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Abstract: Urban development decreases infiltration, increases the runoff velocity, and reduces the
concentration times. This situation increases the flood risk in urban watersheds, which represent
a management challenge for urban communities and authorities. To increase the resilience of
communities due to modifications of the hydrological cycle produced by climate change and urban
development, a methodology is proposed to delineate flood-prone areas in urban basins. This
methodology is implemented in an urban subbasin of Culiacan, Mexico, and is based on stream order.
A high-resolution digital elevation model was used, which was validated independently through
a photogrammetric flight with an unmanned aerial vehicle and ground control points obtained
with GNSS (global navigation satellite systems) receivers. Morphometric parameters related to
geometry, shape, relief, and drainage network aspects of the subbasin were determined and analyzed.
Then, flood-prone area zonation was carried out based on stream-order classification and flow
direction. Fieldwork was also carried out for the inspection of the sewage network conditions.
This methodology simplifies the identification of the flood-prone areas in urban subbasins without
carrying out complex hydraulic calculations.

Keywords: flood-prone area delineation methodology; morphometric analysis; stream-order analysis;
culiacan urban subbasin

1. Introduction

Hydrometeorological events arise as one of the most important natural hazards.
According to Zúñiga et al. [1], more than 50% of the disasters registered in the last three
decades worldwide are related to floods. These events produce intense short-duration
rainfall or even prolonged-duration rainfall caused by tropical cyclones. They generate
water flows that exceed the infiltration capacity of the soil [2].

The dynamic processes of land occupation increase the flood risk in urban areas since
the infiltration capacity of soils is reduced. The transition from rural to urban areas is
favored by population increase, which promotes the concentration of population in urban
environments. However, this transition is carried out without considering the natural
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hydrological processes present in the original watershed. Hence, mainly the infiltration
capacity of subsoil and the natural hydrography is modified [3].

Despite hydrometeorological events contributing positively to increasing the water
levels of dams and lakes, they also cause serious problems in urban areas [4,5]. The
occurrence of these events in urban areas can generate disruption to community affairs,
danger to human life, and health and economic losses. The transformation of precipitation
into the runoff is a process that involves factors such as the morphology of the watershed,
vegetation covers, and land uses [6]. However, other aspects related to flooding problems in
an urban area could be urban solid waste, urban drainage infrastructure, urban vegetation,
and housing development [7].

The flood risk assessment has been widely used to support the decision-making
process to develop better management and control of urban floods and for the development
of plans for urban surface water management [8,9]. However, this experience has been
focused on river modeling, while urban flood studies are comparatively scarce [10]. The
urban flood risk assessment must include the effect of sewer systems, seepage, infiltration
devices, sources and sinks, and the role of rivers in the studied area. Flood risk analysis
must reflect various rainfall events with different rainfall intensities and periodicities,
where flow velocities and water depth are simulated for selected scenarios of flood with
typical recurrence periods [11,12].

From flood risk assessment, flood hazard maps could be generated. Unfortunately,
the generation of flood hazard maps is a multi-criterial and complex issue [13,14]. Different
approaches based on GIS hazard maps [15], flood frequency [16], flood depth and veloc-
ity [17], and remote sensing techniques [18], among others, have been proposed worldwide.
Four approaches are recommended to flow modeling in urban areas [19]: one-dimensional
(1D) hydrodynamic models, dual one-dimensional (1D/1D) models, and 1D/2D-coupled
models simulate flow in minor systems (sewer network) and major systems (a network
of surface flow paths and ponds), while Geographic Information Systems (GIS) models
provide insight in flow paths and depressions for a certain rainfall amount in the major
system [20].

In 1D models, such as the Storm Water Management Model (SWMM), the surcharged
flow (major system flow) is kept atop of the manholes and only allowed to be drained back
to the sewer once the sewer capacity is made available. This is a limited representation of
flow behavior in the major systems since flow is not allowed to move across the surface.
Dual one dimensional models, such as MIKE-Urban or Infoworks models, overcome
this inconvenience by connecting minor and major systems through flow simulation of
weirs, orifices, or sinks [1]. Moreover, 1D/2D models could be considered as the best
representation of real urban flow conditions since they couple a 1D sewer model with a
2D overland model [21]. GIS models represent overland flow by flow paths and depths
assuming that a portion of precipitation is drained through sewers.

Despite 1D/2D models being the most realistic simulation of urban flow, their calcula-
tions require a huge effort on both the data processing and computational demands, which
constitutes an important downside that makes them unsuitable for operational manage-
ment and quick predictions [19,20]. This situation is also observed in 1D/1D models, where
a high data demand is required to interpret 2D flow into a 1D simulation. Alternatively,
GIS models require less calculation and data resources but commonly are associated with
low accuracy and fail to consider the interactions between sewer systems and surface
runoffs [19]. However, GIS models only determine flow paths and water depth and it is
not possible to determine flooding duration [20].

Despite the advances in flood hazard mapping tools and computational resources,
high-quality flood mapping remains challenging for studies with a large analysis scale,
with limited evaluation times and scarce data conditions [19]. GIS models can support
strategies and activities for flood risk management in regions with limited resources [22].
In this sense, GIS models can make a quick scan of pluvial flooding with limited effort in a
few minutes for medium-sized urban areas. These models use GIS capabilities to assess
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a primary hydrological analysis based on depression extraction (DE) and topographic
wetness index (TWI) to predict the surface flow directions and spatial distributions of the
accumulated flows.

Since these maps are crucial to develop social resilience and to cope with extreme
weather, this study proposes a less complex methodology for the identification and de-
lineation of flood-prone areas in urban basins. The methodology proposed in this paper
corresponds to the GIS models. This methodology is based on the delimitation of an
urban subbasin obtained from a DEM (digital elevation model) and relevant drainage
network aspects, such as stream order and surface flows direction. The drainage network
aspects were determined using Geographic Information Systems (GIS), cartography, and
UAV photogrammetry. Essential morphometric parameters were calculated to obtain a
perspective of the urban subbasin under study with respect to other subbasins. Thus,
this methodology simplifies the generation of flood-prone maps without carrying out the
hydraulic calculations needed in traditional flood risk studies. Given the simplicity of the
methodology, the community could implement it with limited resources and calculation
work. In this study, a demonstrative implementation of this methodology is presented in
the Culiacan urban area as an urban subbasin case study.

2. Materials and Methods
2.1. Study Area

This study was carried out in the city of Culiacan, Mexico, which is located between
the Universal Transversal de Mercator (UTM) coordinates X:242,000, Y:27,555,000, and
X:269,500 Y:2,733,500 in zone 13N. Based on the Risk Atlas of Sinaloa [23], certain sectors of
Culiacan city are vulnerable to intense rainfall according to the return period analyses of 2,
5, and 10 years. In these sectors, severe economic losses and human health damages have
been registered due to the occurrence of intense rainfall. Figure 1 shows the geographic
location of the Culiacan city in Mexico, where the Tamazula, Humaya, and Culiacan
watersheds meet. The Humaya and Tamazula rivers flow through the Culiacan urban area
and intersect in Culiacan city downtown. The river formed from this confluence takes the
name of Culiacan River [24].

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 24 
 

  
Figure 1. Geographical location of the urban area of Culiacan. 

2.2. Methodology 
The methodology for the identification of flood-prone zones in an urban basin is sum-

marized in Figure 2. This methodology consists of (1) dataset acquisition; (2) DEM valida-
tion; (3) raster and vector processing; (4) morphometric analysis; (5) stream ordering; (6) 
sewage network inspection; and (7) identification of flood-prone areas. 

Figure 1. Geographical location of the urban area of Culiacan.



Sustainability 2021, 13, 13513 4 of 22

2.2. Methodology

The methodology for the identification of flood-prone zones in an urban basin is
summarized in Figure 2. This methodology consists of (1) dataset acquisition; (2) DEM
validation; (3) raster and vector processing; (4) morphometric analysis; (5) stream ordering;
(6) sewage network inspection; and (7) identification of flood-prone areas.
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and stream order.

2.2.1. Dataset Acquisition

A Digital Elevation Model was used to describe the elevations in the study area [25].
This DEM has a spatial resolution of 5 m at a scale of 1:10,000. Likewise, a vector dataset
of the terrain graphic entities provided by INEGI [26] was used. These data include the
delimitation of the urban zone in the study area, and the neighborhoods’, blocks’, and
municipalities’ shapefiles. Similarly, satellite images from Google (https:/earth.google.com)
accessed on 16 September 2021 and ESRI (http://goto.arcgisonline.com/maps/World_
Imagery) accessed on 16 September 2021 were used to discriminate flood-prone areas in
the study area. The hydrological and geomorphological analysis was carried out using
QGIS software (version 3.16, OPENGIS.ch: Laax, Switzerland).

2.2.2. DEM Validation

A DEM was used to characterize the surface terrain through the mathematical values
of height and position of the surface. In this sense, DEM quality must meet the quantitative
descriptors of relief, such as elevation, shape, and other topological characteristics such

https:/earth.google.com
http://goto.arcgisonline.com/maps/World_Imagery
http://goto.arcgisonline.com/maps/World_Imagery
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as slope and curvature, among other surface features [27]. Hence, a validation process
was carried out to determine the DEM quality obtained from INEGI following the criteria
established by the Geospatial Positioning Accuracy Standards [28]. For the validation
process, the spatial data of the DEM were compared against another independent dataset.

The dataset for the DEM validation was acquired independently by using unmanned
aerial vehicle (UAV) photogrammetry and ground control points (GCP) set with GNSS
receivers (CHC model x900). A DJI Phantom 4 RTK Quad Copter (SZ DJI Technology Co.,
Shenzhen, China) was used for image acquisition. A Sony RX100 camera with a CMOS
sensor and a focal length of 35 mm was mounted on the UAV. This camera acquired images
with an effective resolution of 20.2 megapixels. This UAV had a global positioning system
(GPS/GLONASS) and a gimbal stabilizer to avoid producing images with distortions.

The flight planning and the image processing algorithms suggested by Mora-Félix
et al. [29] were applied to obtain the orthophoto. This orthogonal projection was used
to visualize the 29 points marked and distributed on the ground over the study area by
accessing the geometric properties (graphic entities) of the cartographic plane.

The root mean square error (RMSE) was calculated to estimate the positional accuracy
as suggested by Mora-Félix et al. [29] and Polidori and El Hage [27]. The RMSE is the
square root of the average of squared errors between the values observed in the DEM and
the values of the coordinates (x, y, z) obtained from GCP according to Equations (1) and (2).
The RMSE is used to evaluate the accuracy of the DEM in predicting the coordinates (x, y,
z) measured in the field.

RMSEz =

√
∑n

i=1 [(zo − zGCP)
2]

n
(1)

RMSExy =

√
∑n

i=1 [(xo − xGCP)
2 + (yo − yGCP)

2]

n
(2)

where n refers to the total of control points that were measured; xo, yo, zo, correspond to the
x, y, z coordinates of the points marked on the ground that were observed in the DEM; xGCP,
yGCP, zGCP correspond to the x, y, z coordinates from the independent source measured
with GNSS equipment.

2.2.3. Raster and Vector Processing
Raster Pre-Processing

After the DEM accuracy was validated, a pre-processing of the DEM was carried out
to delineate the subbasins within the study area. The main river course, as well as its
tributaries, were also identified at this stage. The pre-processing of the DEM was carried
out using a sequential calculation method with specialized tools for hydrological analysis
of watersheds. The DEM was processed with the open-source software QGIS 3.16, using
the mathematical algorithms of “watershed basin analysis” and the integrated GRASS tool
(GRASS GIS 7.4.1, GRASS Development Team: Bonn, Germany).

Raster Processing

First, the study area was delimited using a mask which generated a polygon of
the area under study. Subsequently, a filtering of the raster pixel values was applied to
eliminate high variations in the different tones that appear in an image. The objective of
this filtering is to eliminate errors that are present in the raster image due to the instrument
used to acquire the information. These errors could be the presence of areas without
information, flat areas, and/or depressions. In this study, a filtering process was carried
out to eliminate the sinks in the DEM by filling. These artificial depressions (sinks) were
removed using the r.fill.dir algorithm proposed by Wang and Liu [30]. The algorithm
generated a depression-free elevation map.
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Delineation of the Urban Subbasin

Once the validation and pre-processing of the DEM had been carried out, the urban
subbasin of Culiacan was delineated. According to Walesh [31], the delineation of a sub-
basin modified by anthropogenic activities is determined by surface topography and by
the configuration of swales, storm sewers, channels, and other drainage elements. In this
study, the delineation of the urban subbasins was carried out based on topographic and hy-
drographic criteria, where the highest elevations were established as the boundaries of the
subbasins, without considering the influence of the surface drainage network. The urban
subbasins were delineated using the DEM and the “watershed” algorithm in QGIS, where a
minimum cell size was selected to generate the smallest portions of the hydrological basin.

2.2.4. Morphometric Analysis

The physical properties of a subbasin and its streams influence the amount of surface
runoff generated. These properties are the result of multiple natural and anthropogenic
factors. According to Esper-Angillieri et al. [32], the morphometric analysis includes the
study of a set of geometry, shape, and relief aspects of a basin. These physical characteristics
are used to describe the hydrological functionality of a subbasin, establish comparisons
between subbasins and implement strategies for adequate surface water management. In
this study, the characterization process of the hydrological and morphological parameters
of the urban subbasin under study was carried out following the traditional methodologies
proposed by Horton [33,34], Miller [35], Schumm [36], Gravelius [37], Strahler [38], and
Kirpich [39]. Table S1 shows the mathematical equations used to characterize the geometry,
shape, relief, and drainage network morphometric parameters of the urban subbasin
under study.

The basin geometry morphological parameters were perimeter, area, the maximum
length of the basin, length of the mainstream, and basin width. The shape aspects of the
basin were obtained, such as form factor, Gravelius compactness, and circularity ratio. The
morphometric parameters related to the basin relief, such as maximum and minimum
elevations, mean elevation, most frequent elevation, and mean slope of the basin, were
also determined. Finally, the stream order and length, drainage density, stream frequency,
coefficient of torrentiality, mean slope of the mainstream, and time of concentration were
determined. These parameters are related to the drainage network.

2.2.5. Stream Ordering

Flood-prone areas were delineated according to the stream order of the urban wa-
tercourses. First, the streamflow directions were identified in the urban subbasin using
the DEM. Subsequently, the stream orders of the urban watercourses were determined
by using a QGIS tool that implements the numerical algorithm proposed by Garbrecht &
Martz [40] based on topographical drainage patterns.

2.2.6. Sewage Network Inspection

Since the watercourses in an urban basin correspond to streets, fieldwork was neces-
sary to contrast the information resulting from the DEM. The maximum and minimum
elevations in the terrain were observed during the field visit and the possible water flow
direction on the streets was validated. Likewise, the location of the main storm drainage
infrastructure was identified by fieldwork.

2.2.7. Identification and Delineation of Flood-Prone Areas

The identification of flood-prone areas in urban subbasins was carried out based on
the urban surface topography, the urban watercourses, and the drainage infrastructure
located within the urban subbasin under study. Delineation of flood-prone areas was
carried out using QGIS software according to stream-order criteria. Higher-order streams
were delineated as flood-prone areas in the urban subbasin.



Sustainability 2021, 13, 13513 7 of 22

3. Results
3.1. DEM Validation

Figure 3 shows a graphical description of the methodology used to extract the UTM
coordinates from the DEM using an orthophoto generated with a photogrammetric flight.
The orthophoto was georeferenced in the DEM using the marks on the ground in such a
way that the UTM coordinates of these marks were extracted from the DEM. Its coordinates
were compared with the UTM coordinates obtained by using GNSS equipment at the
points marked on the ground. The results of the comparison of the x, y, z coordinates from
both sources are shown in Table S2. The accuracy of the DEM was estimated by using
the root mean square error (RMSE). Since the GPS surveyed points that were assumed
as the true terrain coordinate values of ground control points (GCP), the residuals were
used to determine the altimetric (RMSEz) and planimetric (RMSExy) accuracies of the DEM
according to Equations (1) and (2).
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Table S2 shows that altimetry revealed the greatest differences, while planimetry
remained practically constant for most of the points. The DEM elevations (z) presented a
difference variability between a range from −3.83 m to 3.63 m that correspond to GCP 3 and
9, respectively. They showed the greatest elevation difference (|∆z| > 3.6 m), while GCP 10,
22, and 28 presented a moderate difference (|∆z| < 3.0 m). This variation could be related
to the measuring times between the coordinates, the presence of slopes, or the interference
of the GPS signal. The accuracy obtained for altimetry (RMSEz) is below 3 m, which is
within the range established for a representation at a working scale of 1/1000 (10 m in the
terrain). Hawker et al. [41] showed that high-accuracy DEMs give better flood estimations.
Annis et al. [42] also demonstrated that DEM accuracy obtained from UAVs has a crucial
impact on flood dynamics. However, many financial and practical challenges in producing
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a wide area of high-resolution DEMs are recognized, especially in developing countries [22].
Muthusamy et al. [43] suggest that the highest resolution DEM is not necessary. They used
a 30 m resolution DEM for flood modeling, and an overall RMSE range from 2.6 m to
0.9 m was reported in flood depths. Despite that no flood estimations were carried out
in this study, the RMSEz obtained in this study is close to the RMSE previously reported
in flood depth. In this sense, this could be a cost-effective solution for locations where
higher resolution DEMs may not be available [43]. Therefore, the DEM used in this study
is suitable for morphological and hydrological analysis in the studied urban subbasin,
since the minimum unit to represent is much higher than the RMSE accuracy obtained.
In planimetry, a root mean square error (RMSExy) of 0.104 m was obtained. The greatest
position difference was found at control point 23 with a ∆x < 0.555 m, but ∆y was less
than 0.013 m in all GCPs. Based on the above, the DEM provided by INEGI [21] has a
good planimetric and altimetric precision since it is below the representation scale of the
final project.

3.2. DEM Depression Elimination

The depression elimination process consisted of filling the sink in the DEM using the
r.fill.dir algorithm of QGIS. The removal of low elevation areas in DEMs is critical since
sometimes the flow direction could not follow the terrain slope because of the presence
of pools. According to Garbrecht & Martz [40], this step is needed before the use of
the flow direction routine. This process was repeated three times until the algorithm
generates a depressionless elevation map (Figure 4). This product is essential to carry out
the subsequent hydrological analysis.
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3.3. Delineation of the Urban Subbasin

One of the most important parameters to delineate a watershed for hydrological
analysis is the minimum cell size. This parameter is used by the GIS algorithm to generate
the subbasins. This size depends on certain factors such as the objective and scope of
the study, the resolution of the digital elevation model, among others [44]. In this work,
the subbasins were identified within the Culiacan city urban area. These subbasins were
delimited semi-automatically using a surface size of 100 ha. In this sense, the algorithm
generated subbasin delimitations between 1 and 100 ha, where the minimum cell size used
was 40,000 pixels. Due to the cell size used, 38 subbasins were delimited automatically in
the Culiacan urban area. Figure 5 shows some of the subbasins identified in the Culiacan
urban zone. The urban subbasin selected as the case of study is contoured in Figure 5.
This area partially coincides with the subbasins previously identified and delineated by
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local civil protection authorities [23], as shown in Figure 6. This figure also presents
the names (codes) of the subbasins identified by local authorities in the study area with
their respective drainage area in km2. According to these authorities, this urban subbasin
generates frequent flooding problems in areas with possible drainage deficiencies. These
streams drain water towards a mainstream located at the lowest part of the subbasin.
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3.4. Analysis of Morphometric Parameters
3.4.1. Geometry and Shape of the Urban Subbasin

The values obtained for the main morphometric parameters associated with the urban
subbasin geometry and shape are shown in Figure 7 and Table 1. The total urban subbasin
area is 2.517 km2. This value corresponds to the drainage area, which is a key parameter
for hydrologic analysis because larger drainage areas lead to greater discharge. The urban
subbasin length is 2.8 km, which is related to the maximum length of the subbasin measured
parallel to the main drainage line.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 24 
 

The values obtained for the main morphometric parameters associated with the ur-
ban subbasin geometry and shape are shown in Figure 7 and Table 1. The total urban 
subbasin area is 2.517 km2. This value corresponds to the drainage area, which is a key 
parameter for hydrologic analysis because larger drainage areas lead to greater discharge. 
The urban subbasin length is 2.8 km, which is related to the maximum length of the sub-
basin measured parallel to the main drainage line. 

 
Figure 7. Morphometric parameters associated with the urban subbasin geometry and relief. 

Table 1. Values of morphometric parameters associated with the geometry and shape of the urban 
subbasin. 

Parameter Value 
Subbasin perimeter (km) 13.576 

Subbasin length (km) 2.8 
Subbasin area (km2) 2.517 
Stream length (km) 3.8 

Subbasin width (km) 0.898 
Form factor (km) 0.321 

Compactness coefficient (unitless) 2.396 
Circularity ratio (unitless) 0.172 

Watershed shape parameters reflect the runoff behavior at the outlet. According to 
the values obtained for the form factor, the compactness coefficient, and the circularity 
ratio, the urban subbasin has a slightly elongated shape. This subbasin presents a com-
pactness coefficient (Gc) value of 2.39 which theoretically indicates that this subbasin is 
prone to generate peak flow rates of low magnitude in response to intense rains. However, 
multiple factors could modify the hydrologic behavior of the urban subbasin, such as the 
presence of paved roads, scarcely vegetated areas, blocked drainage systems, and im-
proper drainage structures that obstruct water flows, among others. Due to the presence 
of these factors, it can be assumed that this urban subbasin behaves as a rounded-shape 

Figure 7. Morphometric parameters associated with the urban subbasin geometry and relief.

Table 1. Values of morphometric parameters associated with the geometry and shape of the
urban subbasin.

Parameter Value

Subbasin perimeter (km) 13.576
Subbasin length (km) 2.8
Subbasin area (km2) 2.517
Stream length (km) 3.8

Subbasin width (km) 0.898
Form factor (km) 0.321

Compactness coefficient (unitless) 2.396
Circularity ratio (unitless) 0.172

Watershed shape parameters reflect the runoff behavior at the outlet. According to the
values obtained for the form factor, the compactness coefficient, and the circularity ratio,
the urban subbasin has a slightly elongated shape. This subbasin presents a compactness
coefficient (Gc) value of 2.39 which theoretically indicates that this subbasin is prone to
generate peak flow rates of low magnitude in response to intense rains. However, multiple
factors could modify the hydrologic behavior of the urban subbasin, such as the presence of
paved roads, scarcely vegetated areas, blocked drainage systems, and improper drainage
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structures that obstruct water flows, among others. Due to the presence of these factors,
it can be assumed that this urban subbasin behaves as a rounded-shape rural subbasin.
A rounded watershed shape has been associated with greater flooding risk. Runoff from
rounder watersheds tends to reach the outlet more quickly and with greater erosive power
and velocity [45,46].

3.4.2. Relief Aspects of the Urban Subbasin

The watershed relief has a great influence on the outflow velocity. Under the same
rain conditions, a greater watershed slope generates flows with higher velocities and, in
consequence, higher erosion and sediment transport capacities. Figure 8 shows the altitude
ranges in the urban subbasin under study. The subbasin was divided by altitude ranges,
and then the area was calculated for each of these elevation ranges to analyze the subbasin
relief morphometric parameters. In this way, the hypsometric curve and the altimetric
frequency histogram were constructed (Figure 9). The hypsometric curve describes the
relationship between the altitude and the subbasin area [47].
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Based on the hypsometric curve (Figure 9a), the urban subbasin under analysis could
be classified as an early mature stage subbasin. This curve presents a concave shape towards
the middle and lower parts, which is a typical characteristic of a highly eroded region.
This classification is also evidenced in the altimetric frequency histogram (Figure 9b) since
medium to low elevation ranges predominate in the study area. This histogram shows that
50% of the total subbasin area is located above 66 m.a.s.l. The elevation range between 51
and 59 m.a.s.l. concentrates the highest frequencies, but this elevation range only represents
18% of the total area of the subbasin.

The morphometric parameters related to the subbasin relief are shown in Table 2.
In this study, a mean stream slope (Smed) value of 2.91% was obtained. This parameter
describes the mean surface runoff velocity, which is highly related to the runoff erosion
capacity. The value obtained in the present study is characteristic of urban subbasins,
where paved areas cause a reduction in the infiltration rate and increase the risk of the
existence of flood-prone areas [48].
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Figure 9. Hypsometric curve (a) and altimetric frequency histogram (b) of the urban subbasin.

Table 2. Results of morphometric parameters related to the drainage network.

Parameter Value

Stream order (order) 4
Stream Length (km) 3.8

Drainage Density (km−1) 6.99
Stream Frequency (streams/km2) 23.04

Number of first-order streams (streams) 53
Coefficient of torrentiality(streams/km2) 21.05

Time of concentration (h) 0.72

3.4.3. Drainage Network Aspects of the Urban Subbasin

In this study, the method proposed by Horton [34] was applied to determine the
stream order in the urban subbasin (Figure 10). According to the stream order analysis, the
subbasin has 53 first-order streams, 20 second-order streams, 11 third-order streams, and
30 fourth-order streams, with a total length of 17.6 km.
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Figure 10. Urban subbasin stream ordering.

The results obtained for the morphometric parameters related to the subbasin drainage
network are presented in Table 2. Based on the results and considering the drainage density
criteria specified by Sujatha et al. [49], the subbasin under study could be considered
as a natural well-drained subbasin. Regarding the stream frequency, the value obtained
(Fs = 23.04 streams/km2) is considered high and is related to the natural hydrographic
configuration of the watershed since a considerable number of the original streams are
currently used as urban streams, which were transformed into streets; however, the total
number of streams is finally determined by the urban layout. According to this, the
subbasin under study theoretically had a low probability of presenting flood problems due
to intense rainfall. However, it was observed that most of the morphometric parameters
related to drainage network are meaningless when applied to an urban subbasin, which is
modified by anthropogenic activities. This is the case of the urban subbasin under study;
this subbasin is well-drained up to the flooding zone throughout the hydraulic network,
but it is poorly drained by infiltration. This is because of the predominant presence of
impermeable soils mainly constituted by paved streets and urban buildings.

The time of concentration (Tc) can be defined as the time required for a “water particle”
to travel from the watershed boundary along the longest watercourse to the watershed
outlet. A Tc value of 0.72 h was obtained in this urban subbasin which suggests that
surface runoff has a short time to contribute to the peak discharge at the subbasin outlet.
In addition, the coefficient of torrentiality obtained in this study was high (Ct = 21.05
streams/km2). This coefficient indicates that a high number of first-order streams are
present in a basin, therefore shorter surface runoff generation times are observed. This
situation could explain the conditions for the generation of flood-prone areas in the urban
subbasin under study.

3.5. Identification and Delineation of Flood-Prone Areas in the Urban Subbasin
3.5.1. Flow Direction

Figure 11 shows the flow direction analysis within the urban subbasin. The flow
direction was determined by using the DEM. Maximum elevations were identified in some
streets by analyzing the longitudinal profile. This figure shows that several streets have two
opposite surface water flow directions starting in sites of relatively high elevations (ovals
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marked in white). This morphological analysis helps to identify the first-order streams in
the urban subbasin. The flow direction analysis demonstrated that this subbasin maintains
its original main river course that drained its territory in natural conditions.
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3.5.2. Urban Stream Ordering

Figure 12 shows the stream order classification within the urban subbasin under
analysis. In the study area, the mainstream accumulates water from lower-order streams.
Therefore, the mainstream course (main channel) meets with third-order and fourth-order
streams. This situation is shown in Figure 12, where the end of the third- and fourth-order
streams are indicated with orange circles and red diamonds, respectively, and most of them
are located in the mainstream course. This relationship is fundamental since the stream
order is the basis for the identification of flood-prone areas in the subbasin. However, this
study also demonstrated that the stream order in an urban basin can decrease rather than
increase. This situation can be explained since the streams in an urban subbasin are related
to the street layout, which can divide the flow instead of merging it. This behavior differs
from what is generally observed in natural basins.
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3.5.3. Zonation of Urban Streams

Figure 13 shows the zonation of urban streams based on the stream-order criteria. Four
flood risk areas were identified. The first-order areas correspond to the highest elevations
of the urban area, where a low possibility of flooding is expected. The second-order stream
areas are considered intermediate or transition zone, and these zones do not represent a
high flood risk. The third and fourth stream-order areas receive water from the other lower-
order streams. These areas are represented with orange and yellow colors in Figure 13,
respectively. The higher-order streams are low elevation zones where a large volume of
water is accumulated. Therefore, these areas are more susceptible to floods. According
to this zonation, the fourth-order zones are more vulnerable to flood since flooding first
occurs in these areas.
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3.5.4. Field Inspection of the Sewage Network Conditions

The flood-prone areas identified in this study coincide with those reported by local
civil protection authorities, where flooding problems have been registered caused by
intense rainfall. According to the Risk Atlas of Culiacan city [23], storm sewer structures
installed in the study area do not meet the hydraulic recommendations to efficiently drain
it. The fieldwork confirmed the presence of sewers in these zones. Culverts are located
at strategic points on sidewalks and the ground level of streets and avenues. However,
the reduced dimensions or improper construction of the drainage network do not allow
draining the large volume of water accumulated by these streams.

This situation is evidenced in Figure 14, where an open main channel with a trape-
zoidal cross-section is reduced to a pipe culvert at point “A” (first transition). The trape-
zoidal cross-section dimensions are as follows: top width 6.50 m, bottom width 2.05 m; flow
depth 1.20, side slope 1:1.85, and a freeboard height of 0.25 m. The main channel undergoes
a channel transition toward a rectangular section with a width of 2.00 m, in which three
circular section ducts are arranged. This is a pipe culvert under a vehicular avenue. The
maximum flow area of the main channel with a trapezoidal section is 5.13 m2. This area is
reduced to three pipes with a diameter of 1.00 m, equivalent to a flow area of 0.785 m2 for
each pipe with a total flow area of 2.36 m2. The pipe culvert area represents 46% of the main
channel area. The transition to a culvert reduces the channel conveyance, which causes the
main channel overflows that in turn generate floods when intense rainfall occurs.
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The pipe culver discharges in point B to another trapezoidal channel of smaller
dimensions (second transition) than the above described for the main channel: top width
5.60 m, bottom width 2.00 m; flow depth 1.15, side slope 1:1.565, with no freeboard height
and a flow area of 4.37 m2. However, at this point, a bottom rack located in the avenue
discharges surface water to this channel. This channel conducts the water flow to point
“C”, located at the exit of a local university campus. At point “C”, a single pipe with a
diameter of 1.55 m is located. This is another channel transition (third transition) with a
smaller flow area (1.89 m2) due to an incorrect sewer design. This situation causes flooding
within the University campus and constitutes a problem that occurs regularly in this area.

3.5.5. Delineation of Flood-Prone Areas

Figure 15 shows the flood-prone zones delineated from the methodology proposed in
this work. These areas are the result of (1) the analysis of the direction and order of the
currents, (2) the morphological characteristics of the urban subbasin, and (3) the sewage
network conditions in the urban subbasin. The flood-prone areas identified in this study
differ from the criteria previously proposed by Komolafe et al. [50] and Liu et al. [51], who
suggest simulations under different hydrological scenarios to determine the flood influence
zone in watersheds.
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4. Discussion

This manuscript proposes a methodology to identify and delineate the flood-prone
areas in an urban subbasin based on stream order. The morphometric characteristics
related to the urban subbasin relief obtained in this study coincide with those reported
by Ali Shaikh et al. [52]. Anthropogenic characteristics of the urban subbasin, such as the
presence of paved soil, reduce the infiltration rate and originate flow currents that are
difficult to capture by the storm drainage systems. Therefore, water volume is accumulated
in the lower parts of the urban subbasin under study and causes floods. This situation
also coincides with Talchabhadel et al. [53], who suggest that the land-use change has a
significant impact on the occurrence of floods.
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The influence of anthropogenic activities on drainage network aspects is also evi-
denced by Ercoli et al. [54]. This study found significant changes in the erosive processes in
the municipality of Nova Lima, Brazil, due to a combination of factors such as the removal
of vegetation cover, the insufficient drainage system for rainwater, the development of
luxury housing, among others. This situation is similar to the one reported in the present
study. The urban subbasin under study is located in the city of Culiacan in Mexico and
presents impermeable soils due to urbanization [55]. This situation explains that the urban
subbasin under study is well-drained by its streams but poorly drained by infiltration, with
high runoff velocity, and is susceptible to flooding.

The identification of flood-prone areas was carried out based on the flow direction
and the stream order criteria at the street level. The stream order classification of the urban
subbasin was based on Horton’s topological stream order where the stream order number
increases by one at every confluence [56]. In the study case, the stream order classification
was carried out at street level since the original streams of the natural watershed have
been modified and mainly transformed into streets. The flow direction and stream order
analysis in this work reveals that the Horton criterion is modified in an urban subbasin
since the stream order can decrease downstream because of flow division among streets.

The stream order classification identified that the first-order streams tend to be less
prone to flooding since they are in higher elevation areas. In this sense, the higher stream
order areas (third and fourth stream order) receive water from the lower order streams.
These areas are in the lowest parts of the urban subbasins, where, theoretically, sewerage
works should be located to drain the surface water runoff. However, fieldwork and local
civil protection authorities [23] suggest that there are drainage structures that do not meet
the hydraulic recommendations to discharge the water accumulated at lower parts of the
urban subbasin. Therefore, this drainage structure eventually collapses due to its incorrect
dimensioning and can cause flooding. In addition, the characteristics associated with the
size and shape of the subbasin determine the response and velocity of runoff.

Mokarram & Sathyamoorthy [57] used the methodology proposed by Horton [34]
to carry out the morphometric and hydrological characterization of an urban subbasin.
Conventional morphometric parameters, such as the shape factor, compactness coefficient,
and circularity coefficient, were used to indicate that the urban subbasin is not prone to
intense rains and is subject to small magnitude floods. However, this study did not consider
the urban conditions. In the present study, this perspective was considered to carry out an
adequate morphometric characterization in the urban subbasin of Culiacan. The presence
of multiple factors such as paved streets, scarcely vegetated areas, and surface runoff
obstructions, among others, have a great influence on the runoff generated. This situation
completely modifies the behavior of the original watershed in such a way that the urban
subbasin must be analyzed differently from that of natural watersheds. However, this
study demonstrated that a full basin characterization through the traditional morphologic
parameters is not essential to recognize flood-prone areas in an urban basin. Instead,
watershed delineation, drainage network layout, flow direction, and stream ordering can
be used to recognize flood-vulnerable zones according to their predominant stream order.
However, a morphological characterization gives a hydrologic perspective of the urban
subbasin under study with regard to other subbasins.

Several studies have been carried out to delineate flood-prone areas. Comprehensive
flood risk assessment studies are focused on quantifying the uncertainty in flood hazard es-
timation and mapping inundation [58,59]. The flood-affected areas have been also mapped
using remote sensing satellite data [60]. Despite the importance of flood hazard mapping
being well recognized, several problems in elaborating useful flood hazard maps in de-
veloping countries are also acknowledged [61]. The classical approaches to flood hazard
estimation combine the use of hydrological and hydrodynamic models [62]. However,
these studies are limited by high computational costs with massive high-resolution datasets
and over large scales. The present study proposes a simple methodology to identify and
delineate the flood-prone areas based on the topographical characteristics and stream order
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classification in an urban subbasin. This methodology could also be used to identify the
sewage locations in an urban basin to mitigate the possible impacts of weather events that
could cause flooding problems.

Since rainfall is not an input of this method, it is not possible to establish scenarios
depending on return periods of precipitation. Hence, it is assumed that the method enlights
a scenario of an intense rainfall that surpasses the sewer capacity (minor system) and needs
the full capacity of the surface network paths and ponds (major system) to drain the rainfall
excess. In this sense, the flood scenario is timeless but space-dependent, and the expected
flood extent is governed by the stream order of the urban zone.

Flood-prone areas mapped by 1D, 1D/1D, 1D/2D, and GIS models are different from
the GIS model proposed in this investigation since they are essentially delineated according
to the flow depths reached on streets and other urban low-elevation facilities. Flow depths
vary in a continuous pattern over the flooded surfaces and therefore flood-prone areas are
delineated by rather sinuous contours. Conversely, in the method proposed in this work,
flood-prone areas do not depend on flow depth. Instead, they are identified by the order of
the streams which commonly corresponds to streets. Hence, flood-prone areas are adjusted
to the street layout and, in consequence, their contours are primarily angulate.

5. Conclusions

The present study proposes a methodology to identificate and delineate the flood-
prone areas in an urban subbasin of the Culiacan city in Mexico based on stream order
analysis. Traditional morphological parameters were implemented for morphometric
characterization of the urban subbasin. However, some morphometric parameters that are
normally applied to natural watersheds could not be used to characterize urban subbasins,
since they are anthropogenically modified. According to the proposed methodology, the
flood-prone areas in an urban subbasin are highly related to high-order streams. Third
and fourth-order streams receive the most water flows from lower-order streams, and are
responsible for generating floods that often cause great human and economic damage in
the urban area. These flood-prone areas coincide with flood risk zones previously identified
by local civil protection authorities.

Accuracy, data availability, time, and calculation complexity are current issues to
choose the most appropriate modeling technique for flood mapping. Accordingly, this
methodology is a simple tool that contributes to the identification of flood-prone zones and,
in consequence, to recognize suitable locations for the development of redesign drainage
systems projects. An improved channel conveyance system could be designed to avoid
water accumulation in the streets and to reduce flooding problems in the urban subbasin.
The proposed methodology can be replicated to the other urban subbasins identified in the
Culiacan city or to other urban development projects to prevent flood problems due to the
modification of hydrological basins. This methodology could also minimize the time and
costs of field surveys when obtaining distances and elevations. In combination with flood
simulations, this study could also propose hydraulic works to solve existing flood problems
in the study area and to prevent the development of new flood problems. Likewise, this
methodology could contribute to the decision-making process for the development and
application of structural and non-structural measures to reduce the potential impacts of
intense rains and the development of emergency action plans to safeguard human lives
and increase resilience to intense rains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su132413513/s1, Table S1: Criteria to calculate morphometric parameters in the urban
subbasin. Table S2: Comparison between DEM and GCP obtained for altimetric (RMSEz) and
planimetric (RMSExy) accuracies.
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