study addresses the design of resilient and sustainable logistics chains under
disruptions. This section presents a state of the art of related literature in reputable
databases, such as Web of Science, Scopus, ScienceDirect, Emerald, Wiley, Google Scholar
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and the SAGE full text collection [31]. The main keywords were supply chain design,
sustainability, resilience and disruption. The data search was performed by combining
the keywords.

The design of resilient supply chains subject to disruptive events has been extensively
studied in recent years. Several models and decision-making approaches have also been
proposed in order to solve this problem and make logistics networks leaner and global-
ized [32,33]. Most related studies have concentrated on facility location and allocation,
considering stochastic parameters, such as demand or cost. However, few research works
have considered the impact of other sources of disruptions due to multiple activity inter-
ruptions resulting from unexpected events [26]. In fact, these disruptions are unavoidable
nowadays. However, those with ripple effects, such as outbreak disruptions, are more com-
plex to manage and understand. Disruptions can be categorized into two types: isolated
perturbations and cascading disruptions with ripple effects [34]. The latter are specific cases
of the supply chain disruptions, as they can propagate rapidly and disperse worldwide, in
contrast to isolated disruptions [35].

Operational and disruption risks with economic considerations have been discussed
in several works. For instance, Klibi and Martel [36] have investigated multiple disrup-
tions related to natural disasters and industrial accidents using a two-stage stochastic
location-transport model. The authors have considered uncertainty parameters as random
variables that follow a cumulative distribution function. They have also used plausible
future scenario samples to simulate the disruptions. In addition, different strategies have
been proposed to design resilient distribution networks. Similarly, Qin et al. [37] have
addressed the logistics network design problem subject to accidental disruptions by in-
troducing two risk mitigation strategies (fortification and inventory prepositioning in
a two-stage mixed stochastic programming model). Seven different strategies applied
to reconfigure the logistics networks using a linear and dynamic programming model
have been discussed in [38]. Ivanov et al. [38] have used two indicators, namely, service
level and sales volumes, as resilience metrics applied to assess the most resilient logistics
structure. Then, Haghjoo et al. [39] have investigated the supply chain network design
problem for blood supply by dealing with location–allocation decisions under disruption
and facility uncertainty in a disaster situation. More recently, Kungwalsong et al. [40]
have addressed the logistics network design problem considering possible disruptions at
facilities. Moreover, Tolooie et al. [5] have solved a logistics network design problem under
total disruption at a facility and uncertain demand.

However, as shown in the literature, the integration of decisions becomes an increas-
ingly important issue in practice [41]. In this context, Asl-Najafi et al. [42] have incorporated
inventory and location decisions to design closed-loop logistics networks under a proba-
bilistic facility disruption risk. Likewise, Farahani et al. [43] have addressed the multiple
product inventory location problem by assuming that facilities can partially fail during
disruptions. The researchers have considered substitute products as a strategy to reduce
the risk of disruptions in the investigated problem. Moreover, Fattahi et al. [44] have solved
the logistics network design problem under operational and disruption risks with delay
sensitivity. The authors have applied some mitigation and preventive resilience strategies
to deal with random variation of facility capacity and demand uncertainty. Zahiri et al. [45]
have discussed the hazardous materials transportation design problem under disruption
risk and material perishability. In order to study uncertainties, they have developed a
multi-stage stochastic mathematical model and employed two resilience strategies, namely,
node criticality and network complexity. In addition, a two-stage stochastic program for a
supply network design during disruption events has been introduced in [46] to optimize
the location, allocation, inventory and order size decisions. The authors have proposed
a new metric to assess the resilience of logistics networks, namely, the expected value
of the cost increase during the recovery period when the logistics network undergoes
disruption events.
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In the last few years, sustainable development has become a major challenge in logis-
tics network design problems [21,47]. In fact, green supply chain design under disruption
risk has attracted the attention of the research community. For instance, Mari et al. [17]
addressed the allocation and location problem in the textile industry with green objectives
under facility disruption. Motivated by the advantages of integrated planning decisions,
Yavari and Geraeli [48] and Yavari et al. [49] have developed a green integrated inventory-
location-routing model to address the multi-period, multi-product network design problem
of perishable products under power network disruption and demand uncertainty. The
authors have proposed a Mixed-Integer Linear Programming (MILP) model that minimizes
the expected total network cost as well as the amount of carbon emissions. In another
study, Hasani et al. [50] have investigated a global logistics network under disruption, and
they have presented a multi-objective optimization model in order to take into account
environmental and economic aspects. The three dimensions of sustainability have been
addressed in few studies in the literature. Zahiri et al. [51] have suggested a sustainable
and resilient mixed integer linear programming model that incorporates location and
inventory decisions under facility disruptions and fluctuating demands. In this model,
uncertainty has been treated using possibilistic–stochastic programming. More recently,
Mehrjerdi et al. [52] have focused, for the first time, on the interaction between sustainabil-
ity and resilience in closed-loop logistics network design using two resilience strategies,
namely, the multiple sourcing and information sharing strategies.

Despite the considerable impact of ripple disruptions on the overall performance
of supply chains, the aforementioned studies have not examined, in depth, the types of
disruptions and their ripple effects along the planning horizon. Indeed, few studies have
considered epidemic disruptions with ripple effects in the design problems. In this context,
Gholami-Zanjani et al. [28,53] have presented an approach to model epidemic risk for
isolated and cascading disruptions in the food context. The authors have addressed the
food supply network design problem by combining location and inventory decisions and
optimizing the total expected cost. Moreover, they have proposed some resilience strategies
by considering the economic aspect. As the risk mitigation strategies are environmentally
and economically beneficial, Gholami-Zanjani et al. [30] have recently proposed an ap-
proach integrating resilience and green perspectives for food network design. Nevertheless,
the authors have not assessed the social dimension of sustainability and have not taken
into account the routing decisions that can deteriorate the network performance due to the
ripple effects of epidemic disruptions.

Table 1 provides a classification of the related literature and allows for the input
of the current paper in the literature. As Table 1 reveals, the studies reviewed so far
showed several gaps in the area of a network logistics design. A clear gap is first shown
in the integration of inventory, routing and location–allocation decisions in the design
problem. As discussed earlier, addressing these decisions exhaustively allows companies
to manage their logistics system efficiently, provide responsiveness at a lower cost and
avoid generating suboptimal results [41,54,55]. Therefore, this study integrates different
planning decisions and considers disruptions with ripple effects together with uncertain
demand. Despite the importance of sustainability concerns and resilience in the logistics
network design, the interaction of sustainability and resilience has not been sufficiently
dealt with in the supply chain design literature. In this respect, this paper evaluates the
performance of two resilience strategies not only from a resilience perspective, but also
from a sustainability perspective in the integrated design of two-echelon logistics networks
subject to epidemic disruptions.
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Table 1. Summary of the related literature.

References
Decision Problem Evaluated Sustainability Disruption

Uncertain Demand
Location Inventory Routing Economic Environmental Social Isolated Ripple Effect

[36] � � � �

[37] � � �

[38] � � �

[39] � � � �

[40] � � �

[5] � � � �

[42] � � � � �

[43] � � � �

[44] � � � � �

[45] � � � �

[46] � � � � �

[17] � � � �

[48,49] � � � � � � �

[50] � � � � � �

[51] � � � � �

[52] � � � � �

[28,53] � � � � � �

[30] � � � � � � �

This
study � � � � � � � � �

3. Problem Definition and Mathematical Modelling

Figure 1 depicts the studied logistics network composed of two-echelon. Each supplier
has a specific product and ships his goods to a distribution center in order to massify the
flow, maintain inventory at the distribution center, if necessary, and then deliver these
goods to retailers having uncertain demands. The latter are generated according to a
known distribution. The distribution centers are usually located close to the city, while
retailers are located in the urban cities. Therefore, a homogeneous fleet of semitrailer trucks
are utilized to transport the goods in the first echelon, and a homogeneous fleet of small
vehicles is used, in this research work, to serve retailers in the second echelon.

The objective of the considered problem is to design efficient logistics networks by
determining the distribution centers to be opened, the allocation of retailers and suppliers,
the inventory levels as well as the routing of shipments in each period. The locations
of the distribution centers are selected from a set of candidate sites at the beginning
of the planning horizon, as these decisions are strategic. This study is based on the
following assumptions.

• Each retailer i can be visited once by one of the vehicles and served from a single
distribution center d [54].

• Each supplier has a specific product, but all products are compatible.
• Retailers’ demand is assumed to be stochastic and follows a normal distribution [51].
• Vehicles and semitrailer trucks can conduct several routes in each period scenario [41].
• Location–allocation is a strategic decision, which is independent of the planning

periods and plausible scenarios, as stated by Rafie-Majd et al. [56].
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• In each distribution center, the maximum level inventory policy is applied [57]. This
policy specifies that inventory quantities should only respect the maximum capacity
of distribution centers, as depicted in Figure 2.
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The model sets, parameters and decision variables used in the mathematical formula-
tion are listed in Table 2.
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Table 2. Notations and definitions used in the mathematical modelling.

Symbol Definition

Sets

J Set of suppliers

D Set of distribution centers

I Set of retailers

A1, A2 Set of pickups and delivery routes arcs

T Set of periods in the planning horizon

S Set of plausible scenarios

Independent input parameters of scenarios

Capj Maximum throughput capacity of the supplier j

Capd Maximum throughput capacity of the distribution center d

FOd Fixed cost of the distribution center d

ECd Average energy consumption of the distribution center d

Qs Semitrailer truck maximum loading capacity

Qv Vehicle loading capacity

Fs Operating cost of a semitrailer truck (by route)

Fv Operating cost of a vehicle (by route)

TsE Fuel consumption rate of an empty semitrailer truck (L/Km)

TsL Fuel consumption rate of a fully loaded semitrailer truck (L/Km)

TvE Fuel consumption rate of an empty vehicle (L/Km)

TvL Fuel consumption rate of a fully loaded vehicle (L/Km)

cI Inventory unit cost in distribution centers (€/Kg)

cp Penalty unit cost (€/Kg)

cf Fuel price per liter (€/L)

eF Fuel CO2 emission factor (Kg CO2/L)

ec CO2 emitted per energy consumption unit (Kg CO2/kwh)

Ac Average number of accidents

di,j Distance between two nodes i and j: i, j ∈ J ∪ D ∪ I

Input parameters dependent of scenarios

qt,s
i,j Demand of retailer i from supplier j in period t under scenario s

ps Occurrence probability of scenario s, ∑s∈S ps = 1

First-stage decision variables

yd Binary variable, equal to 1 if the distribution center d is open; 0, otherwise

zi,d Binary variable, equal to 1 if node i is assigned to center d; 0, otherwise, i ∈ I ∪ J, d ∈ D

Second-stage decision variables

Q1t,s
j,d Quantity delivered by supplier j to center d in period t under scenario s

Q2t,s
j,d,i

Product quantity of supplier j delivered by center d to customer i in period t under
scenario s

It,s
j,d Inventory level of products of supplier j in center d in period t under scenario s

xt,s
i,j

Binary variable, equal to 1 if arc (i; j) is traversed by a vehicle/semitrailer at period t
under scenario s; 0, otherwise,

f t,s
i,j

Freight quantity transported by a semitrailer truck/ vehicle on the arc (i; j) if it moves
directly from node i to node j in period t under scenario s, (i; j) ∈ A2
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3.1. Sustainability Dimensions

The evaluation of the supply chain performance in the related literature has been
mainly based on the economic indicators. In this study, we employed the three sustainabil-
ity indicators introduced in [27]. We consider the different components of strategic costs
and expected of tactical and operational costs. However, from an environmental point of
view, the CO2 emissions caused by transport activities and the operation of distribution
centers are assessed. On the other hand, the accident rate resulting from transportation is
evaluated from a social perspective.

3.1.1. Costs Calculation

The economic indicator is calculated by adding the location–allocation costs (CF) in
the first stage and the expected costs of inventory (CIs), transportation (CTs) and penalty
(CPs) in the second stage.

The fixed costs are computed by summing the opening costs of the selected distribu-
tion centers (Equation (1)).

CF = ∑
d

ydFOd (1)

The inventory cost (CIs) under scenario s is calculated by multiplying the inventory
amount in each period by the unit inventory cost using Equation (2).

CIs = ∑
t∈T

∑
d∈D

∑
j∈J

It,s
j,d cI (2)

To compute the transport costs under scenario s, the formula proposed by [60] is
used. In fact, as shown in Equation (3), this cost depends principally on the semitrailer
truck/vehicle load and the travelled distance.

CTs = c f [ ∑
t∈T

∑
d∈D,j∈J

dd, j(TsE xt,s
d, j + (TsL − TsE)

Q1t,s
j,d

Qs )

+ ∑
t∈T

∑
(i,j)∈A2

di,j(TvE xt,s
i, j + (TvL − TvE)

f t,s
i,j

Qv )]
(3)

Finally, the penalty cost CPs under scenario s is computed by multiplying the unsatis-
fied demand by a unit penalty cost (Equation (4)).

CPs = cp ∑
t∈T

∑
d∈D

∑
j∈J

∑
i∈I

qt,s
i,j −Q2t,s

j,d,i (4)

3.1.2. Environmental Assessment

As mentioned previously, we quantify two types of CO2 emissions, namely, emis-
sions generated by transportation activities (ETs) and those caused by the operation of
opened distribution centers (EF). To calculate transportation emissions under scenario s,
we adapt the formula introduced by Pan et al. [60]. This formula is commonly used in the
literature in order to take into account the massification of flows in collaborative transport
optimization [27,41,54,61–63]. These emissions are calculated using Equation (5).

ETs = e f [ ∑
t∈T

∑
d∈D,j∈J

dd, j(TsE xt,s
d, j + (TsL − TsE)

Q1t,s
j,d

Qs )

+ ∑
t∈T

∑
(i,j)∈A2

di,j(TvE xt,s
i, j + (TvL − TvE)

f t,s
i,j

Qv )]
(5)

To estimate the emissions generated by the operation of distribution centers (EF), we
utilize the same approach applied in [27,41,54] (Equation (6)).

EF = ec ∑
d

ydECd (6)
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3.1.3. Social Sustainability Assessment

Modelling social considerations is a complex task that was not given great attention
in the literature [61,64]. In this study, the social/societal impact is assessed by evaluating
the accident rate caused by transportation activities, as demonstrated in [27]. The accident
rate (As) under scenario s is calculated by applying Equation (7).

As =
Are f

dre f
∑
t∈T

∑
(i,j)∈A1∪A2

di,jx
t,s
d,j (7)

where Are f denotes the accident rate for a reference distance dre f .

3.2. Measure of Resilience

In order to assess the resilience of logistics chains, we apply, in this study, a resilience
metric intensively used in the literature [51,65]. This metric seeks to address the customer’s
service level (%CSL) by computing the quantities transported to retailers over the total
demand, as shown by Equation (8).

%CSL = 100
∑j∈J ∑d∈D ∑i∈I ∑t∈T ∑s∈S Q2t,s

j,d,i

∑i∈I ∑j∈J ∑t∈T ∑s∈S qt,s
i,j

(8)

3.3. Epidemic Disruption Modelling

In this section, a simple model is presented to illustrate how cascading epidemic
disruptions with ripple effects can arise, damage facilities and propagate to the neigh-
boring ones. These disruptions are principally characterized by their intensity (low fre-
quency/high impact), recovery time and rapid spreading in the network [30]. Figure 3
depicts the schematic representation of the ripple effects in a multi-period two-echelon
logistics network, as revealed in [53].
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As shown in Figure 3, when an epidemic disruption arrives at time t, a primary facility
is affected, and the other platforms directly or indirectly connected to that primary facility
are exposed to the risk of propagation. Moreover, depending on the correlations and
interactions between facilities, the propagation of the disruption may spread to the next
periods (t + 1, t + 2, . . . ), which become themselves infected nodes, and so on, resulting
in the ripple effects. To do this, a correlation matrix is used for propagation probabilities,
where values are based mainly on regional proximity and flow relationships.

The modeling approach is based on a probabilistic approach revealing how cascading
epidemic disruptions with ripple effects may arise in unpredictable ways over the planning
horizon. The disruption model includes essentially two steps. The first one consists in
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simulating the characteristics of disruption, namely, disruption arrival time. However,
the second step aims at simulating the response times and testing the propagation effect
on facilities, in terms of capacity and inventory losses. As previously discussed in the
literature [36,38,53], epidemic disruptions are described by two correlated factors, namely,
the intensity of the impact and the recovery time. In fact, when an outbreak disruption
occurs in a zone or in a specific facility, the throughput capacity and the inventory level
drop to zero since the facility is closed and the inventory is eliminated. Then, they are
fully recovered after the recovery time. This impact can be defined by a discrete recovery
function, as exposed in Figure 4.
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In order to simulate the arrival and recovery time as well as the spread of disruption,
a Monte Carlo simulation procedure was used in the conducted experiment. The goal of
this procedure is to stochastically generate the loss parameter ϕt,s

i corresponding to the lost
part of the nominal capacity and the stock level, which is generally between 0 and 1. This
stochastic parameter is utilized to formulate the mathematical model.

3.4. Stochastic Mathematical Model

In this section, a stochastic Two-Stage Mixed-Integer Linear Program (2S-MILP) with
a stochastic demand and random epidemic perturbation is developed. In the 2S-MILP, the
stochastic parameters are considered as random variables with an associated probability
distribution. Moreover, the proposed model involves a two-stage decision making process.
The first stage consists in determining the number of distribution centers, the optimal
location of facilities and the allocation of suppliers and retailers that are independent of
the disruption scenarios. However, decisions on the inventory level, the routes and the
supplied quantities (operational variables include an index s that designates the particular
realization of the scenario) are determined in the second stage based on facilities location–
allocation and the realized uncertainty in each scenario. The total objective function
in the proposed model is obtained by summing the objective values of the first stage
and the expected values of all scenarios in the second stage. The problem is formulated
mathematically as follows:

E(CT) = min ∑
d

∑
t

ydFOd + ∑
s∈S

psQ(X, s) (9)

where X denotes the vector of all the design variables used in the second stage, ps is the
occurrence probability of scenario s and Q (X, s) is the optimal objective value of the
second-stage problem in scenario s.

Q(X, s) = CIs + CTs + CPs
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Subject to constraints:

zi,d ≤ yd ∀ d ∈ D, ∀ i ∈ I ∪ J (10)

∑
j∈J

zj,d = 1 ∀ d ∈ D (11)

∑
d∈D

zi,d ≤ 1 ∀ i ∈ I ∪ J (12)

I0,s
j,d = 0 ∀ j ∈ J, ∀ d ∈ D, ∀ s ∈ S (13)

It,s
j,d = (1− ϕt,s

d )(Q1t,s
j,d + It−1,s

j,d )−∑
iεI

Q21,s
j,d ∀ d ∈ D, ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S (14)

It,s
j,d ≤ (1− ϕt,s

d ) capd yd ∀ d ∈ D, ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S (15)

∑
j∈J

Q1t,s
j,d ≤ (1− ϕt,s

d ) capdyd −∑
j∈J

It−1,s
j,d ∀ t ∈ T, ∀ d ∈ D, ∀ s ∈ S (16)

Q1t,s
j,d ≤ (1− ϕt,s

j ) capj xt,s
d,j ∀ d ∈ D, ∀ j ∈ J, ∀ t ∈ T, ∀ s ∈ S (17)

∑
i ∈J∪I

zi,d qt,s
i,j ≤ (1− ϕt,s

d ) capd yd ∀ d ∈ D, ∀ t ε T, ∀ s ε S (18)

Q2t,s
j,d,i ≤ (1− ϕt,s

d ) capd zi,d ∀ t ∈ T, ∀ i ∈ I, j ∈ J ∪ D, ∀ s ∈ S (19)

∑
jεJ

∑
dεD

Q2t,s
j,d,i ≤ (1− ϕt,s

i )∑
jεJ

qt,s
i,j ∀ j ∈ J, ∀ i ∈ I, ∀ d ∈ D, ∀ t ∈ T, ∀ s ∈ S (20)

Q1t,s
j,d ≤ Qs xt,s

d,j ∀ i ∈ I, ∀ t ∈ T, ∀ s ∈ S (21)

xt,s
d,j ≤ zj,d ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S, ∀ d ∈ D (22)

xt,s
d,j = xt,s

j,d ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S, ∀ d ∈ D (23)

∑
i∈I∪D

xt,s
i,j ≤ 1 ∀ t ∈ T, ∀i ∈ I, ∀ s ∈ S (24)

∑
i∈I

xt,s
d,i = ∑

i∈I
xt,s

i,d ∀ t ∈ T, ∀ d ∈ D, ∀ s ∈ S (25)

∑
i∈I∪D

xt,s
j,i = ∑

i∈I∪D
xt,s

i,j ∀ t ∈ T, ∀ d ∈ D, ∀ s ∈ S (26)

xt,s
d,i ≤ zi,d ∀ t ∈ T, i ∈ I, ∀ d ∈ D, ∀ s ∈ S (27)

xt,s
i,d ≤ zi,d ∀ t ∈ T, i ∈ I, ∀ d ∈ D, ∀ s ∈ S (28)

xt,s
i,i′ + zi,d + zi′ ,d′ ≤ 2 ∀ t ∈ T, i, i′ ∈ D, ∀ d, d′ ∈ D, ∀ s ∈ S (29)

∑
j∈I∪D

f t,s
j,i − ∑

j∈I∪D
f t,s
i,j = ∑

d∈D
∑
j∈J

Q2t,s
j,d,i ∀ t ∈ T, ∀ i ∈ I, ∀ s ∈ S (30)

f t,s
i,j ≤ Qv xt,s

i,j ∀ t ∈ T, ∀ i, j ∈ I ∪ D, ∀ s ∈ S (31)

∑
i∈I

f t,s
i,d ≤ 0 ∀ t ∈ T, ∀ i, j ∈ J ∪ D, ∀ s ∈ S (32)

zi,d, yd ∈ {0, 1} ∀ d ∈ D, ∀ i ∈ I ∪ J (33)

xt,s
i,j ∈ {0, 1} ∀ t ∈ T, ∀ (i, j) ∈ A1∪ A2, ∀ s ∈ S (34)

Q1t,s
j,d, Q2t,s

j,d,i, It,s
j,d ≥ 0 ∀ t ∈ T, ∀ i ∈ I, ∀ j ∈ J, ∀ d ∈ D, ∀ s ∈ S (35)



Sustainability 2021, 13, 14053 12 of 22

ft,s
i,j ≥ 0 ∀ t ∈ T, ∀ (i, j) ∈ A2, ∀ s ∈ S (36)

The objective function E(CT) (9) minimizes the network total expected cost, including
the first-stage costs (the strategic costs related to the opening of the distribution centers)
and the expected second-stage costs related to the inventory levels, transportation and
unmet demand. Constraints (10)–(12) concern the first-stage decisions, i.e., allocation
decisions. Constraint (10) ensures that customers and suppliers can only be assigned to one
distribution center that is open over the planning horizon. Constraint (11) ensures that each
supplier must be assigned to one distribution center. Constraint (12) guarantees that each
retailer must be assigned to no more than one distribution center. Constraints (13)–(16)
define the inventory levels at the distribution centers in the second stage. More precisely,
Constraint (13) describes the initial inventory level of each distribution center in each sce-
nario s ∈ S. Constraint (14) determines the inventory levels in the distribution centers
at each period t under scenario s ∈ S. Constraint (15) ensures that the inventory level
in each distribution center cannot exceed the available storage capacity in each scenario
s. Constraint (16) expresses that the amount of goods to be delivered to the distribu-
tion center d will never exceed its capacity for each planning period in each scenario
s. Constraint (17) guarantees that the quantity sent by a supplier must not exceed the
maximum capacity throughput of its facility in period t under scenario s. Constraint (18)
ensures that customers and suppliers are assigned to distribution centers and that the
capacities of the latter are satisfied in all period planning and under possible scenario
s. Constraint (19) guarantees that the goods distributed by each distribution center must
not exceed its maximum capacity. Constraint (20) ensures that the quantities transported
to retailers should not exceed their demands. Constraint (21) ensures that the quantity
loaded on the semitrailer truck must not exceed its capacity on the arc (d, j) under scenario
s. Constraint (22) requires that the arc (d, j) is traversed if only the supplier j is assigned
to center d. Constraint (23) guarantees an equal number of incoming and outgoing arcs
in the first echelon. Constraints (24)–(32) guarantee a reasonable delivery process in the
second echelon under each scenario s. Constraint (24) ensures that each retailer is visited at
most once in each planning period. Constraints (25) and (26) guarantee an equal number
of incoming and outgoing arcs in the second echelon. Constraints (27)–(29) eliminate unau-
thorized routes that do not start and finish at the same distribution center. Constraint (30)
ensures the flow conservation for the collection process. Constraint (31) ensures that vehicle
capacities are not violated. Constraint (32) imposes that the quantities returned to the
distribution centers must be zero. Finally, Constraints (33)–(36) specify the nature of each
decision variable used in this modelling.

3.5. Resiliency and Sustainability Strategies Formulations

In this section, two resilience strategies are formulated and added to the disrupted
model to attenuate the effects of disruption on the sustainable performance of a logis-
tic network, namely, capacity expansion and logistics collaboration as one proactive
resilience strategy.

3.5.1. Capacity Expansion

The first resiliency strategy introduced in the basic model is the capacity expansion
strategy for facilities. In fact, logistics facilities can increase their capacity temporarily in
order to face disruptions through an available capacity reserve. In this respect, the variables
capFt,s

j , capCt,s
d and capRt,s

i are defined to determine the amount of the extended capacity
in each period for suppliers, distribution centers and retailers, respectively. For this, we
modify constraints (15)–(20) in the basic model by the following constraints, (37)–(42).

It,s
j,d ≤ (1− ϕt,s

d ) capd yd + capCt,s
d ∀ d ∈ D, ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S (37)

∑
j∈J

Q1t,s
j,d ≤ (1− ϕt,s

d ) capdyd −∑
j∈J

It−1,s
j,d + capCt,s

d ∀ t ∈ T, ∀ d ∈ D, ∀ s ∈ S (38)
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Q1t,s
j,d ≤ (1− ϕt,s

j ) capj xt,s
d,j + capFt,s

j ∀ d ∈ D, ∀ j ∈ J, ∀ t ∈ T, ∀ s ∈ S (39)

∑
i ∈J∪I

zi,d qt,s
i,j ≤ (1− ϕt,s

d ) capd yd + capCt,s
d ∀ d ∈ D, ∀ t ∈ T, ∀ s ∈ S (40)

Q2t,s
j,d,i ≤ (1− ϕt,s

d ) capd zi,d + capCt,s
d ∀ t ∈ T, ∀ i ∈ I, j ∈ J ∪ D, ∀ s ∈ S (41)

∑
jεJ

∑
dεD

Q2t,s
j,d,i ≤ (1− ϕt,s

i )∑
jεJ

qt,s
i,j + capRt,s

i ∀ j ∈ J, ∀ i ∈ I, ∀ d ∈ D, ∀ t ∈ T, ∀ s ∈ S (42)

This strategy generates an additional cost by reserving a specific location for this
tampon in the facility and the operational cost associated with this capacity expansion.
Therefore, CSt,s

j , CSt,s
d and CSt,s

I are defined as unit capacity expansion costs expressed by
the Equation (43) in the objective function.

∑
jε J

∑
tε T, sε S

capFt,s
j CSt,s

j + ∑
d ε D

∑
tε T, sε S

capCt,s
d CSt,s

d + ∑
iε I

∑
tε T, sε S

capRt,s
i CSt,s

i (43)

Similarly, the temporary expansion of capacities causes additional emissions due to
the operations made by facilities. Consequently, ECE is defined as capacity expansion unit
emissions expressed by the Equation (44) in the emissions estimation.

∑
jε J

∑
tε T, sε S

capFt,s
j ECE ec + ∑

d ε D
∑

tε T, sε S
capCt,s

d ECE ec + ∑
iε I

∑
tε T, sε S

capRt,s
i ECE ec (44)

3.5.2. Logistics Collaboration

The integration of the logistics collaboration strategy between suppliers has become a
strategic challenge for companies who seek to achieve their economic, social and environ-
mental sustainability objectives [21]. In the context of the shared management of resources
and means, this strategy has also become more promising by sharing information related
to the evolution and diffusion of the existing disruptions. Therefore, we remove the unicity
assignment constraints (11) and define a new decision variable ( f t,s

i,j (i, j) ∈ A1) to model
product collection in the first rung. The following constraints (45)–(52) are added in the
perturbed model to incorporate this strategy:

∑
i∈J∪D

xt,s
i,j ≤ 1 ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S (45)

∑
j∈J

xt,s
d,j = ∑

j∈J
xt,s

j,d ∀ t ∈ T, ∀ d ∈ D, ∀ s ∈ S (46)

∑
i∈J∪D

xt,s
i,j = ∑

i∈J∪D
xt,s

j,i ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S (47)

xt,s
j,d ≤ zj,d ∀ t ∈ T, j ∈ J, ∀ d ∈ D, ∀ s ∈ S (48)

xt,s
j,j′ + zj,d + zj′ ,d′ ≤ 2 ∀ t ∈ T, j, j′ ∈ D, ∀ d, d′ ∈ D, ∀ s ∈ S (49)

∑
i∈J∪D

f t,s
j,i − ∑

i∈J∪D
f t,s
i,j = ∑

d∈D
Q1t,s

j,d ∀ t ∈ T, ∀ j ∈ J, ∀ s ∈ S (50)

f t,s
j,i ≤ Qs xt,s

i,j ∀ t ∈ T, ∀ i, j ∈ J ∪ D, ∀ s ∈ S (51)

∑
j∈J

f t,s
d,j ≤ 0 ∀ t ∈ T, ∀ i, j ∈ J ∪ D, ∀ s ∈ S (52)

4. Solution Methodology

This section presents the solution approach used to solve the proposed model and the
different design configurations introduced in this study.
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4.1. Scenarios Generation by a Monte Carlo Simulation

To address the different characteristics of the previously mentioned disruptions, we
apply a probabilistic modelling approach to estimate the occurrence of these disruptions,
their impact on facilities as well as their propagation in time and space over the logis-
tics network. This approach is based on the risk modelling framework introduced by
Klibi et al. [66] and Gholami-Zanjani et al. [53]. It also relies on a Monte Carlo simulation
applied to generate plausible future scenarios based on statistical information of uncertain
parameters. The used Monte Carlo simulation procedure is depicted in Figure 5. over the
planning periods and for each scenario according to a normal distribution.
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As demonstrated in the latter, the scenario generation procedure is composed of
seven main steps. In the first step, the disruption arrival time for each zone is randomly
generated according to the exponential distribution. Then, a chronological list of disruption
occurrence times for each zone is formed. In the second step, a verification test for each
node located in the disrupted zone is performed to show if the node is disrupted or not.
Subsequently, a chronological list of disruption occurrence times is constructed for each
node in the network. In the third step, a propagation test of the disruption is carried out. To
do this, a correlation matrix, based on the material flow and the distance between the nodes,
is used. Afterwards, the chronological list of disruption times for each node is updated. In
the fourth step, a disturbance intensity is randomly generated for each disturbance time.
Fifth, the intensity estimated in step 4 is used to determine the recovery time required
for each facility to return to normal operations. The linear relationship between these
two parameters was studied in [66]. In step 6, the disruption impact is calculated as a loss
parameter based on the previous steps. Finally, the demands are generated independently

4.2. Sample Average Approximation Method

The Monte Carlo sampling technique is applied to construct a smaller sample average
problem instead of solving the problem with all possible scenarios [40]. This approach is
known as the Sample Average Approximation (SAA) method. The latter has been widely
used in the last few years to make near-optimal approximations of stochastic problems [30].
In fact, the SAA method approximates the stochastic model by a deterministic equivalent
model, based on the Monte Carlo scenario sampling method. This technique, relying on
the repetition of the sampling method M times, considers N scenarios generated in the
sample as equiprobable. In this study, the SAA method is applied and the basic model is
approximated as follows:

min ∑
d

∑
t

ydFOd +
1
N ∑

s∈SN

Q(X, s) (53)

subject to Constraints (10)–(53), ∀ s ∈ S.

5. Computational Experiments

In order to test the proposed model and the different variants that incorporate re-
silience and sustainability strategies, we tested the models on two instance problems. All
performed experiments were solved with CPLEX 12.9.0 in a PC running Windows 10 Home
64-bit with an Intel Core i5-10210U@ 1.6 GHz and 16 GB RAM. In this section, the used
data are first described. Then, the computational results are illustrated.

5.1. Description and Data

Two instances of logistics networks, with different numbers of suppliers, distribution
centers and customers, were investigated in this study, as shown in Table 3. The first test
problem was randomly generated, while the second was inspired from a case study con-
ducted in France [54]. The planning horizon considered for each problem was 12 periods.
Each planning period was equal to one month. In the experiments, 50 scenarios were
generated using the Monte Carlo procedure. Then, they were classified into 5 replication
groups to apply the SAA approach five times (M = 5). More precisely, for each replication,
10 plausible scenarios were considered. The other parameters used in the computational
experiments were extracted from the literature and are listed in Table 4 [27,41].

Table 3. Size of the tested problems.

Instance Number of
Suppliers

Number of
Distribution

Centers

Number of
Retailers

Number of
Periods

Number of
Replications

Number of
Scenarios

I1 2 2 5 12 5 10
I2 3 3 9 12 5 10
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Table 4. Values of the input parameters used in the numerical experiments along with the relevant
data sources.

Parameter Value/Estimation Source

Capj 20,000 Kg Assumption
Capd 20,000 Kg Assumption
FOd 6000 € [67]
ECd 10,000 Kwh [68]
Qs 20,000 Kg [69]
Qv 10,000 Kg [69]
Fs 300 € [69]
Fv 200 € [69]
TsE 0.15 L/km [70]
TsL 0.31 L/km [70]
TvE 0.13 L/km [70]
TvL 0.15 L/km [70]
cI 0.01 €/Kg [59]
cp 1.5 €/Kg Assumption
cf 1.5 €/L [27,41]
eF 2.66 Kg CO2/L [71]
ec 0.087 Kg CO2/L [68]
Ac 2768 accidents per year [54]

5.2. Results and Discussion

To assess the performance of the introduced strategies in designing sustainable and
resilient logistics networks, we report and discuss, in this section, the findings obtained in
five design configurations, namely, the non-disrupted model (NDM), the disrupted model
(DM), the disrupted model with the capacity expansion strategy (DMCE), the disrupted
model with a logistics collaboration strategy (DMCL) and the disrupted model with both
capacity expansion and logistics collaboration strategy (DMCECL). These configurations
were evaluated against five key performance indicators. The obtained results are presented
in Table 5.

Table 5. Comparison of the design configurations with five performance indicators.

Instance Configuration Expected
Cost (€)

Expected Emissions
(Kg CO2)

Expected
Accident Rate (%)

Average Number of
Opened DCs

Service Level
(%)

I1

NDM 21,067.019 3491.360 21.050 2 100.00
DM 47,765.679 3300.762 18.211 2 73.38

DMCE 29,517.612 4100.046 25.724 2 99.66
DMCL 38,742.400 2207.619 15.368 1 73.96

DMCECL 19,113.490 2797.541 20.576 1 99.87

I2

NDM 31,858.988 6663.545 50.831 3 100.00
DM 73,897.477 6626.066 51.055 3 77.53

DMCE 46,672.017 8115.822 54.675 3 98.75
DMCL 58,248.953 3526.752 30.153 1 77.48

DMCECL 30,891.362 3902.640 35.679 1 99.54

5.2.1. Economic Resilience Performance Analysis

The first analysis was conducted to assess the economic dimension and the resilience
matrix of each logistics configuration. Figure 6 shows the results obtained in the five
considered design configurations in terms of cost and level of service.

As represented in Figure 5 and Table 5, the different considered configurations pro-
vided different costs and service levels. In fact, the NDM configuration led to the highest
service level, compared to the other configurations, especially the DM and DMCL design
configurations. Obviously, since disruptions were not considered in the NDM model, the
NDM configuration had the lowest logistics costs, in comparison to the DM, DMCE and
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DMCL configurations. However, by incorporating epidemic disruptions and demand
uncertainty into the design models, the DM configuration, as a self-resilient design model,
was characterized by very high costs and low service levels. This result can be explained
by the considerable impact of these disruptions on facility capacities and inventory levels,
which can result in higher penalty costs due to unmet demands. Furthermore, it is clear
that the DMCE model, as a design model with a reactive resiliency strategy, had the highest
level of service, compared to the DM and DMCL configurations. Since capacity expansion
incurs additional costs, the DMCE design had higher costs than the NDM configuration. In
addition, as capacity expansion improves customer satisfaction, the expected penalty costs
and total cost were lower than the DM design. Additionally, as shown in Table 5, the DMCL
configuration with a collaborative strategy could reduce the number of opened distribution
centers, which minimizes the fixed facility costs. Obviously, logistics collaboration can
improve the resiliency level and decrease the total costs by sharing non-disrupted facilities
in the network.
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Finally, it can be noticed that the DMCECL configuration outperformed the other
design configurations under disruption in terms of cost and resilience level. The DMCECL
configuration that incorporates two resilience strategies provided almost similar results to
those produced by the non-disrupted configuration NDM.

5.2.2. Environmental Resilience Performance Analysis

Figure 7 illustrates the results of the a posteriori evaluation of emissions and service
levels for the different design models.

Sustainability 2021, 13, x FOR PEER REVIEW 18 of 22 
 

 

Figure 7. Comparison of the CO2 emissions and service level in the different configurations. 

These findings reveal that the DMCE configuration considerably augmented CO2 

emissions compared to the other design models, due to the temporary capacity increase 

that allowed mitigating the loss of service levels. Moreover, as can be seen in Figure 7, the 

DM configuration generated slightly lower quantities of CO2 emissions than the 

unperturbed NDM model, due to the fact that the integration of disturbances in the model 

can reduce the satisfaction rate and, consequently, minimize the number of trips for 

products transportation. In addition, it is obvious that the collaborative strategy in the 

disrupted model resulted in a significant reduction of transportation and facility 

operations emissions by slightly increasing the service rate obtained by the disrupted 

model with free resilience. Moreover, the integration of capacity expansion and logistics 

collaboration strategies can offer a good trade-off between the resilience and emissions 

levels in the disrupted logistics networks. 

5.2.3. Social Resilience Performance Analysis 

The expected accident rate and service levels obtained in each configuration are 

compared in Figure 8. The results demonstrated that the DMCE configuration provided a 

more significant accident rate compared to the other configurations, due to the increase in 

the number of empty and loaded trips in order to improve the satisfaction rate. Moreover, 

it can be observed that, when disruptions were not integrated, the accident rates were 

higher than those obtained by the DMCL and DMCECL configurations. However, from a 

resiliency point of view, we can conclude that the DMCECL configuration provided 

almost the same service level as the non-disrupted one. 

 

Figure 8. Accident rate and service level comparison of the different used models. 

Figure 7. Comparison of the CO2 emissions and service level in the different configurations.



Sustainability 2021, 13, 14053 18 of 22

These findings reveal that the DMCE configuration considerably augmented CO2
emissions compared to the other design models, due to the temporary capacity increase
that allowed mitigating the loss of service levels. Moreover, as can be seen in Figure 7, the
DM configuration generated slightly lower quantities of CO2 emissions than the unper-
turbed NDM model, due to the fact that the integration of disturbances in the model can
reduce the satisfaction rate and, consequently, minimize the number of trips for products
transportation. In addition, it is obvious that the collaborative strategy in the disrupted
model resulted in a significant reduction of transportation and facility operations emis-
sions by slightly increasing the service rate obtained by the disrupted model with free
resilience. Moreover, the integration of capacity expansion and logistics collaboration strate-
gies can offer a good trade-off between the resilience and emissions levels in the disrupted
logistics networks.

5.2.3. Social Resilience Performance Analysis

The expected accident rate and service levels obtained in each configuration are
compared in Figure 8. The results demonstrated that the DMCE configuration provided a
more significant accident rate compared to the other configurations, due to the increase in
the number of empty and loaded trips in order to improve the satisfaction rate. Moreover,
it can be observed that, when disruptions were not integrated, the accident rates were
higher than those obtained by the DMCL and DMCECL configurations. However, from a
resiliency point of view, we can conclude that the DMCECL configuration provided almost
the same service level as the non-disrupted one.
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The illustrative examples demonstrate that, with the integration of capacity augmen-
tation and logistics collaboration strategies, the effects of disruptions can be avoided and
the logistics operations sustainability can be improved.

5.3. Managerial Implications

In recent years, the growing concerns about disruption risks and sustainability chal-
lenges have led companies to explore high-performance strategies to remain competitive
and ensure their global performance. In addition, integrated planning decisions have be-
come key issues in logistics network management. Despite the numerous intersections and
relationships between resilience, sustainability and planning decisions, the literature on
resilient and sustainable integrated logistics network planning remains scarce. Accordingly,
the sustainability and resilience assessment of a two-echelon integrated logistics network
design is investigated in the present paper. This study can guide logistics decision-makers
and managers to face the epidemic disruption risks and ensure the sustainability of their
logistics operations. Indeed, it helps managers obtain insights to select the most power-
ful resilience and sustainability strategies in order to mitigate vulnerabilities in logistics
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networks. The numerical results prove that the integration of two strategies, namely,
capacity expansion and logistics collaboration, leads to high resilience and sustainability
levels. Indeed, this combination does not only increase the service level in disrupted
logistics networks, but also reduces costs, CO2 emissions and the accident rate due to
transport activities.

6. Conclusions

Logistics network resiliency and sustainability has become more vital to create a
competitive business environment. This study proposed a comprehensive stochastic
model for a two-echelon logistics network design under epidemic disruptions and demand
uncertainty. To mitigate the risk of disruptions and improve the sustainability of logistics
networks, two design strategies were integrated into the mathematical model. Then,
a Monte Carlo sampling technique was used to make near-optimal approximation of
the scenario-based stochastic model. Scenarios were generated using a Monte Carlo
procedure. Applying the introduced strategies, different design models were obtained.
These models were tested with plausible scenarios and under two instance problems. The
results revealed that different design patterns have distinct behaviors and implementing
two strategies together could significantly increase the performance of the network. More
precisely, the integration of logistics collaboration and capacity expansion can significantly
reduce logistics costs, CO2 emissions and accident risk resulting from transportation while
ensuring a very high level of network resiliency.

Several research perspectives can be recommended to enrich this promising topic.
Firstly, large-sized instances require high computation times to find the optimal solu-
tion. Therefore, it is important to propose heuristics to solve models with large-scale
problems [72]. Secondly, the two objectives of environmental and social sustainability
were evaluated a posteriori for each logistics configuration. Consequently, addressing
sustainability objectives in conjunction with resilience considerations may offer more com-
prehensive decision support for decision-makers [30]. Furthermore, considering both
forward and reverse flows in the supply chain and perishability of products could be
another advocated issue for future research. Fourth, considering reverse flows in the
logistics chain and perishable product could be another recommended issue for future
research [49,73,74]. Finally, the integration and evaluation of other resilience strategies,
such as technology investment for traceability [38], and the utilization of other robust
optimization approaches present interesting future perspectives.
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