
sustainability

Review

Analysis and Evaluation of Ramp Metering: From Historical
Evolution to the Application of New Algorithms and
Engineering Principles

Salvatore Trubia 1 , Salvatore Curto 1 , Salvatore Barberi 1, Alessandro Severino 2,* , Fabio Arena 1 and
Giovanni Pau 1

����������
�������

Citation: Trubia, S.; Curto, S.;

Barberi, S.; Severino, A.; Arena, F.;

Pau, G. Analysis and Evaluation of

Ramp Metering: From Historical

Evolution to the Application of New

Algorithms and Engineering

Principles. Sustainability 2021, 13, 850.

https://doi.org/10.3390/su13020850

Received: 14 December 2020

Accepted: 9 January 2021

Published: 16 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy;
salvatore.trubia@unikore.it (S.T.); salvatore.curto@unikorestudent.it (S.C.);
ing.salvatorebarberi@gmail.com (S.B.); fabio.arena@unikore.it (F.A.); giovanni.pau@unikore.it (G.P.)

2 Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy
* Correspondence: alessandro.severino@unict.it

Abstract: In the modern era, characterized by intense urbanization and frequent travel between
interconnected communities, the constant expansion of cities, associated with high densities and
growing need for traveling, has led to a significant increase in road traffic volumes. More than ever,
road traffic today requires effort to be managed effectively in order to improve performance and safety
conditions, given the greater probability of unpleasant events such as accidents or road congestion
with related delays and the increased stress levels of the user and infrastructure. Fortunately, there are
already various engineering tools, such as ramp metering, that can be used for this purpose. Ramp
metering allows for achieving the aforementioned desired benefits, including improving mobility,
reliability, efficiency, and safety, and even reducing environmental impact. It also has been shown
to be cost-effective from the existing literature. Further research will be necessary to strengthen the
quality, efficacy, and efficiency of ramp metering, especially considering the fast-paced progress in
technology (e.g., connected autonomous vehicles and drones used for surveys) and new challenging
scenarios (e.g., congested industrial areas and emergency vehicles). This review’s scope is to present
a general overview of principal ramp metering solutions, focusing on current research studies in the
last couple of years and highlighting some of the main algorithms used for this purpose, depending
on diverse scenarios. With this article, the authors desire to present the subject of ramp metering,
providing a general overview of its story, evolution, and recent analytical models.

Keywords: freeway; ramp; traffic flow; traffic management; road safety

1. Introduction

Vehicles attempting to access a busy freeway via an entry ramp might experience
difficulty merging into traffic, struggling to find a gap between other drivers in the main-
stream due to intense traffic volumes. When this happens, vehicles tend to line up behind
the stop line on the ramp, forming a queue and waiting until the first user in the queue
can move forward and enter the freeway. Subsequent users may still have to wait on the
stop line until they too find a gap to access. This circumstance is a cause of congestion
with all the related consequences, such as delays, decreased driving comfort levels, and
a higher risk of accidents. Ramp meters are traffic signals installed on freeway ramps to
control the frequency at which vehicles enter the flow of traffic [1]. The primary approach
today consists of a combined system of traffic lights (on-ramps) connected with traffic
sensors placed on the roadway (both on the freeway and the ramp) as showed in scheme in
Figure 1. These traffic lights operate according to the intensity of the mainstream of traffic,
signaling the ramp user when it is the right moment to enter the freeway. These specific
traffic lights can be similar to standard ones (as in the Netherlands, where the background
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color of lights is yellow instead of black), although more often they will adopt exceptional
cases and use just red and green lights. When amber is used, its duration after green is
very brief, consisting of rapid flashes before transitioning to red.
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Ramp meter systems are regulated by control algorithms using traffic-related input
parameters, such as traffic flow density, vehicle speed, travel times, and crash and accident
records to name a few. Many available algorithms have already been described in the
literature, and some will be described in this paper. The benefits of ramp metering consist
of a general improvement of mobility, reliability, efficiency, and safety, reducing congestion
(i.e., increasing traffic speed and volume) by breaking up the platoons of cars on on-
ramps and reducing demand. Even the environmental impact is reduced; the Federal
Highway Administration of the U.S. Department of Transportation reports, for instance,
that “Minneapolis identified a net annual savings of 1160 tons of emissions” and “Other
simulation analysis shows ramp metering to be effective in reducing CO emissions by
1195 t per year” [1]. From the same study, in terms of cost–benefit analysis, “the measured
benefits of implementing ramp metering systems can outweigh the associated costs by a
ratio of 15 to 1, [ . . . ] excellent for transportation improvements” [1].

The principal threats to the adoption of ramp metering are usually of a technical
or financial nature, one being, for instance, the complexity of computer simulations and
algorithms and another being the required funding for application. Besides that, further
constraints may also arise due to political and bureaucratic aspects. Gathering support
from the public might constitute a challenge as well. This article aims to offer a general
overview of ramp metering, introducing its history briefly, describing the main engineering
principles and algorithms, and proposing further considerations. The authors have selected
and cited several articles considered by them to be representative for covering the subject
on a general basis, focusing on research studies carried out over the last couple of years
to describe some of the most recent algorithms and ramp metering models. Articles
were chosen to cover the main aspects of ramp metering, presenting different types of
approaches (e.g., fixed time and local control), introducing some of the commonly used
computer algorithms (e.g., Asservissement Linéaire d’Entrée Autoroutière (ALINEA)) and
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software (e.g., VISSIM), reporting traffic-related key performance indicators (KPIs) for
comparison, and showing how ramp metering can be applied to different scenarios (e.g.,
geography, public transport, and automated vehicles). With this article, the authors wish
to contribute to ramp metering by providing knowledge about its general aspects and
showing the main benefits of ramp metering, in the hope that it will spark new ideas for
future research.

2. Background

The first form of ramp metering consisted of a police officer manually directing the
traffic flow from a ramp on the Eisenhower Expressway in Chicago, and it was deployed in
the early 1960s. Ramp metering then spread on an experimental basis to other major cities
in the United States (e.g., Detroit, Los Angeles, and Minneapolis–St. Paul) and became
more and more tested and advanced. It eventually began to also be adopted in Europe
and Oceania. Ramp metering began spreading in Europe during the 1980s, when the UK
installed it first on the M6 near Walsall (later updated) in 1986. The Netherlands introduced
ramp metering in Amsterdam in 1989, and it then spread to other cities like Rotterdam
and Utrecht, and Paris (Figure 2) with more recent projects like the Praktijkproef Amster-
dam started in 2013. In Germany, ramp metering can be found on the Autobahn around
Hamburg, Munich, and several other areas in the Rhine-Ruhr region. In Europe, interna-
tional research on the subject has been encouraged in the last two decades, with dedicated
funding for projects like the Network of Excellence for Advanced Road Cooperative Traffic
Management in the Information Society (NEARCTIS) and the European Ramp Metering
Project (EURAMP).
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In Australia, this technology is widely used in Melbourne. The first form of similar
traffic management was deployed in 1971, evolving into more recent solutions like integra-
tion with the Sydney Coordination Adaptive Traffic System (SCATS) [4]. Ramp metering
eventually landed in New Zealand in the early 1980s, being gradually implemented over
the years and representing the most extensive ramp metering system in the Southern
Hemisphere [5]. The application of ramp metering to diverse cities and countries has
significantly contributed to the evolution of this technology, as adaptation to the diverse
city layouts and road setups across the globe is generally necessary (the differences be-
tween American metropolises and European cities, with their different road systems and
extensions, immediately come to mind). Many research projects revolve around elaborating
and improving algorithms, some of which will be reviewed in the following chapters.

Despite the benefits of ramp metering, its diffusion is often hindered by various
kinds of challenges. Agencies commonly complain about the lack of political and financial
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support; the financial aspects include the costs for installation and maintenance, which
includes staff training. Moreover, funding requests might compete with other projects
having higher priority. Feasibility studies followed by cost–benefit analysis and perfor-
mance metrics can demonstrate these systems’ economic validity, proving the advantages
they can bring while reducing the expenses caused by their absence (e.g., costs related to
accidents and freeway queues). Other local agencies (including the public) might contend
the application of ramp metering due to a negative perception arising from a lack of both
technical knowledge and awareness of the benefits. Implementing communication plans
and information campaigns can be effective solutions, helping to gather consent and let the
public get familiar with ramp meters. The geometry of existing ramps, in many cases, is not
immediately compatible with ramp metering. It will not allow for easy installation, with
common problems being inadequate acceleration lengths, ramps being too short or too
close to each other, and visibility problems related to limited sight distances (vertical and
horizontal spotting sights). If funding for infrastructure improvement schemes is available,
this could represent an excellent opportunity to update the most strategically appropriate
ramps with refurbishment and modernization work. Where this is not possible—or can
be performed in conjunction—research for new solutions and technical approaches to be
implemented should be done.

3. General Technical Aspects

The first ramp metering strategy consisted of a policeman directing traffic on a ramp
to a freeway. Nowadays, ramp metering commonly means a set of technological systems
that rely on electronics and are aimed to facilitate lane entries on freeways, optimizing
the timing between ramp users and freeway mainstream traffic. Some typical, essential
components constitute ramp metering systems, such as signal heads, detectors, and signage.
Signal heads are the heads of traffic lights with colored lights, and they can be two-section
or three-section signal heads, depending on the presence of the amber light. Detectors are
tools, usually sensors, aimed at monitoring vehicles’ positions and movements, detecting
the presence of a vehicle positioned at the stop line, and monitoring the queue length
on a ramp or the traffic flow of the mainstream. Road signage consists of road signs to
assist drivers in their operations. Signs may vary according to national regulations, but
the general good practice and logic behind them are to safely communicate information
and instructions to drivers soon enough to allow prompt reactions. In this case, road signs
should be placed at least at the beginning of the ramp and near the signal head, including
perhaps adaptive screens or warning lights.

Furthermore, the three primary types of control strategies are fixed time, local control,
and system-wide control, and they are defined as follows:

• Fixed Time: This is the easiest to be implemented, as it does not depend on traffic
detection. On the other hand, due to its static nature, it is a relatively rigid approach
and cannot adapt to real-time variations in traffic flow and roadway conditions;

• Traffic Responsive: The control parameters are established in relation to the collected
real-time data. However, such a method can occur only in specific time intervals
during the day due to management or policy reasons;

• Local Control: This approach considers the traffic flow intensity, thanks to the moni-
toring sensors (which can be of various types) installed on the freeway and ramp. It
focuses on a defined (local) area, and as it considers traffic variations, it can adjust and
regulate itself, depending on the traffic flow, in real time. Its application is relatively
simple, but it usually focuses on a ramp and its nearby area and ignores other nearby
ramps’ influence;

• System-Wide Control: This is similar to local control, but on a larger scale and for a
broader system. If local control generally focuses on a ramp and its primary junction
point on the freeway, system-wide control also takes into consideration adjacent
ramps and a broader range of traffic flow across the freeway. The combined use of
these two control methods allows, for instance, that if the system-wide control is
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offline or malfunctioning, it is possible to rely on local control as a backup measure.
The advantage of this approach is that it is traffic responsive and can work toward
freeway facility optimization. The disadvantage is that it can become very complex
and expensive to implement and maintain as reported in Table 1 [6].

Table 1. Comparison of control strategy types [6].

Control Strategy Advantages Disadvantages

Fixed Time Easy implementation Difficult adaptations to unexpected traffic changes
Local Control Continuous monitoring, self-regulating Limits of a local approach

System-Wide Control Larger system application, traffic
responsiveness High costs

Modern systems rely on electronics and are fundamentally based on the interconnec-
tion between traffic lights installed on on-ramps and road sensors placed on on-ramps and
the freeway. This interaction is regulated through sophisticated algorithms that consider
the characteristic parameters of road transport, such as traffic intensity and vehicle speed.
These algorithms exploit the control theory, which will not be discussed in detail in this
paper. The best-fitting algorithm can be selected according to the outputs of computer-
based simulations and available data sets, wisely adapted to model and recreate a given
scenario. This approach can be time-consuming and possibly expensive. However, it is
relatively customizable and adaptable, and as technology becomes more refined by time
(e.g., machine learning), it gives them hope of getting more and more accurate results. As
one can imagine, these algorithms’ typical input parameters are road traffic-related and
typically include traffic volumes, vehicle speeds, travel times, crash and accident records,
and even roadway inventory, to name a few.

Besides that, it is also understandable that the larger the database available, the better
the modeling and simulation results will be and, therefore, the more accurate the control
algorithms that will be selected. Volume data is collected in the form of video or loop
detection along the ramp and on the freeway mainline upstream and downstream of
the ramp. Furthermore, data analysis should be performed both before and after the
installation of ramp meters. In general, the classification of ramp metering strategies and
algorithms can be done according to several aspects: the extension of the interesting area
(i.e., number of operating lanes), the number of vehicles to pull onto the freeway for each
cycle, and the type of road connection (freeway-to-freeway). Ramp metering methods can
be classified into two primary categories: fixed time control and traffic flow responsive
control. Fixed time ramp metering methods consider historical traffic information to
determine the metering rates and establish the rates on a time-of-day basis [7]. These
methods seem to be more reliable in steady traffic flow conditions. Papageorgiou and
Kotsialos [8] provided a comprehensive classification for ramp metering methods, reported
below in Figure 3. ALINEA (Asservissement Linéaire d’Entrée Autoroutière), METALINE,
and AMOC (Advanced Motorway Optimal Control), as well as the others shown on the
chart below, are algorithms for determining metering rates.

A comparative paper focusing on Australasia ramp meters was presented by Amini et al. [9],
considering state-of-the-art coordinated systems within a network-wide environment. The
paper offers many insights and an overview of some technical aspects, including a summary of
the foci of Ramp Metering evaluation studies and the relative algorithms in various world areas.
ALINEA (Asservissement Linéaire d’Entrée Autoroutière) is a local control type of algorithm,
probably one if not the most popular, being widely applied within ramp metering studies. We
suggest reading “ALINEA: A local feedback control law for on-ramp metering” [10], written by
M. Papageorgiou et al., to get an understanding of this system. In their work “A Ramp Metering
Method Based on Congestion Status in the Urban Freeway” [11], Zhi Liu et al. focused on the
concept of critical occupancy due to its difficulty to obtain and the low accuracy of the results.
Consider the scheme reported in Figure 4.
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As reported in [11], the control rate can be calculated normally with ALINEA through
Equation (1):

R(k) = R(k− 1) + kr
[
Ô−O(k− 1)

]
(1)

where R(k) is the ramp metering rate related to the kth cycle; kr is the regulator parameter,
usually determined according to empirical value; Ô is the occupancy downstream from the
flow–occupancy chart, measured when the flow is equal to the capacity; and O(k − 1) is
the actual measured occupancy value of the k − 1th cycle detector.

The authors have proposed an updated version of the algorithm and called it CS-
ALINEA, which uses the traffic flow instead of the occupancy as the control parameter,
while the control rate can be selected according to the congestion status and reclassified
adaptively. This way, the control rate for Equation (2) will be

R′(k) = R(k− 1) + KF

[
q̂− q̃out (k− 1) +

(L′ − L1)

µ
λ

]
(2)

where R’(k) is the control rate obtained with CS-ALINEA; L’ is the cumulative queue
length; L1 is the critical queue length; KF is the regulator parameter; q̂ is the mainstream’s
expected saturated flow; q̃out(k− 1) is the flow from upstream the ramp to downstream
in the k − 1 cycle; µ is the vehicle headway on the ramp queuing; and λ is the number of
lanes on the ramp.

This study also adopted the segmented control method to consider the impact of ramp
overflow on ground road traffic, adjusting the signal timing scheme by selecting the control
rate to avoid ramp overflow. Ramp control was simulated with the SUMO (Simulation of
Urban Mobility) platform, which allowed for obtaining an intermodal traffic model of all
vehicles and pedestrians, in addition to other tools for emission estimation, which was also
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used here to test the algorithm. The adopted car-following model was the intelligent driver
model, and the selected parameters were among those types of road transportation, such
as speed, acceleration, minimum distance, response time, and vehicle length. The results
confirmed that this method can optimize the ramp queuing length and reduce vehicle
waiting times, still guaranteeing the urban freeway’s efficiency. The results are reported
below in Table 2, where it is possible to see that the mainstream’s travel time was reduced
with the algorithm’s implementation, corresponding to an increase in ramp waiting time
and average queue length, as well as improved mainstream average traffic throughout.

Table 2. Four indicators at different control schemes [11].

Controllers Mainstream Travel
Time (s) Ramp Waiting Time (s) Average Queue

Length (m)

Mainstream Average
Traffic Throughout

(veh/h)

No-signal control 68.32 0 0 315
Fixed timing 57.88 33.61 8.97 432

ALINEA 56.36 35.31 9.24 434
Q-learning 53.25 32.67 8.61 436

CS-ALINEA 58.91 27.79 7.36 429

The ramp waiting time and average queue length values for the no-signal scenario
were 0 because vehicles, in this case, had no restrictions for entering the ramp; therefore,
they merged in the mainstream without any waiting time and without forming queues on
the ramp. At first glance, the fact that there were no queues and the waiting time was null
on the ramp might induce one to think of a better mainstream. However, it must be noted
how the related mainstream travel time was visibly higher, and the mainstream average
traffic throughout was higher than in other scenarios, showing that the mainstream traffic
performance was improved with the application of the chosen algorithms.

Dadashzadeh and Ergun [12] have studied the combination of ALINEA with another
merging congestion strategy: variable speed limits (VSLs). They analyzed the case of
high volumes of bus transportation on the Istanbul Metrobus lane through a microscopic
simulation with VISSIM and its vehicle actuated programming (VAP) feature called VisVAP.
VISSIM is a widely used piece of simulation software oriented toward modelling and
making forecasts on road traffic and studying ramp metering. Compared with the existing
VSL+ALINEA model, this method offers improved average delays of mixed traffic and
buses, fuel consumption, emissions, and average speeds, in addition to boosting bottlenecks.
For instance, analysis of the results highlighted that the application of this algorithm
produced a reduction of the total travel time, an increase in bottleneck throughput, and
a decrease of average vehicle delays and some stops. Detailed tables with performance
results are available for the study, with an excerpt of these results reported below in
Tables 3 and 4, where it is also interesting to note how ramp metering brought benefits
under the environmental aspect, helping by reducing polluting emissions.

Indeed, although algorithms are a useful tool to facilitate the computational process,
the implementation of road infrastructures often requires a study in the design phase
that gives higher certainties on future impacts. In this regard, simulation software like
VISSIM is helpful to carry out forecasting processes. Another exciting example of VISSIM
application is the research study carried out by Mitkas and Politis [13].
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Table 3. Average vehicle delays and stops across the examined scenarios [12].

Scenario Average Delay Average Delay Average Delay Number of
Stops

Number of
Stops

Number of
Stops

(All Vehicles) (Car) (Metrobus) (All Vehicles) (Car) (Metrobus)

No Control 172 174 96 31,479 30,727 123
ALINEA 100 102 51 21,417 20,997 50

t-test (p-value) 0.05394 0.06043 0.02918 0.648249 0.57029 0.00348
VSL 98 99 39 15,813 15,360 84

t-test (p-value) 0.00085 0.00087 0.01634 0.009676 0.01038 0.04530
VSL + ALINEA 80 81 48 18,980 18,536 79
t-test (p-value) 0.00865 0.00945 0.00220 0.549214 0.50991 0.00086

VSL +
ALINEA/B 57 58 9 15,485 15,274 6

t-test (p-value) 0.00186 0.00212 0.00004 0.211368 0.16400 0.00007

Table 4. Fuel consumption and emissions across the examined scenarios [12].

Scenarios LOS VEHS FUEL
CONS. CO NOX VOC

No Control LOS F 5509.00 3770 69,613 13,544 16,133
ALINEA LOS D 5759.00 2319 42,822 8332 9925

VSL LOS D 5692.00 2140 39,511 7687 9157
VSL + ALINEA LOD D 5741.00 1902 35,114 6832 8138

VSL + ALINEA/B LOS C 5904.20 415 29,024 5647 6726

The environment of analysis was a complex interchange at the Thessaloniki Ring
Road in Greece. The authors surveyed traffic volumes via a drone (DJI Phantom 4) and
then developed a model with VISSIM, analyzing several different scenarios including an
increase of traffic volumes with and without ramp metering (i.e., traffic signals (fixed time
and vehicle actuated). These were modeled thanks to VISSIM, as mentioned above, with
an add-on called VisVAP. This procedure eventually led to the production of a flowchart,
which was then used to program and activate the ramp’s signal light. Finally, the results
produced from the scenarios were examined, and the KPIs (chosen to assess performance)
were collected for a general evaluation, proving that ramp metering effectively brought to
road traffic the many benefits reviewed so far in this article. The examined KPIs were the
total travel time, average vehicle speed in entrance, average vehicle speed in exit, and level
of service. A comparison between the selected KPIs led to these conclusions:

• The total travel time, measured in seconds, was longer after the traffic volume was
increased (as expected) and then reduced once ramp metering was implemented;

• The average vehicle speed in entrance did not show relevant differences, due to this
speed being measured before the ramp–freeway merging point from vehicles affected
only by the mainstream;

• The average vehicle speed in exit showed a significant reduction in correspondence
with traffic incrementation across the various scenarios. The difference between the
exit and entrance speeds was reduced by a significant estimate of 35%, due to vehicles
merging from the ramp into the mainstream and to a steeper road slope. When the
presence of ramp metering was considered, the average vehicle speed in exit was
higher, but still significantly lower (by about 30%) when compared with the average
speed in entrance;

• The levels of service obtained from the simulation were A, B, C, and E, depending on
the scenario. In particular, for one of the scenarios where the obtained level was E, the
authors decided to drop it to F because the network was completely saturated, and
eventually a large amount of entering vehicles could not complete their travel. (In fact,
it seems that this collapsing network behavior could actually be seen for all the KPIs)
The implementation of ramp metering again brought improvements to the network.
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It is interesting to see that the model was evaluated for accuracy by comparing the
simulated traffic with the actual measured data, using a particular statistical index called
GEH (from the initials of its inventor, Geoffrey E. Havers), used in the traffic industry to
compare two sets of traffic load:

GEH =

√
2(M− C)2

M + C
(3)

where M is the modeled hourly traffic volumes and C is the measured hourly traffic
volumes.

If more than 85% of the GEH is less than 5, then the simulation was correct. The
values of the GEH obtained in this study ranged between 0.050 and 0.872, depending
on the analyzed road axis. Therefore, the simulation could be considered accurate. The
authors also compared the measured and modeled travel times (from 10 simulation runs)
for a predetermined distance, finding that the deviation was less than 5% and, therefore,
demonstrated their model’s reliability. This situation has also been graphically represented
in the chart reported in Figure 5 below.
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In conclusion, it was proven once again how the deployment of ramp metering had
positive effects on road traffic conditions. Oskarbski and Zarski [14] also used VISSIM;
their work was aimed to assess the impact of intelligent transport systems (ITSs) like ramp
meters on the road networks adjacent to freeways and motorways, concerning traffic safety
and efficiency, through the use of macroscopic, mesoscopic, and microscopic models and
with the comparison of several related KPIs. The adopted simulation models and software
were VISUM for the macroscopic level (to gather data related to traffic distribution), Saturn
for the mesoscopic level, and VISSIM for the microscopic level (these last two were used to
perform detailed analysis). It is interesting to note that ALINEA was the algorithm used to
model the ramp metering system with a Python script.

This study also considered different scenarios, according to the presence or absence of
ramp metering in the simulation, and the case of a variable speed limit and the presence
of road accidents. The selected KPIs were travel time reliability (average delays/vehicle),
the smoothness of traffic flow in the road network, travel time reliability on the significant
road, and efficient traffic control. The analytical results demonstrated that the deployment
of ramp meters had a more significant impact in the case of high traffic volumes (above
1700 veh/h/lane) and performed well if associated with other ITSs for average traffic
(around 1010 veh/h/lane). In the case of low traffic volumes, other ITSs may be more
suitable. Another example of VISSIM utilization can be found in a research study produced
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by Abu-Bakr et al. [15], who evaluated the effects of ramp metering on three critical
on-ramp sites in an urban expressway in the Greater Cairo region (GCR).

The model was calibrated with data collected during peak periods, and three strategies
were considered: fixed time, actuated control, and no control at all. The parameters used
for calibration included maximum decelerations, minimum headways, and the safety
distance reduction factor. Occupancy rates, obtained from installed sensors on both the
mainstream and the on-ramps in correspondence with the upstream and merging points,
were used as parameters when performing the actual control scenario design. Specifically,
the adopted parameters for this scenario were the cycle update, mainline critical occupancy,
and on-ramp critical occupancy. The chosen KPIs for comparison were the average speed,
average vehicle delay, and on-ramp queue length. The GEH index was calculated, and
since all its values in this study were lower than 5, the simulation could be considered
correct, and the model, therefore, resulted in being well-calibrated and reliable. As could
be expected, the implementation of ramp metering brought benefits to the simulated traffic
flow, improving safety and efficiency conditions, with a visible increase of system speeds
and a reduction of vehicle delays. As an example of the obtained findings, Table 5 below
reports the performance results for the actuated signal strategy applied to one of the three
analyzed sites (site n.2, the Abdel-Monem Riyadh on-ramp).

Table 5. Performance results for the fixed signal timing scenario at site-2 [15].

Control Logic Speed (km/h) Vehicle Delay
(sec/veh)

Mainline
Upstream Speed

(km/h)

Mainline Down
Stream Speed

(km/h)

Onramp Queue
Length (m)

No control 8.2 113.4 6.5 9.1 200.0
Control logic-1 10.3 101 8.8 12.1 129.9
Control logic-2 9.9 102.1 8.7 12.9 122.1
Control logic-3 9.9 101.9 8.7 11.4 117.2

Several other authors have researched other different strategies. The model developed
by Yu Han et al. [16] operated on two levels of control. An upper level was designed with
a model predictive control (MPC) approach and considered the total traffic flow entering
the freeway network via ramps in order to optimize the total network travel time. The
lower level was instead designed to distribute the optimal total inflow to each ramp of
the freeway, according to the feedback of local traffic conditions. The MPC approach has
become more refined across the last few decades and includes a prediction model that can
forecast the evolution of traffic dynamics and estimate the optimal control scheme for a
specific given period. A well-conducted predictive analysis allows for making cost-effective
decisions. Hence, at the upper level, the total traffic flow from ramps to the freeway is
optimized through the MPC model, and traffic accessing a stretch of freeway is forecasted
via a proposed macroscopic fundamental diagram (MFD) model. In contrast, the optimal
total inflow is re-distributed to ramps at the lower level, according to the received feedback
on local traffic. This control method was also tested with different models, such as CTM
(cell transmission model) and METANET, and compared with other similar approaches. Its
results have been shown to achieve desirable performance in reducing vehicles’ overall
times. The authors also presented two case studies, the first where an extended CTM was
used as the process model and the second using METANET instead. An extract of the
obtained results is reported below in Table 6.
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Table 6. An example of the performance values obtained with several control scenarios [16].

Total Time Spent (TTS) Considers Both the Freeway and All On-Ramps

Scenario Without Control System Optimal MFD-Based Extended CTM-Based

TTS (mainstream +
onramp) 4341.2 (4263.3 + 77.8) 4143.5 (4020 + 123.5) 4163.7 (4018.4 + 145.3) 4619.2 (4012.7 + 606.5)

Improvements (%) 0 4.6 4.1 −6.4
Computation time

(s/control step) - 246.3 3.0 22.1

A METANET-based macroscopic traffic model was also adopted by Wang and Niu [17]
as a forecasting model, along with microsimulation tests performed with VISSIM and Visual
C++ for the evaluation and comparison of different scenarios, considering both isolated
and integrated cases for ramp metering and a variable speed limit (VSL). The study’s
site was the section of an urban corridor named Whitemud Drive (WMD) in Edmonton,
Canada (Figure 6). The microsimulation setup flowchart is also reported below in Figure 7.
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The authors examined the problem of bottlenecks arising during peak periods, caused
by excessive demand from both ramps and mainstream traffic, and reported three main
conclusions:

• A proactive use of ramp metering and VSLs significantly improves freeway mobility;
• The control performances between ramp metering and VSLs within the same demand

scenario are different, suggesting that ramp metering may help alleviate the congestion
caused by on-ramp flows, whereas VSLs fit better when controlling the mainstream
traffic flow, bringing a greater level of benefit in this case;

• In the case of the integrated use of ramp metering and VSLs, the former reacts first,
and the latter takes control as the demand grows. The two control systems work
together during the highest congestion level, and ramp metering is deactivated in
the case of a long ramp queue. Finally, when congestion is over, ramp metering is
activated occasionally to manage the last strains of traffic.
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Another research study on ramp metering was published in October 2020 by Xiaobo
Ma et al. [18]. The study highlighted the lack of knowledge about data requirements
(i.e., referring to the data collection duration for users’ accommodation times (to become
acquainted with the new circumstance)) and evaluation times. The proposed approach
was statistical and non-parametric, and the model accuracy was not affected by data
distribution and random variables. For the extent of the data required for assessment,
the authors’ case study considered three active ramps on State Route 51 of the Phoenix
metropolitan area (Arizona, USA), as the Arizona Department of Transportation (ADOT)
was switching from a fixed time strategy to a responsive ramp control strategy. From the
results, and for this particular case study, the authors found that two months of data should
be collected to possess enough information for ramp metering assessment (Table 7).

As ramp meters work with the help of algorithms, this also happens with automated
vehicles, a technology that is expected to become more and more widespread in everyday
life. The interactivity between ramp metering and automated vehicles has been covered
recently by Tajdari et al. [19], specifically regarding the integration between lane changing
and ramp metering. Based on a simplified traffic flow model and formulated as a linear
quadratic integral regulator, a feedback controller is intended to optimize traffic flows in
motorway bottlenecks. The feedback controller’s optimal setpoints are processed by an
extremum seeking algorithm introduced by the authors. This method is evaluated through
simulation with a macroscopic, multi-lane model that considers the capacity drop effect.
The final result is a methodology that permits efficient integrated control between the
lane-changing and ramp metering technologies.
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Table 7. Minimum amount of data for ramp metering evaluation [18].

Site Time Performance Measures Aggregation Level
Detector

Based
Flow Rate

Detector Based Speed Probe Vehicles Based Speed

15-min 1-min 5-min 10-min 15-min 1-min 5-min 10-min 15-min

1 AM Minimum Evaluation
Time (Days) 6 9 9 10 8 11 11 12 13

KS test statistic 0.02 0.01 0.02 0.02 0.03 0.01 0.01 0.02 0.02
KS test critical value 0.21 0.04 0.1 0.13 0.18 0.04 0.09 0.12 0.14

PM Minimum Evaluation
Time (Days) 7 6 7 7 8 6 8 8 8

KS test statistic 0.03 0.01 0.03 0.04 0.03 0.01 0.01 0.01 0.02
KS test critical value 0.17 0.05 0.1 0.14 0.16 0.05 0.09 0.13 0.16

2 AM Minimum Evaluation
Time (Days) 7 13 13 12 13 10 8 10 8

KS test statistic 0.02 0.04 0.04 0.05 0.04 0.01 0.03 0.03 0.04
KS test critical value 0.2 0.04 0.08 0.12 0.14 0.04 0.11 0.13 0.18

PM Minimum Evaluation
Time (Days) 6 6 8 8 8 8 8 8 8

KS test statistic 0.03 0.02 0.05 0.06 0.06 0.01 0.02 0.02 0.03
KS test critical value 0.19 0.05 0.09 0.13 0.16 0.04 0.09 0.13 0.16

3 AM Minimum Evaluation
Time (Days) 8 8 9 10 8 8 10 8 8

KS test statistic 0.02 0.02 0.02 0.01 0.03 0.02 0.02 0.02 0.04
KS test critical value 0.18 0.05 0.1 0.13 0.18 0.05 0.09 0.15 0.18

PM Minimum Evaluation
Time (Days) 6 6 6 6 6 8 8 8 9

KS test statistic 0.04 0.01 0.02 0.04 0.06 0.01 0.02 0.02 0.03
KS test critical value 0.19 0.05 0.11 0.15 0.19 0.04 0.09 0.13 0.15

This solution does not require excessive computational effort, as its parameters are
insensitive to the selected parameters and therefore easily applicable without resource-
consuming calibration processes. The study also offers many interesting insights for future
research by mentioning, for example, micro-simulation, incorporation into a larger picture
within mainstream control strategies altogether with VSL or multiple bottlenecks, or ex-
tending the research to more complex networks. Table 8 represents the total time spent
across the various examined scenarios, along with the total number of lane changes, accord-
ing to the penetration rate η (expressed as a percentage; a value of η = 100% corresponds to
100% connected and automated vehicles).

Yongheng Chen et al. analyzed the behavior of “Coordinated Ramp Metering Based
on Real-Time OD Information” [20]. With the advancement of Internet of Vehicles (IoV)
technology, information about the origin–destination of vehicles will become available
in real time shortly. By using a system of real-time OD (origin destination) traffic flow
information together with sets of coordinated ramp metering (CRM), it will be possible
eventually to develop a new strategy in order to reduce the total travel time and bottleneck
breakdowns on freeways during rush hour. Starting from a quantitative hierarchical model
(QHM) algorithm, the authors determined the flow priorities according to real-time OD
information and developed a new algorithm called OD-QHM. This algorithm prioritizes
on-ramps with short total travel distances. The results obtained from simulation analysis
confirmed this algorithm’s validity and stability. Additionally, a comparison between the
non-control case and the ALINEA algorithm application was carried out. Table 9 reports
some network performance indicators returned by the OD-QHM algorithm.
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Table 8. Total time spent (TTS) and TNLC (total number lane change) across different scenarios [19].

Penetration Rate
(%) TTS (Veh.h) TTS

Improvement (%)

Total Number of
Lane Change

(N-LC)

N-LC
Improvement (%)

No control Case 1060 15,210

Without
activation logic

25 795 25 15,163 0.3
50 783 26.1 11,926 21.6
75 779.9 26.4 10,969 26.8

100 777.9 26.6 9938 34.6

Without
activation logic

25 821 22 5648 62.9
50 810 23.6 4769 68.6
75 806.6 23.9 4474 70.6

100 802.7 24.2 4143 72.8

ALINEA 100 901.2 15 129.82 14.6

Table 9. Overview of network performance indicators. Conditions (a), (b,) and (c) refer to 0.5×, 1.0×, and 1.5× flow,
respectively [20].

(a)

Scenario
300 s 600 s

TTS (%) TD (%) TTD (%) ADR (%) TTS (%) TD (%) TTD (%) ADR (%)

No control 2003 1731 23,438 266 2005 1728 23,592 264

ALINEA 1409 (−30) 1124 (−35) 25,247 (8) 160 (−40) 1793 (−11) 1512 (−13) 24,494 (4) 222 (−16)

OD-QHM 779 (−61) 488 (−72) 25,138 (7) 70 (−74) 1394 (−30) 1111 (−36) 24,013 (2) 167 (−37)

(b)

Scenario
300 s 600 s

TTS (%) TD (%) TTD (%) ADR (%) TTS (%) TD (%) TTD (%) ADR (%)

No control 2233 1959 23,404 301 2325 2051 22,487 328

ALINEA 1820 (−18) 1532 (−22) 25,245 (8) 219 (−27) 2200 (−5) 1917 (−7) 23,993 (7) 288 (−12)

OD-QHM 1183 (−47) 881 (−55) 25,838 (10) 123 (−59) 1945 (−16) 1646 (−20) 24,691 (10) 240 (−27)

(c)

Scenario
300 s 600 s

TTS (%) TD (%) TTD (%) ADR (%) TTS (%) TD (%) TTD (%) ADR (%)

No control 2266 1977 24,758 287 2355 2062 23,838 311

ALINEA 1886 (−17) 1606 (−19) 24,534 (−1) 236 (−18) 2211 (−6) 1930 (−6) 23,543 (−1) 295 (−5)

OD-QHM 1181 (−48) 865 (−56) 26,957 (9) 116 (−60) 1975 (−16) 1671 (−19) 24,907 (4) 242 (−22)

4. Economical Aspects and Critical Issues

As shown above, ramp metering represents an efficient technique that, with minimum
economic impact, can affect a traffic volume management strategy positively on the freeway
so that general traffic flow can occur without creating disease in minor roadways [21].
However, like any other engineering artifact, it is necessary to analyze the economic
aspects deeply. Two main phases are fundamental: deployment and maintenance. From
an economic point of view, they represent the immediate impact. The main obstacle of
ramp metering system implementation regards the institution’s interests. With recent
innovations, such as autonomous vehicles and smart cars [22], they are more likely to
allocate funds to other transportation infrastructure upgrades concerning smart roads
environments (SREs) [23] and intelligent transportation systems (ITSs), considering that
future perspectives of communities are leading to the gradual implementation of smart
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cities [24]. Therefore, necessary investments for ramp metering deployment are first
subjected to an in-depth analysis of the art’s context state and where it will be implemented.
Of course, the analysis of traffic flow will be fundamental. However, it will not represent
the main aspects, considering that ramp metering proposal congestion phenomena and
capacities would have been detected. Ultimately, the investment quantity will be linked
to the required adaptions of existing ramps being subjected to queues and platoons more
frequently. It is possible to provide a piece of general information about investment and
cost levels concerning ramp metering approaches and the control strategies discussed in
Section 3, shown in Figure 8, and based on [25] if the expected investments levels are low,
medium, or high and if the cost types are affected.

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 20 
 

Section 3, shown in Figure 8, and based on [25] if the expected investments levels are low, 
medium, or high and if the cost types are affected. 

 

 
Figure 8. General comparison of control strategy cost levels [25]. 

5. Discussion 
In the last sixty years, ramp metering has evolved from a mere punctual traffic man-

agement intervention, with a single person directing traffic for on-ramps, to sophisticated 
analytical strategies capable of intercrossing with complex systems and embracing large 
freeway networks with multiple ramps. Moreover, consider its benefits in terms of traffic 
flow quality with consequent lower emissions, where the latter represents a feature that 
comprises all fields of the transport sector [26]. Computer engineering has allowed the 
modeling and simulation of realistic scenarios [27,28], permitting us to collect data, make 
predictions, and adjust the models to diverse circumstances. Mathematical algorithms 
have been coded into computer models, whose simulation accuracy and performance are 
improving day by day thanks to progress in the IT field and the continuous and eager 
research work of transportation specialists. 

OPERATIONAL COSTS

CAPITAL COSTSMAINTENANCE COSTS

LOCAL CONTROL

OPERATIONAL COSTS

CAPITAL COSTSMAINTENANCE COSTS

SYSTEM WIDE CONTROL 

FIXED TIME TRAFFIC RESPONSIVE

Figure 8. General comparison of control strategy cost levels [25].

5. Discussion

In the last sixty years, ramp metering has evolved from a mere punctual traffic man-
agement intervention, with a single person directing traffic for on-ramps, to sophisticated
analytical strategies capable of intercrossing with complex systems and embracing large
freeway networks with multiple ramps. Moreover, consider its benefits in terms of traffic
flow quality with consequent lower emissions, where the latter represents a feature that
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comprises all fields of the transport sector [26]. Computer engineering has allowed the
modeling and simulation of realistic scenarios [27,28], permitting us to collect data, make
predictions, and adjust the models to diverse circumstances. Mathematical algorithms
have been coded into computer models, whose simulation accuracy and performance are
improving day by day thanks to progress in the IT field and the continuous and eager
research work of transportation specialists.

Technology is evolving so quickly that new inventions are introduced to the public
at a relatively fast pace, challenging researchers to rapidly develop up-to-date systems to
adapt and improve users’ quality of life. An example is the introduction of the Internet of
Things (IoT) and Internet of Vehicles (IoV), which eventually will lead to the widespread
everyday use of automated vehicles. As a consequence, many of the studied models might
have to be updated, taking this new technology into consideration because its diffusion will
cause an inevitable impact on traffic as we know it today [29,30]. If this circumstance might
appear frightening and uncanny at first, especially to the less tech-savvy members of the
public, it is instead an exciting opportunity to develop challenging future research studies
on the subject and improve people’s quality of life. Research could focus, for instance, on
autonomous vehicles, but also on the improvement of the algorithm when more powerful
computers are available or using new technology such as drones to survey existing traffic.
Faster Internet connections will allow a more rapid data exchange in real time between
vehicles and infrastructure, allowing users to get real-time information on their vehicles.
Public transport may become more popular and used more often, leading to the need for
related ramp metering models [31,32].

An exciting subject might be how emergency vehicles, such as ambulances or fire
engines, affect ramp metering operations and affect mainstream traffic in the case of
an emergency run. Another interesting scenario to investigate could be the behavior
of ramp metering applied on freeways in industrial areas, perhaps in road networks
close to industrial seaports, where heavy vehicle traffic (typically container trucks) can be
significant. A reduction of travel times leads to quicker deliveries and cost optimization. On
the other hand, having queues of heavy trucks might be threatening in terms of pollution.
Concerning environmental aspects, it could be interesting to see what the impact and
possible improvement are in terms of energy, such as whether it is worth it to implement
solar panels as local electricity sources, or comparing the fuel usage for trucks on a ramp
queue with ramp metering, in comparison with a free flow scenario. Finally, ramp geometry
could be studied to achieve optimized results in synergy with ramp metering. Research
can also contribute by providing and improving useful recommendations to the involved
stakeholders.

Good practice can include the multidisciplinary and combined engagement of all
the stakeholders, with the cooperation of technicians, members of the public, and local
authorities’ staff, to name a few, holding regular meetings and doing research alongside
universities, for example. Authorities such as councils or highway agencies can face
opposition from members of the public or even from other authorities (and vice versa),
usually due to political circumstances, cost-related matters, or just opposition arising from
a lack of knowledge. In this case, a suggestion could be to prepare and enforce an effective
communication plan, aimed at illustrating the benefits brought by ramp metering to the
community and transport network, displaying the achieved benefits in terms of costs,
environment, and life quality, reporting the cost–benefit analysis or other technical studies.

Authorities should adapt the contents and communication style depending on the
targeted audience. Getting too technical with members of the public might result in
obtaining an opposite reaction than the one desired, whereas it is suggested to adopt a
more technical approach when dealing, for instance, with the technical office of a highway
agency. A sufficient amount of dedicated literature should be made available to members of
the public so that, in case of a new ramp metering proposal, they can be able to investigate
and see the benefits introduced by this technology. The primary focus should be on life
quality, safety, cost and time reduction, and the environment. Moreover, authorities might
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also be interested in technical costs, asset capitalization, and achieving company objectives,
so the focus should also revolve around these aspects. In any case, all the information
should be presented scientifically and professionally, using reliable data analysis and
precise and scientific performance metrics (for instance, the KPIs mentioned in this review).
It is strongly recommended to research and develop new systems whenever the funds,
time, and political support are available and sufficient. In case of scarcity of funds or tight
deadlines, one might be tempted to adopt and apply existing ramp metering schemes to
similar scenarios. Even if an existing scheme can be tailored to a custom setup, it is still
recommended to justify any technical choice scientifically and demonstrate the following
benefits.

Another recommendation is to hire and train professional staff with the required
skills to implement and manage ramp metering, covering all its aspects from the design
to the traffic management operations. This may range from the engineering departments
involved in the design phase, to the maintenance staff for operations, to constabulary forces
that have to operate on-site on freeways.

Ultimately, it is necessary to pay attention to simulation processes through the ap-
propriate software mentioned in Section 3, as it is necessary to carry out a first phase of
calibration of the model. Model calibration is a fundamental preliminary phase to start
various simulation scenarios, since the parameters of traffic flows and behavioral models
are established.

For example, regarding the VISSIM software, vehicle behavior is established on the
basis of queue lengths, mainline speeds, and ramp metering signal status [33]. However,
on the basis of some studies, the most appropriate software results would be from SUMO,
due to the fact that it provides better traffic scenario visualization in addition to better
merging behavior and the capability of carrying out multiple simulation instances in a
parallel way [34,35]. Then, it has to be highlighted that SUMO also has several drawbacks,
as it is not possible to carry out a model of lateral displacement within a lane or bottleneck
formation because of vehicles with reduced speeds [36,37].

In conclusion, considering that calibrating a model can be a slow process, some
studies developed quicker procedures based on evolutionary algorithms (EAs) and parallel
computing techniques (PCTs) [38,39].

6. Conclusions

In this paper, the authors aimed to review a technique concerning traffic management
on ramps, a critical point of every roadway network. Such a technique represents a
valid intervention that can be implemented with significant cost savings, guaranteeing
congestion phenomena reduction on freeways. Therefore, since it was applied for the first
time in the early 1960s, technological innovation facilitated its operation and study.

The former can be easily carried out through intelligent transport systems (ITSs) and
smart road environment (SRE) implementation. In describing various control strategies,
several algorithms were analyzed, observing their applications and obtained results, mainly
related to the ALINEA method. The benefits cited were mainly in terms of the average
flow speed and safety. Therefore, the fundamental parameters to achieve a particular
level of service (LOS) could predict such advantages through the simulation software’s
forecasting process, as in VISSIM. Finally, ramp metering represents a valid technique
from an economic point of view, considering that its implementation occurs mainly on
existing roadways (especially freeways) that, for several reasons related to urbanization
and the increasing number of vehicles, need to be upgraded or adapted for specific capacity
performances.

This article aims to offer a general review of ramp metering, illustrating the main
aspects of ramp metering and where it can be applied. Our wish is that if the main aspects
are presented, this can be a starting point for new ideas and future research. Through the
analysis of KPIs within a study, it can be seen how ramp metering introduces benefits to
road networks. However, a comparison between the reported research studies is not always
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immediate, because they often consider diverse scenarios that are not easily comparable
with each other (e.g., road geometry, public transport, and the methods of surveys). The
design phase is often regulated by national regulations that may differ significantly, so we
preferred to focus on the article’s review nature.

This circumstance could be an interesting idea for another article, focusing on the
design aspect and the comparisons between different cases. The results from the examined
studies show traffic benefits from ramp metering. This achievement can be seen through
the analysis of performance parameters obtained with mathematical and computational
models. With technology advancing rapidly, there will be new challenges for new methods
to be developed and new scenarios to be studied.
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