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Abstract: As forest fires are becoming a recurrent and severe issue in China, their temporal-spatial
information and risk assessment are crucial for forest fire prevention and reduction. Based on
provincial-level forest fire data during 1998–2017, this study adopts principal component analysis,
clustering analysis, and the information diffusion theory to estimate the temporal-spatial distribution
and risk of forest fires in China. Viewed from temporality, China’s forest fires reveal a trend of
increasing first and then decreasing. Viewed from spatiality, provinces characterized by high popula-
tion density and high coverage density are seriously affected, while eastern coastal provinces with
strong fire management capabilities or western provinces with a low forest coverage rate are slightly
affected. Through the principal component analysis, Hunan (1.33), Guizhou (0.74), Guangxi (0.51),
Heilongjiang (0.48), and Zhejiang (0.46) are found to rank in the top five for the severity of forest fires.
Further, Hunan (1089), Guizhou (659), and Guanxi (416) are the top three in the expected number of
general forest fires, Fujian (4.70), Inner Mongolia (4.60), and Heilongjiang (3.73) are the top three in
the expected number of large forest fires, and Heilongjiang (59,290), Inner Mongolia (20,665), and
Hunan (5816) are the top three in the expected area of the burnt forest.

Keywords: information diffusion; temporal-spatial distribution; forest fire; risk assessment

1. Introduction

Owing to intensifying human activities and climate change, uncontainable and de-
structive forest fires have become expected annual global events. During 2003–2012, around
67 million hectares of forest land burned annually, accounting for 1.7% of global forest
land [1]. In 2015, approximately 98 million hectares suffered fires [2]. While normal
forest disturbances by controllable fires are an integral component of forest ecosystems,
catastrophic forest fires can damage the environmental functions of forest ecosystems,
decreasing biodiversity and livelihoods [3]. Catastrophic forest fires caused by El Nino in
1997 and 1998 destroyed 80% of staple crops in a state of Brazil [4]. Moreover, the costs
of forest fire management and forest-fire-related losses impose a heavy economic burden.
For example, the annual economic burden from forest fires in the US ranges between
$71.10 billion and $347.8 billion [5].

Remarkable achievements in China’s forest protection programs have been witnessed
since its reforms in 1978. From 1978 to 2018, China’s forest area and stock expanded from
122 million hectares and 866 million m3 to 220 million hectares and 17,560 million m3,
increasing the forest coverage rate from 13.92% to 22.96% [6]. Currently, China is one of
the five countries whose forest area accounts for over half of the global forest area, along
with Brazil, Canada, the Russian Federation, and the US [7]. However, the frequency and
severity of forest fires in China have risen sharply, as half a million hectares of China’s
forests are affected by fires. During 1992–2018, an annual average of 6323 forest fires burned
approximately 72,910 hectares of forest and led to over 140 casualties [8]. In the US, there
were 770,944 forest fires and 129 associated causalities [9].
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Forest fires have been extensively studied in countries with a high incidence, including
the US [10], Australia [11], and Brazil [12]. Influenced by various geographical terrains and
climates, China’s forest fires are characterized by heterogeneous temporal-spatial distribu-
tions across provinces. While some studies focus on their temporal-spatial distributions
from a national perspective [13,14], other studies choose a specific region or province, such
as southeastern China [15], southwestern China [16], and southern and northern China [13].
Evidence shows that forest fires are affected by meteorological factors, topographic factors,
forest fire policy, human interventions, and biophysical variables [17–19]. Further, some
studies assess the national risk of forest fires [20] or the regional risk [21]. Most of the exist-
ing literature focuses on the temporal-spatial characteristics of forest fires at the national
level or in a specific region or province, paying inadequate attention to the assessment of
provincial-level forest fire risk due to different research purposes.

This study aims to investigate the temporal-spatial distribution characteristics and
occurrence risk of provincial-level forest fires in China and may shed light on formulating
differentiated forestry policies. Specifically, using provincial-level forest fire data from 1998
to 2017, this study adopts principal component analysis (PCA) to evaluate the severity
of forest fires, clustering analysis to classify provinces into different groups, and the
information diffusion theory to estimate the forest fire risk. This study extends the existing
literature in three ways. First, unlike the existing literature evaluating the national forest
fire data in China, this study adopts a provincial-level perspective, which is conducive to
creating differentiated provincial-level forestry policies. Second, this study extends the
period of the existing literature by using the latest data, which provides a basis for China’s
forestry policy revisions. The Chinese government issued the Regulations on Forest Fire
Prevention, and many provincial governments issued corresponding measures. However,
these regulations and measures have remained unchanged for a long period and cannot
adapt to new environments and conditions for forest fires. Third, this study contributes to
the comparative research between China and other countries, as China’s forest fires are
rarely researched.

This study proceeds as follows. Section 2 reviews the relevant literature. Section 3
introduces three methods and the data. Section 4 discusses the spatial-temporal variation
of forest fires in China. Section 5 assesses forest fires across provinces in China. Section 6
ends this study with conclusions and policy implications.

2. Literature Review

Due to the growing trend of their scale, occurrence, and severity, forest fires have
drawn wide academic attention. The existing literature mainly focuses on their adverse
impacts, driving factors, distribution characteristics, and risk assessment and prediction.

Forest fires are a recurrent and severe issue, posing a significant threat to the envi-
ronment, economy, and society. From an environmental perspective, forest fires have
profound impacts on ecosystem components and processes. These impacts include decreas-
ing biomass carbon stocks [22], forest loss and degradation [23], biodiversity reduction [24],
ecosystem function decline [25], and poor air quality [26]. In addition, the adverse effects
of forest fires on the economy and society cannot be ignored, because forest fire man-
agement costs and related losses impose a heavy socio-economic burden. Some scholars
have investigated the socio-economic effects of forest fires, such as economic costs and
losses [5,27], crop damage [28], and adverse health effects [29]. After a thorough literature
review, Kochi et al. [29] concluded that medical costs, labor costs, averting costs, and utility
losses are four primary types of health costs.

The discerning factors driving forest fire occurrence are essential for prediction, risk
warning, and prevention. Extensive studies have shown that biophysical and human factors
affect the temporal-spatial patterns of forest fires. On the one hand, biophysical factors
affect the spatial distribution of forest fires, including climate and weather conditions,
topography characteristics, and vegetation type and continuity [14,30–32]. Specifically,
climate and weather conditions consist of temperature, precipitation, humidity, wind
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speed, and solar radiation [18]. On the other hand, human beings may affect regional
fire distribution through forest management [26], forest degradation [33], fuel type and
quantity selection [34,35], and fire prevention and suppression education [18]. Human
activities may also influence the temporal dynamics of forest fire occurrence. For example,
humans are more active in spring than in winter, resulting in a higher occurrence risk of
forest fires in spring [36].

The drivers of forest fires spatially and temporally vary across ecosystems due to
differences between environmental and anthropogenic factors in different areas and at
different times [16,37,38]. Hence, there is a great temporal-spatial heterogeneity in forest
fires. As the temporal-spatial information of forest fire occurrences plays a significant
role in understanding fire dynamics and fire prevention and reduction efforts, many
studies are devoted to the temporal-spatial distribution analysis of forest fires [18,39,40].
A consensus has been reached that forest fires vary in time and space due to the complex
interactions between human intervention and biophysical factors. As a result of climate
change, the incidence and temporal-spatial characteristics of forest fires have changed
significantly [41–43]. This phenomenon is obvious in regions that have undergone rapid
economic development, population growth, and environmental change [16].

Based on relevant temporal-spatial information, some scholars further assess the
risk of forest fires [44–47] and predict the incidence and occurrence of forest fires [48–51].
Currently, information diffusion theory and geographical information systems are com-
monly adopted for forest fire risk estimation, which is restricted to historical numbers or
probabilities of discovered ignitions in the specific research area [20,45,46,52]. For instance,
Su et al. [20] adopted the information diffusion theory and three forest fire indicators
to estimate forest fire risks in China. You et al. [45] used the geographical information
system-based method and chose 12 variables to generate a synthetic forest fire risk index to
estimate the potential forest fire risk. To prevent forest fires, some studies propose relevant
forest management under fire risk [53–56].

3. Methods and Materials
3.1. Methods
3.1.1. Principal Component Analysis

This study adopts PCA to evaluate the severity of forest fires in China. Based on
the idea of dimension reduction, PCA uses an orthogonal transformation to convert a
large set of observations of possibly correlated variables into a smaller set of values of
linearly uncorrelated variables while maintaining most of the information in the large
set. One characteristic distinguishing the method is that PCA eliminates the influence
of subjective factors in selecting index weights, making it widely used in the study of
forest ecology. In China, forest fires are classified into ordinary forest fires, serious forest
fires, major forest fires, and devastating forest fires. Following Wei et al. [57], this study
combines the numbers of ordinary forest fires and serious forest fires as the number of
general forest fires (x1), and the numbers of major forest fires and devastating forest fires
as the number of large forest fires (x2). This study chooses the area of burnt forest (x3),
the burnt area (x4), the stand volume loss (x5), the young stand loss (x6), the number of
injuries (x7), and the number of deaths (x8) as extra variables for the PCA. Three principal
components are extracted through the PCA of the above eight variables, whose percent
variances are 31.714%, 24.943%, and 16.764%, respectively. In other words, the cumulative
percent of variance goes up to 73.421%. Using the percent of the variance of the three
principal components, this study adopts the following equation to obtain weight factors:

w(i) =
pi

p1 + p2 + p3
(1)

where pi and w(i) are the percent of variance and the weight factor of the principal
component i, respectively. Then, this study sums the products of factor scores and weight
factors to obtain the comprehensive evaluation score for each province, reflecting the
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severity of forest fires at the provincial level. The higher the score, the lower the ranking,
and the more severe the forest fires.

3.1.2. Clustering Analysis

Cluster analysis is a statistical method to address the classification problem. It works
by organizing items into groups, or clusters, on the basis of how closely associated they
are. Based on the comprehensive evaluation scores obtained from the PCA, this study
adopts the average-linkage-between-groups method. Unlike the linkage methods that
adopt information of all pairs of distances, the average-linkage-between-groups method
treats the distance between groups as the average of the distances between all pairs of cases
in which one member of the pair is from each of the groups. For instance, if provinces
A, B, and C form cluster 1 and provinces D, E, and F form cluster 2, the average-linkage-
between-groups distance between clusters 1 and 2 is the average of the distances between
the same pairs of provinces as before: (A, D), (A, E), (A, F), (B, D), (B, E), (B, F), (C, D),
(C, E), and (C, F). Specifically, the provinces affected by the fire with similar degrees are
clustered into one group, and the squared Euclidean distance is used for such clustering.

3.1.3. Risk Assessment Based on Information Diffusion Theory

This study adopts information diffusion theory to estimate the forest fire risk in
provinces in China. In recent decades, information diffusion theory risk has been widely
used for the risk assessment of natural disasters [58–60]. It applies fuzzy information
to deal with samples combined with associated diffusion functions [61,62]. Information
diffusion theory can overcome the lack of information of small samples, such as short
chronological sequence and poor continuity [60]. When the sample size is not large enough,
information diffusion theory can maximize the use of valid information and improve the
accuracy of risk assessment. The principle of information diffusion theory is as follows [63].

Suppose X = {x1, x2, ···, xn} is a given sample to estimate the relationship R of
the universe U and U = {u1, u2, ···, um} is the discrete universe for X, then xi and uj
are observation samples and monitoring points, respectively, ∀xi ∈ X and ∀ui ∈ U. This
study uses the number of general forest fires (x1), the number of large forest fires (x2),
and the area of burnt forest (x3) to estimate the forest fire risk in provinces in China. The
information carried by xi to uj is diffused to fi

(
uj
)

using the information diffusion shown
in Equation (2).

fi
(
uj
)
=

1
h
√

2π
exp

{
− (xi − ui)

2

2h2

}
(2)

where h is the diffusion coefficient, which is calculated using Equation (3).

h



0.8146(b− a) , n = 5
0.5690(b− a) , n = 6
0.4560(b− a) , n = 7
0.3860(b− a) , n = 8
0.3362(b− a) , n = 9
0.2986(b− a) , n = 10

2.6851(b− a)/(m− 1), n ≥ 11

(3)

where b = max
1≤i≤n

{xi} and a = min
1≤i≤n

{xi}.
Let

Ci = ∑m
j=1 fi

(
uj
)

(4)

Then, a normalized information distribution on U determined by xi is obtained using
Equation (5).

µxi

(
µj
)
=

fi
(
uj
)

Ci
(5)
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For each monitoring point uj, when all normalized information is summed, the
information gain at uj from the given sample X is obtained. The information gain is shown
in Equation (6).

q
(
uj
)
= ∑n

i=1 uxi

(
uj
)

(6)

When the sample indicators are diffused by the information, they are normalized. For
any value in the domain, the number of sample observations can be expressed as

p
(
uj
)
=

q
(
uj
)

∑m
j=1 q

(
uj
) (7)

The frequency value is the estimation value of its probability, with the probability
value of a transcending uj being

P
(
u ≥ uj

)
= ∑n

j=1 q
(
uj
)

(8)

where P
(
u ≥ uj

)
represents the probability of surpassing the probability risk, which is

used to estimate the forest fire risk with indicators x1, x2, and x3.

3.2. Materials

The data sources include the China Forestry Statistical Yearbook from 1998 to 2017
and the China Forestry and Grassland Statistical Yearbook 2018, covering the data of forest
fires in China’s 31 provinces, excluding Hong Kong, Macao, and Taiwan. Specifically, this
study selects the number of ordinary forest fires, the number of serious forest fires, the
number of major forest fires, the number of devastating forest fires, the area of burnt forest,
the burnt area, the stand volume loss, the young stand loss, the number of injuries, and
the number of deaths as the basis of forest fire risk analysis. Following Wei et al. [57], this
study combines the numbers of ordinary forest fires and serious forest fires as the number
of general forest fires, and the numbers of major forest fires and devastating forest fires as
the number of large forest fires.

Ordinary forest fires are fires with a burning area of less than 1 hectare, causing
1–3 deaths or causing 1–10 persons to be badly wounded. Serious forest fires are fires with
a burning area ranging from 1 hectare to 100 hectares, causing 3–10 deaths or causing
10–50 to be badly wounded. Major forest fires are fires with a burning area ranging from
100 hectares to 1000 hectares, causing 10–30 deaths or causing 50–10 to be badly wounded.
Devasting forest fires are defined as fires with a burning area of more than 1000 hectares,
causing more than 30 deaths or causing more than 100 to be badly wounded. The area of
burnt forest is usually summarized for fires within a specified forest area, and the burnt
area is normally summarized for all areas directly and indirectly influenced by forest fires.
Stand volume loss refers to the volume loss of mature trees due to forest fires, and young
stand loss refers to the death number of young trees due to forest fires. Table 1 shows
variables and summary statistics. The observations for all variables are 620.

Table 1. Variables and summary statistics.

Variable Unit Mean S. D. Min Max

Ordinary forest fires Times 110.99 238.25 0 2958
Serious forest fires Times 36.57 131.00 0 2094
Major forest fires Times 0.51 1.86 0 26

Devastating forest fires Times 0.08 0.47 0 5
General forest fires Times 147.56 334.07 0 5052
Large forest fires Times 0.58 2.08 0 26

Area of burnt forest Hectares 2612.44 18,631.33 0 325,973
Burnt area Hectares 6390.01 39,165.59 0 799,308

Stand volume loss m3 39,624.39 393,764.94 0 9,606,005
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Table 1. Cont.

Variable Unit Mean S. D. Min Max

Young stand loss 10,000 units 500.43 3274.50 0 63,044
Number of injuries Persons 2.07 8.69 0 185
Number of deaths Persons 1.78 4.01 0 31

4. Temporal-Spatial Characteristics of Forest Fires in China
4.1. Temporal Characteristics

Forest fire features vary across different temporal scales with changes in biophysical
factors and human intervention factors. Figure 1 shows the number of forest fires and
the area of burnt forest in China, which both reveal a trend of increasing first and then
decreasing. Overall, the two indicators have declined in recent years. From 1993 to 2017,
the number of forest fires and the area of burnt forest is 160,290 times and 1,920,546 hectares,
respectively, with an average of 6411 times and 76,821 hectares per year. There are two peak
values of the number of forest fires, which are 13,466 in 2004 and 14,144 in 2008, and there
are two peak values of the area of burnt forest, which are 451,019 hectares in 2003 and
408,549 hectares in 2006. The peak value of forest fire number may be attributed to extreme
weather in south China in 2008 [64]. In 2008, large-scale heavy snowfall and freezing
disasters spread across the entire southern region, which affected the forest ecosystem from
multiple dimensions, including the spatial structure and layout of forest combustibles and
the corresponding forest fire risks [64].
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Figure 1. Number of forest fires and area of burnt forest in China from 1993 to 2017.

Forest fires have caused grave losses of life and property in China. To put out forest
fires, the Chinese government spends an average of 121.27 million Chinese Yuan from 1993
to 2017. There are two peak values of the number of forest fires, which are 384.63 million
Chinese Yuan in 2003 and 341.78 million Chinese Yuan in 2012. On average, forest fires
result in 132.72 casualties every year (see Figure 2). In contrast, although forest fires in the
US are frequent and severe, there were 129 casualties between 2003 and 2012 [9]. Moreover,
there is one peak value of casualty, which was 421 in 1999.
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4.2. Spatial Characteristics

Due to complex interactions between human intervention and biophysical factors, the
current patterns of fires demonstrate a distinct spatial variability [65]. In addition to great
temporal differences, forest fires in the complex topography of China are characterized
by significant regional differences. From 1998 to 2017, the highest number of forest fires
occurred in Hunan (26,344), which is followed by Guizhou (19,299), Guangxi (11,341), and
Hubei (10,203) (see Figure 3). As the province with a high forest coverage rate in China,
Hunan has a large population density and a high fire frequency for domestic use and
production use, resulting in many forest fires [66]. In contrast, the number of forest fires in
Shandong (926), Xinjiang (683), Shanxi (551), Tibet (348), Gansu (298), Ningxia (226), Tianjin
(186), Qinghai (172), Beijing (139), and Shanghai (3) is less than 1000. These provinces are
located either in the eastern coastal regions, which have strong fire management capabilities,
or in the western regions, which have low forest coverage rates.
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From 1998 to 2017, Heilongjiang had the largest area of burnt forest, 796,606 hectares,
followed by Inner Mongolia (267,961), Hunan (109,608), Fujian (87,590), Jiangxi (56,977),
and Zhejiang (51,304) (see Figure 3). Heilongjiang had the largest number of devastating
forest fires, which are characterized by high risk and difficulty in firefighting, resulting in a
wide area of burnt area and forest area. In addition to adverse meteorological conditions,
like severe drought, an increasing number of gale days, and a low amount of precipitation,
social factors and imperfect forest fire prevention and management systems are important
reasons for forest fires in Heilongjiang [9]. The forest area in Tibet, Qinghai, Jiangsu,
Gansu, Beijing, Ningxia, Tianjin, and Shanghai is 1456, 1436, 1308, 1130, 384, 255, 151, and
0 hectares, respectively, which are all less than 2000 hectares. The explanation also lies in
their strong fire management capabilities or low forest coverage rates.

The results for the PCA and clustering analysis are consistent with the results of
Su et al. [20] and Zhao et al. [9] (see Table 2). From the perspective of the PCA, the higher a
province’s comprehensive score, the lower its ranking and the more severe the forest fires
in that province. The comprehensive score of Hunan is much higher than those of other
provinces, followed by Guizhou, Guangxi, Heilongjiang, Zhejiang, Fujian, and Yunnan.
Compared with other provinces, the severity of forest fires in Shanghai, Tianjin, Ningxia,
Qinghai, Gansu, Beijing, Jiangsu, Jilin, Xinjiang, and Hainan is relatively minor. Hunan
is located in central China, with a forestland area of 11.12 million hectares and a forest
coverage rate of 59.82% [67]. While Hunan has abundant forest resources, it is one of
China’s forest-fire-prone provinces. During 2008–2018, there were 11,560 forest fires in
Hunan, which lead to 112 casualties and a direct economic loss of 119.99 million China
Yuan. The primary causes for Hunan’s severe forest fires lie in its abundant forest resources
and ineffective forest fire management measures [68].

Table 2. The severity of forest fires in 31 provinces and corresponding clustering.

Province/Municipality Score Ranking Cluster

Shanghai −0.3573 1 1
Tianjin −0.3520 2 1

Ningxia −0.3470 3 1
Qinghai −0.3400 4 1
Gansu −0.3374 5 1
Beijing −0.3236 6 1
Jiangsu −0.3220 7 1

Jilin −0.3150 8 1
Xinjiang −0.3129 9 1
Hainan −0.3012 10 1

Shandong −0.2869 11 1
Hebei −0.2779 12 1
Tibet −0.2636 13 1

Liaoning −0.2459 14 1
Anhui −0.2187 15 1

Chongqing −0.1748 16 1
Henan −0.1494 17 1

Shaanxi −0.0934 18 1
Shanxi −0.0528 19 1

Guangdong 0.0281 20 2
Sichuan 0.0783 21 2
Jiangxi 0.1863 22 2

Inner Mongolia 0.1864 23 2
Hubei 0.2205 24 2

Yunnan 0.4229 25 3
Fujian 0.4327 26 3

Zhejiang 0.4586 27 3
Heilongjiang 0.4785 28 3

Guangxi 0.5108 29 3
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Table 2. Cont.

Province/Municipality Score Ranking Cluster

Guizhou 0.7397 30 4
Hunan 1.3289 31 5

Following Su et al. [20], this study clusters 31 provinces into five groups according
to the severity of their forest fires, which are most severe (5), severe (4), moderate (3),
mid (2), and most mild (1). Shanghai, Tianjin, Ningxia, Qinghai, Gansu, Beijing, Jiangsu,
Jilin, Xinjiang, Hainan, Shandong, Hebei, Tibet, Liaoning, Anhui, Chongqing, Henan,
and Shaanxi belong to Cluster 1. Guangdong, Sichuan, Jiangxi, Inner Mongolia, and
Hubei belong to Cluster 2. Yunnan, Fujian, Zhejiang, Heilongjiang, and Guangxi belong to
Cluster 3. Guangxi belongs to Cluster 4, and Hunan belongs to Cluster 5.

5. Information-Diffusion-Based Risk Assessment of Forest Fires

Based on the information diffusion theory and MATLAB R2020a, this study assesses
the risk probabilities of forest fires in China and 31 provinces. Table 3 demonstrates the
probability of general forest fires, large forest fires, and the area of burnt forest in China.
According to Table 3, several conclusions can be drawn. From the perspective of annual
general forest fires, the probability of 1000–5000 general forest fires is high (0.4310), while
the probability of over 10,000 general forest fires is low (0.0772). From the perspective of
annual large forest fires, the probability of 0–20 large forest fires is high (0.4680), while
the probability of over 45 large forest fires is low (0.0772). From the perspective of burnt
forest, the probability of 0–90,000 hectares of forest being burnt is high (0.4355), while the
probability of over 300,000 hectares of forest being burnt is low (0.0991).

Table 3. The probability of fire indicators surpassing the probability risk at the national level.

General Forest Fires Large Forest Fires Burnt Forest

Frequency Probability Frequency Probability Area Probability

1000 1.0000 0 1.0000 0 1.0000
2000 0.9094 5 0.8809 30,000 0.8236
3000 0.7676 10 0.7405 60,000 0.6229
4000 0.5959 15 0.5980 90,000 0.4355
5000 0.4310 20 0.4680 120,000 0.2908
6000 0.3006 25 0.3568 150,000 0.1968
7000 0.2093 30 0.2652 180,000 0.1443
8000 0.1476 35 0.1922 210,000 0.1184
9000 0.1054 40 0.1367 240,000 0.1068

10,000 0.0772 45 0.0975 270,000 0.1018
11,000 0.0602 50 0.0723 300,000 0.0991
12,000 0.0498 55 0.0571 330,000 0.0955
13,000 0.0402 60 0.0468 360,000 0.0887
14,000 0.0277 65 0.0367 390,000 0.0765
15,000 0.0129 70 0.0246 420,000 0.0588

75 0.0114 450,000 0.0375
480,000 0.0167

Further, this study uses the probability of forest fires as a weight factor and multiplies
it with the frequency of forest fires to obtain the annual expected number of forest fires
in 31 provinces. General forest fires consist of ordinary forest fires and serious forest
fires, featured by high frequency, small scale, and small harm. The expected number of
general forest fires at the provincial level is classified into seven groups (see Figure 4).
For example, Beijing’s expected frequency of general forest fires is 2.47, which means
that the mathematical expectation for the number of forest fires in Beijing is 2.47 every
year. Shanghai, Beijing, Tianjin, Tibet, Qinghai, and Gansu are classified into groups with
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an annual average of 0–10 general forest fires. Ningxia, Shanxi, Xinjiang, Jiangsu, and
Shandong are classified into the group with an annual average of 10–30 general forest
fires. Hebei, Heilongjiang, Jilin, and Chongqing are classified into the group that has an
annual average of 30–50 general forest fires. Hainan, Shaanxi, Liaoning, Inner Mongolia,
and Anhui are classified into the group with an annual average of 50–100 general forest
fires. Guangdong, Sichuan, Yunnan, Jiangxi, and Henan are classified into the group
that has an annual average of 100–300 general forest fires. Fujian, Zhejiang, Hubei, and
Guangxi are classified into the group with an annual average of 300–500 general forest fires.
Guizhou and Hunan are estimated to have more than 500 general forest fires every year.
The probability of general forest fires surpassing the probability risk for provinces having
over 100 general forest fires each year is shown in Table A1 in Appendix A.
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Large forest fires consist of major and devastating forest fires, characterized by low
frequency, large scale, and great harm. The expected number of large forest fires at the
provincial level is classified into seven groups (see Figure 5). For example, the expected
number of large forest fires of Inner Mongolia is 4.60, which means that the mathematical
expectation for the number of forest fires in Inner Mongolia is 4.60 every year. Shanghai,
Beijing, Tianjin, Ningxia, Jiangsu, Jilin, Hainan, and Liaoning are classified into the group
with an annual average of 0–0.05 large forest fires. Gansu, Hebei, Anhui, and Henan are
classified into the group with an annual average of 0.05–0.10 large forest fires. Chongqing
and Qinghai are classified into the group with an annual average of 0.10–0.15 large forest
fires. Tibet and Shandong are classified into the group that has an annual average of
0.15–0.20 large forest fires. Guangdong, Xinjiang, and Shaanxi are classified into the group
that has an annual average of 0.20–0.50 large forest fires. Shanxi, Hubei, Jiangxi, Guangxi,
and Sichuan are classified into the group that has an annual average of 0.50–1.00 large forest
fires. Guizhou, Hunan, Yunnan, Zhejiang, Heilongjiang, Inner Mongolia, and Fujian are
classified into the group that has more than one large forest fire every year. The probability
of large forest fires surpassing the probability risk for provinces having over 0.5 large forest
fires each year is shown in Table A2 in Appendix A.

RETRACTED



Sustainability 2021, 13, 13859 11 of 18

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 17 
 

and Qinghai are classified into the group with an annual average of 0.10–0.15 large forest 
fires. Tibet and Shandong are classified into the group that has an annual average of 0.15–
0.20 large forest fires. Guangdong, Xinjiang, and Shaanxi are classified into the group that 
has an annual average of 0.20–0.50 large forest fires. Shanxi, Hubei, Jiangxi, Guangxi, and 
Sichuan are classified into the group that has an annual average of 0.50–1.00 large forest 
fires. Guizhou, Hunan, Yunnan, Zhejiang, Heilongjiang, Inner Mongolia, and Fujian are 
classified into the group that has more than one large forest fire every year. The probabil-
ity of large forest fires surpassing the probability risk for provinces having over 0.5 large 
forest fires each year is shown in Table A2 in Appendix A. 

 
Figure 5. Spatial distribution of expected number of large forest fires at the provincial level. 

Figure 6 shows the spatial distribution of the expected area of burnt forest at the pro-
vincial level, which is classified into seven groups. For example, the expected area of burnt 
forest of Heilongjiang is 59,290 hectares, which means that the mathematical expectation 
for the area of burnt forest of Heilongjiang is 59,390 hectares every year. Shanghai, Tianjin, 
Ningxia, Beijing, Qinghai, Jiangsu, and Tibet are classified into the group with an annual 
average area of burnt forest of 0–100 hectares. Gansu, Jilin, Hebei, and Shandong are clas-
sified into the group with an annual average area of burnt forest of 100–200 hectares. 
Chongqing, Hainan, Xinjiang, and Liaoning are classified into the group with an annual 
average area of burnt forest of 200–300 hectares. Anhui, Shaanxi, and Henan are classified 
into the group with an annual average area of burnt forest of 300–500 hectares. Shanxi, 
Sichuan, and Hubei are classified into the group that has an annual average area of burnt 
forest of 500–1000 hectares. Guangdong, Guangxi, Guizhou, Yunnan, Zhejiang, Jiangxi, 
and Fujian are classified into the group with an annual average area of burnt forest of 
1000–5000 hectares. Hunan, Inner Mongolia, and Heilongjiang are classified into the 
group with an annual average area of burnt forest of over 5000 hectares. The probability 
of burnt forest surpassing the probability risk for provinces with over 1000 hectares of 
burnt forest each year is shown in Table A3 in Appendix A. 

Figure 5. Spatial distribution of expected number of large forest fires at the provincial level.

Figure 6 shows the spatial distribution of the expected area of burnt forest at the
provincial level, which is classified into seven groups. For example, the expected area
of burnt forest of Heilongjiang is 59,290 hectares, which means that the mathematical
expectation for the area of burnt forest of Heilongjiang is 59,390 hectares every year.
Shanghai, Tianjin, Ningxia, Beijing, Qinghai, Jiangsu, and Tibet are classified into the group
with an annual average area of burnt forest of 0–100 hectares. Gansu, Jilin, Hebei, and
Shandong are classified into the group with an annual average area of burnt forest of
100–200 hectares. Chongqing, Hainan, Xinjiang, and Liaoning are classified into the group
with an annual average area of burnt forest of 200–300 hectares. Anhui, Shaanxi, and Henan
are classified into the group with an annual average area of burnt forest of 300–500 hectares.
Shanxi, Sichuan, and Hubei are classified into the group that has an annual average area
of burnt forest of 500–1000 hectares. Guangdong, Guangxi, Guizhou, Yunnan, Zhejiang,
Jiangxi, and Fujian are classified into the group with an annual average area of burnt forest
of 1000–5000 hectares. Hunan, Inner Mongolia, and Heilongjiang are classified into the
group with an annual average area of burnt forest of over 5000 hectares. The probability of
burnt forest surpassing the probability risk for provinces with over 1000 hectares of burnt
forest each year is shown in Table A3 in Appendix A.

According to Figures 4–6, it is observed that Hunan, Guizhou, Guangxi, Zhejiang,
Fujian, Jiangxi, and Yunnan are provinces ranked in the top 10 from the perspective of the
expected number of general forest fires, the expected number of large forest fires, and the
expected area of burnt forest. In other words, the incidence of forest fires in these provinces
is high, and the associated consequences are serious. Moreover, these provinces are in the
south of China, which implies that the risk of forest fires in southern China is higher than in
northern China. The main explanation is that northern China has strong fire management
capabilities or a low forest coverage rate. In contrast, southern China has a high forest
coverage rate, with a large population density and a high frequency of fire for domestic
use and production use, resulting in a large number of forest fires [66].
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6. Conclusions

After four decades of afforestation, China’s forest coverage rate has nearly doubled,
accompanied by frequent and severe forest fires. As a result of China’s various geographical
terrains and climates, its forest fires are characterized by a heterogeneous temporal-spatial
distribution across provinces and climates. Based on provincial-level forest fire data from
1998 to 2017, this study adopts principal component analysis to evaluate the severity
of forest fires, clustering analysis to organize different provinces into different groups
according to scores from the PCA, and the information diffusion theory to estimate the risk
of forest fire in 31 provinces.

The conclusions are as follows. First, viewed from temporality, forest fires reveal
a trend of increasing first and then decreasing, because the Chinese government has
invested more in forest protection and management in recent decades. Second, viewed
from spatiality, provinces characterized by high population density and high coverage
density are seriously affected due to more human activities and less investment in forest
protection. In contrast, provinces located either in the eastern coastal regions with strong
fire management capabilities or in the western regions with a low forest coverage rate are
slightly affected. Third, through principal component analysis, Hunan (1.33), Guizhou
(0.74), Guangxi (0.51), Heilongjiang (0.48), and Zhejiang (0.46) are found to rank in the
top five for the severity of forest fires. Fourth, Hunan (1089), Guizhou (659), and Guanxi
(416) are the top three in the expected number of general forest fires, Fujian (4.70), Inner
Mongolia (4.60), and Heilongjiang (3.73) are the top three in the expected number of large
forest fires, and Heilongjiang (59,290), Inner Mongolia (20,665), and Hunan (5816) are the
top three in the expected area of burnt forest. Fifth, Hunan, Guizhou, Guangxi, Zhejiang,
Fujian, Jiangxi, and Yunnan are provinces ranked in the top 10 from the perspective of
the expected number of general forest fires, the expected number of large forest fires, and
the expected area of burnt forest. Overall, this study investigates the temporal-spatial
distribution characteristics and occurrence risk of provincial-level forest fires in China, and
the results are instructive for designing and formulating differentiated forest fire prevention
and management policies for China’s different provinces.
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Appendix A

Table A1. The probability of general forest fires surpassing the probability risk for provinces having over 100 general forest fires each year.

Zhejiang Fujian Jiangxi Henan Hubei Hunan Guangdong Guangxi Sichuan Guizhou Yunnan

F P F P F P F P F P F P F P F P F P F P F P

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
100 0.906 100 0.870 50 0.916 100 0.788 100 0.887 500 0.788 40 0.965 100 0.972 50 0.864 200 0.830 50 0.918
200 0.740 200 0.683 100 0.804 200 0.563 200 0.727 1000 0.534 80 0.882 200 0.892 100 0.706 400 0.625 100 0.804
300 0.548 300 0.497 150 0.679 300 0.397 300 0.550 1500 0.319 120 0.750 300 0.743 150 0.586 600 0.432 150 0.677
400 0.386 400 0.353 200 0.555 400 0.299 400 0.393 2000 0.179 160 0.585 400 0.557 200 0.507 800 0.291 200 0.554
500 0.265 500 0.248 250 0.445 500 0.238 500 0.272 2500 0.103 200 0.418 500 0.395 250 0.437 1000 0.208 250 0.438
600 0.173 600 0.171 300 0.353 600 0.184 600 0.187 3000 0.067 240 0.280 600 0.271 300 0.360 1200 0.167 300 0.332
700 0.104 700 0.119 350 0.281 700 0.128 700 0.127 3500 0.054 280 0.181 700 0.168 350 0.284 1400 0.146 350 0.241
800 0.061 800 0.085 400 0.225 800 0.081 800 0.087 4000 0.049 320 0.110 800 0.093 400 0.214 1600 0.133 400 0.172
900 0.035 900 0.059 450 0.184 900 0.048 900 0.064 4500 0.043 360 0.067 900 0.049 450 0.141 1800 0.120 450 0.123

1000 0.013 1000 0.035 500 0.151 1000 0.023 1000 0.051 5000 0.030 400 0.042 1000 0.020 500 0.062 2000 0.107 500 0.086
1100 0.014 550 0.124 1100 0.041 5500 0.014 440 0.019 2200 0.093 550 0.053

600 0.098 1200 0.028 2400 0.074 600 0.023
650 0.075 1300 0.013 2600 0.049
700 0.053 2800 0.022
750 0.033
800 0.016

Table A2. The probability of large forest fires surpassing the probability risk for provinces having over 0.5 large forest fires each year.

Inner Mongolia Heilongjiang Zhejiang Fujian Jiangxi Hunan Guangxi Sichuan Guizhou Yunnan

F P F P F P F P F P F P F P F P F P F P

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0.877 1 0.793 1 0.642 2 0.743 1 0.452 1 0.638 1 0.504 1 0.475 1 0.496 1 0.624
2 0.746 2 0.597 2 0.355 4 0.496 2 0.124 2 0.334 2 0.182 2 0.183 2 0.205 2 0.311
3 0.620 3 0.447 3 0.206 6 0.309 3 0.056 3 0.195 3 0.094 3 0.114 3 0.128 3 0.139
4 0.507 4 0.348 4 0.146 8 0.195 4 0.050 4 0.115 4 0.063 4 0.088 4 0.077 4 0.074
5 0.411 5 0.286 5 0.120 10 0.133 5 0.048 5 0.065 5 0.050 5 0.062 5 0.051 5 0.055
6 0.329 6 0.246 6 0.106 12 0.100 6 0.036 6 0.038 6 0.036 6 0.038 6 0.036 6 0.051
7 0.259 7 0.215 7 0.095 14 0.079 7 0.012 7 0.012 7 0.012 7 0.012 7 0.012 7 0.050
8 0.201 8 0.188 8 0.080 16 0.066 8 0.048
9 0.155 9 0.163 9 0.060 18 0.057 9 0.042RETRACTED
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Table A2. Cont.

Inner Mongolia Heilongjiang Zhejiang Fujian Jiangxi Hunan Guangxi Sichuan Guizhou Yunnan

F P F P F P F P F P F P F P F P F P F P

10 0.119 10 0.137 10 0.036 20 0.051 10 0.029
11 0.092 11 0.112 11 0.014 22 0.045 11 0.013
12 0.073 12 0.086 24 0.037
13 0.060 13 0.060 26 0.025
14 0.050 14 0.036 28 0.012
15 0.042 15 0.015
16 0.033
17 0.022
18 0.010

Table A3. The probability of burnt forest surpassing the probability risk for provinces with over 1000 hectares of burnt forest each year.

Inner Mongolia Heilongjiang Zhejiang Fujian Jiangxi Hunan Guangdong Guangxi Guizhou Yunnan

F P F P F P F P F P F P F P F P F P F P

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
10,000 0.719 30,000 0.676 1000 0.833 2000 0.793 1000 0.850 1000 0.915 500 0.883 500 0.947 1000 0.806 1000 0.814
20,000 0.446 60,000 0.387 2000 0.621 4000 0.548 2000 0.666 2000 0.810 1000 0.719 1000 0.828 2000 0.555 2000 0.584
30,000 0.252 90,000 0.209 3000 0.426 6000 0.355 3000 0.489 3000 0.697 1500 0.533 1500 0.650 3000 0.333 3000 0.367
40,000 0.149 120,000 0.132 4000 0.290 8000 0.238 4000 0.346 4000 0.585 2000 0.360 2000 0.463 4000 0.186 4000 0.206
50,000 0.105 150,000 0.107 5000 0.206 10,000 0.171 5000 0.244 5000 0.486 2500 0.225 2500 0.323 5000 0.105 5000 0.112
60,000 0.084 180,000 0.101 6000 0.148 12,000 0.126 6000 0.173 6000 0.405 3000 0.138 3000 0.244 6000 0.067 6000 0.069
70,000 0.070 210,000 0.099 7000 0.104 14,000 0.092 7000 0.123 7000 0.341 3500 0.090 3500 0.208 7000 0.052 7000 0.054
80,000 0.060 240,000 0.094 8000 0.074 16,000 0.064 8000 0.088 8000 0.291 4000 0.066 4000 0.186 8000 0.045 8000 0.049
90,000 0.053 270,000 0.082 9000 0.055 18,000 0.041 9000 0.066 9000 0.251 4500 0.055 4500 0.155 9000 0.032 9000 0.044
100,000 0.048 300,000 0.060 10,000 0.039 20,000 0.019 10,000 0.053 10,000 0.217 5000 0.051 5000 0.104 10,000 0.014 10,000 0.034
110,000 0.040 330,000 0.029 11,000 0.020 11,000 0.044 11,000 0.187 5500 0.049 5500 0.046 11,000 0.017
120,000 0.028 12,000 0.032 12,000 0.160 6000 0.045
130,000 0.014 13,000 0.017 13,000 0.136 6500 0.038

14,000 0.114 7000 0.027
15,000 0.091 7500 0.013
16,000 0.068
17,000 0.044
18,000 0.021RETRACTED
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