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Abstract: Solar photovoltaic (PV) energy technology can play a key role in decreasing the amount of
carbon emissions associated with electrical energy production, while also providing an economically
justifiable alternative to fossil fuel production. Solar energy technology is also extremely flexible
in terms of the size and siting of technological development. Large scale PV farms, however,
require access to large tracts of land, which can create community-scale conflict over siting solar
energy development projects. While previous scholarship offers frameworks for understanding
the mechanisms at play in socio-technological system transitions, including the renewable energy
transition, those frameworks fail to center community priorities, values, and concerns, and therefore
often do not provide an effective means of addressing community conflict over solar siting. This
paper provides a conceptual exploration of how a proposed framework can guide decision making
for solar development across multiple scales and settings, while also illuminating the potential
barriers and bottlenecks that may limit the potential of solar energy development to occur in scales
and forms that receive community acceptance and at the pace necessary to address the greenhouse
gas emissions currently contributing to the rapidly changing global climate.

Keywords: energy decision making; energy transitions; photovoltaics; solar energy; sustainability;
community; energy democracy; energy security; energy sovereignty

1. Introduction

Solar photovoltaic (PV) energy has undergone an incredibly rapid industrial learning
curve [1–3], resulting in continuous cost declines [4,5]. The International Renewable
Energy Agency (IRENA) confidently predicts that PV prices will fall by another 60%
in the next decade [6]. Even without expected future cost reductions, any scale of PV,
from residential to industrial, provides a levelized cost of electricity (LCOE) [7] lower
than the net-metered cost of grid electricity [8–10]. PV economics ensure that coal-fired
electricity is no longer economically competitive, and solar is now normally the least costly
electricity source [11,12]. In addition, there are several technical improvements like black
silicon [13,14] and bifacial PV [15,16] that are poised to gain market control and further
drive down costs [17]. Unsurprisingly, solar PV is the fastest growing electricity source,
with capacity reaching about 505 GW, or 2% of global electricity production, in 2018 [18],
and reaching at least 627 GW by 2019 [19]. The rapid improvements in PV and energy
storage technologies are arguably outpacing social recognition of the urgency with which
energy systems need to transition to avoid the worst of the catastrophic impacts associated
with the continued use of fossil fuels for energy production and the policy tools being used
to propel this transition. For example, despite the fact that the LCOE of community and
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utility-scale solar is competitive with coal and natural gas, a combined 65% of Americans
think that climate policies would have no impact or would hurt the economy, and while an
overwhelming majority of Americans would like to see more reliance on solar and wind
energy, 29% believe that climate policies will make no difference for the environment, and
15% believe that climate policies will do the environment more harm than good [20]. This
paper centers on these social considerations and presents a framework that can incorporate
social values in ways that may improve the speed and the outcomes of this transition.

PV has other advantages besides costs. Renewable energy technologies like solar
PV may create emissions during manufacturing and installation but produce emission-
free electrical energy once installed and, overall, have an excellent ecological balance
sheet [21]. The generation and delivery of electric power using conventional thermal fossil-
fuel driven power plants consumes almost two-thirds of the primary energy delivered to
the grid [22,23]. Globally, nearly a billion metric tons of carbon dioxide equivalents can be
attributed to “compensatory emissions” related to a lack of efficiency in generation and
transmission. Forty to fifty percent of those emissions can be cut by improving grid effi-
ciencies [24], which could be achieved with distributed energy resources. PV is inherently
distributed and modular so it can be located near or even on the structure of the electricity
consumer to provide for energy needs even as loads shift over time. This distributed
generation (DG) with PV has several technical advantages: (i) improved reliability [25,26],
(ii) enhanced voltage profiles and power quality [27], (iii) reduced transmission and dis-
tribution losses [28], and the concomitant transmission and distribution infrastructures
deferments. In addition, PV has been long established as a sustainable energy source [29],
with well-documented superior environmental performance to conventional sources of
electricity, as directly generating electricity from solar energy is free from fossil energy
consumption and greenhouse gas (GHG) emissions during its operation. When compared
to the advantages of solar energy, fossil fuel-based energy generation no longer makes
technical or economic sense.

Despite these advantages, PV continues to face challenges that limit or slow its de-
velopment. Solar is an intermittent resource (e.g., it only works when the sun is shining).
Solar energy is diffuse, so PV equipment requires large surface areas. According to the
Energy Information Administration, the average American household uses 877 kWh of
electricity per month [30]. In general, the average non-shaded residential home has more
than enough roof area to meet its energy needs; other structures, such as large retail stores,
would need to start covering the parking lots with awnings to meet energy needs with
distributed PV [31]. Densely populated cities do not have enough surface area available
for PV to meet their electricity needs (let alone transport and heating needs covered by
vehicle electrification and heat pumps, respectively). Large areas of open land are needed
for PV [32], and they are generally located in rural areas.

Due to these needs, land use conflicts are a growing problem for large-scale PV. These
siting conflicts were once relegated to wind farm development [33–36], but now shape
public opinion regarding solar energy projects [37,38]. Using solar may be technically
more efficient, as well as having a lower LCOE than conventional power plants [7], but
conflict over siting—questions about where to locate what size PV systems to support
whose energy needs—remains an issue.

Across the United States, individual states as well as local units of government have set
goals to reduce or eliminate carbon emissions, either via legislation or executive action [39].
The utility sector is responding accordingly. In November 2020, six Midwest utility holding
companies said they expect to retire a combined total of 5.8 GW of coal-fired capacity by the
years 2022–2023 and, over the next several years, buy or install 4 GW of solar generation,
3.6 GW of wind generation, and just over 1 GW of electric battery storage [40]. Rarely
included in such breathless announcements is the fact that developers and utilities have
often yet to secure the requisite number of acres to host the utility-scale PV developments
upon which their projections rely.
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Options like rooftop solar and community-scale solar developments, which tend to
distribute the economic benefits of renewable generation more equitably than utility-scale
developments, are popular with host communities, as are efforts to site larger developments
on brownfields and other post-industrial sites [41]. There is little doubt, however, that
achieving complete independence from fossil fuels in electricity production, transportation,
and heating, will require large-scale development, even if the amount of land necessary and
which types of land to be utilized is disputed (i.e., agricultural land, ecologically sensitive
land, and previously forested land are contested). Given these variables, the question of
how to achieve a renewable energy transition in an equitable and cost-effective way has
been the purview of monopoly utilities, state public utility commissions, lawmakers, and
federal regulators across much of the United States. This top-down regime, a product of the
historical need for large, up-front capital investment in energy production and distribution,
has rarely given serious credence to the priorities of the communities it serves [42]. The
need, however, to site utility-scale generation, as well as the rapid innovation and accessi-
bility of distributed generation technologies, is altering consumers’ relationships with their
energy providers. In a sense, the renewable energy transition has forced utilities back to
the negotiating table, as communities and individual consumers reexamine a century-old
unwritten compact about the rights and responsibilities of each.

In this new dynamic, the framework explained and applied below could help improve
decision making that increases the deployment velocity of PV by attempting something
radical: centering energy policy in the nexus of the cultural, ecological, and economic
priorities of the communities that produce and consume it. This could help provide
direction for community decision-makers and, by revealing the complexity and web of
interconnected factors that matter, could lead to solutions that ensure greater cultural and
economic resilience. This proposed framework is explored conceptually below through
application to the questions and decision-making factors that may shape the priorities and
choices a community makes regarding solar energy development.

2. Socio-Technological Systems Transitions Frameworks

Arguably, the most well-developed framework for examining socio-technological
system transitions is the multi-level perspective [43–46], also known as the MLP. The
MLP conceptualizes transitions in terms of interactions across actors and institutions and
argues that “sociotechnical transitions come about through interacting processes within
and between the incumbent regime, radical niche-innovations, and the sociotechnical
landscape” [43] (p. 225). MLP is a dominating framework for exploring the various
mechanisms and pathways involved in successful transitions to renewable energy adoption
in communities [47] and across the “sociotechnical landscape.”

The MLP is in some ways a critique and response to Christensen’s early innovations
framework, which focused on disruption from niche innovations challenging incumbent
rule [48]. Christensen’s framework focused on disruptive technology, while MLP “broad-
ens the unit of analysis from technological products to sociotechnical systems that provide
societal functions” and that “consist of an interdependent and co-evolving mix of tech-
nologies, supply chains, infrastructures, markets, regulations, user practices, and cultural
meanings” [43] (p. 225). The MLP aims to broaden the factors considered as analytically
relevant to understand transitions to include “consumption, cultural, and socio-political
dimensions” [43] (p. 227).

Previous scholarship based on the MLP framework includes work examining the
role of power and politics [45]. Based on employing a political economy perspective, the
MLP can be utilized in a way that is attentive to how incumbent regime actors (those
who benefit financially from continued reliance on fossil fuels for electrical energy) can
shape discourse, policy, and possibilities in the energy transition through multiple forms
of power, including instrumental, discursive, material, and institutional. The MLP also
allows for considerations of resistance to incumbent regimes from both niche-innovations
and the broader socio-technological landscape. Analyzing the power and interests of the
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“regime” construct reveals a failure to account for “problems of agency and the politics of
transitions” [49] (pp. 143–144), as the potential involvement and influence of collective
groups of actors has not been researched adequately, according to some scholars, which is
critical in understanding the nuances of socio-technological energy transitions, particularly
in previously colonized country contexts [49].

By starting with an emphasis on “socio-technical systems,” however, the MLP is
inherently focused on material systems and the institutional systems that govern them.
There is less room in MLP for considering the role of cultural values, priorities, and
identities in informing and directing transitions in grounded, socially embedded contexts.
Arguably, the MLP framework allows inadequate space for conceptualizing how real people
and their real lived priorities can inform decision making in energy transitions (and other
socio-technological system transitions). The framework presented here attempts to address
these critical deficiencies, as they are applicable across the spectrum of development stages,
with particular focus on accounting for agency through the prioritization of community
values and the subjugation of technical, economic, or political feasibility to community
priorities.

The framework described below is inspired by the medicine wheel or sacred hoop,
representing the philosophy adopted by many Indigenous Nations of being in balance
through life’s natural and cyclical transitions. As a whole, the framework is intended
to conceptually represent knowledge and relations while maintaining balance through
continuous transitions of all kinds. These teachings offer a guide for finding a respectful
and ethical path through a socio-technological system change.

The relationships among the interconnections in Figure 1 start with four foundational
questions (as described below) [50]. These four foundational questions guide the applica-
tion of this framework. This framework also suggests particular research questions (RQ)
that can guide empirical research employing this framework (as also explored below):

RQ 1.1: What community visions, values, perceptions, and priorities are associated with
which risks, barriers, and opportunities for renewable energy system transitions?
RQ 1.2: How does this vary across the community context?
RQ 1.3: What trade-offs or compromises do communities make when making energy
decisions?
RQ 2.0: What socio-cultural, technical, biophysical, and regulatory variables facilitate or
impede renewable energy transitions given the benefits, risks, and opportunities associated
with renewable energy development?
RQ 3.0: What novel technologies and approaches can facilitate energy transitions and how
can decision-support tools enable communities to envision alternative futures and make
energy transition decisions while considering relevant social, technical, and biophysical
impacts?
RQ 4.1: How does community participation in energy decisions shape energy transitions
and community well-being?
RQ 4.2: What policies and management options, across which community and state scales,
best empower community decision making and are most likely to facilitate renewable
energy transitions?
RQ 4.3: How can we support communities in making choices that involve difficult tradeoffs
between their own values and visions, and those of other communities, regions, and scales?
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Figure 1. Socio-technological Systems Transitions Framework.

3. Applying the Framework

Applying this framework begins in the East (like the sunrise), with the question
“What do we care about?”. The framework is based on the proposition that, instead of
starting by asking what is technically, economically, or politically possible, we instead start
by asking about community cares, concerns, priorities, and values. The novelty of this
approach is that it requires that technologies be situated within and that technological
transitions be emergent from community priorities rather than starting with technical or
economic considerations and then asking if they align with or contradict what a community
actually cares about. A community’s priorities may be situated, at least in part, within
their existing socio-technological contexts. The novelty and value of beginning with a
community-centered, rather than technologically or economically centered framework,
involves understanding the ways in which current systems align with community values
and the inability of existing systems to identify community challenges, future goals, and
priorities.

3.1. What Do We Care about?

Renewable energy transitions are often framed in terms of the urgent need to address
climate change and their immediate climate benefit. A plurality of individuals accept
the fact of anthropogenic climate change, and with it, a shared responsibility to achieve
carbon neutrality as quickly as possible. In this sense, the “We” in question is none other
than humankind, and indeed, all life on earth. If the primary concern is GHG emissions,
then a rapid transition using PV can meet the goal, even when considering life cycle
carbon emissions [51]. PV development has increased efficiency for decades [52,53] across
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a wide range of PV materials, and each small increase in efficiency, using the same physical
processes of production, not only reduced costs that increased the wide adoption of PV [54],
but also the GHG emissions reduction potential of the technology has increased. In a
conventional utility model, this would be done with utility-scale solar development and
would technically meet that goal in the most economically efficient manner in a way
that smaller systems could not [55]. Yet communities often care about the impacts of
their electrical energy systems for reasons beyond GHG emissions. If they accept any
responsibility at all, community actors may weigh a broad mandate to reduce emissions
against specific ecological and economic concerns.

For communities who do share collective care for the environment or natural world,
GHG emissions may be just one component of concern. Ecosystem integrity, habitat
preservation, or species protection may also be community cares, and large, utility-scale
solar systems may not align with these community priorities. In California, where there is a
mandate to achieve zero-emission electricity production by 2045, there have been protracted
battles surrounding proposed utility-scale solar developments in the California Desert [56].
Though the state now requires rooftop solar to be a feature of all new construction [56],
renewable industry advocates still anticipate that the state will fall far short of its goals
unless it aggressively constructs utility-scale solar farms. Roughly 4000 MW of solar sited
on 30,000 acres has been proposed or is under construction. State modeling shows that
California will need 90,000 to 125,000 more MW over the next 25 years [56]. Project permits
have been contested by a coalition of tribal and environmental groups who argue that the
development amounts to “a gigantic assault of these industrial projects on desert habitats
and cultural sites”, even though they favor California’s carbon-neutral policy [56].

Similarly, Maryland has had difficulty siting utility-scale solar developments, despite
a statewide goal of producing half its energy from carbon-neutral sources by 2030, with
14.5% of that coming from solar energy. A “responsible siting” task force convened by
Gov. Larry Hogan concluded that up to 2.9% of prime farmland could be lost to solar
development, even though the state has made strong efforts to preserve such land in the
past [57].

As we see in these instances and many others, there is frequently an imbalance be-
tween the perceived economic and ecological burdens communities are asked to absorb
for the sake of hosting utility-scale solar and that of the communities who would broadly
benefit from lower utility costs and reduced carbon emissions. This can be true whether
or not the energy produced by a project will be owned or purchased by a city or town-
ship’s incumbent electricity provider. Utility-scale is cost-efficient precisely because it
is concentrated, enabling one project to serve many households and businesses over a
broad geographic area. Utility-scale solar benefits from scale in purchasing power for
components, permitting, and even in labor, using all of the same equipment, but these
benefits do not necessarily accrue to the host community.

In many cases, developers can design mid- to large-scale solar projects that maintain
ecosystem functions, habitat access, and agricultural productivity [58,59]. A growing
“agrivoltaic” movement to profitably co-site solar projects with livestock grazing and
crop production has seen early promise [60]. Conventional PV farms can be intercropped
with some agricultural products with no changes, and for other crops, developers can
install solar panels with mounts tall enough for equipment and animals to pass under
while justifying the increased expense with increased economic productivity of their land.
Likewise, solar farms can host pollinator-friendly habitats that benefit agriculture and
wildlife in the local areas.

Another approach to the application of solar that reduces conflict is floatovoltaics
(FPV) [61–63], which is the deployment of floating PV onto water surfaces. Similar to
agrivoltaics, FPV has a synergistic effect where the water cools the PV, thus reducing their
operating temperature and improving the PV electrical conversion efficiency [64]. At the
same time, the PV can reduce evaporation rates and thus improve water conservation [65].
FPV can be both on-grid and off-grid [66], as well as the base of microgrids [67], as in India.
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FPV can be deployed on a small scale in temporary summer-home systems [68], but also on
a utility-scale in multi-MW permanent farms [69], as in the Seychelles. In perhaps the most
efficient use of surface area, FPV and agrivoltaics can be combined to make aquavoltaics,
where FPV are used in aquaculture. [70] Although there is enormous potential for FPV,
even when artificially restricting deployment to human-made waterways [71], there are
still obstacles to overcome, most of which are knowledge-based [72] (see Section 3.2 below).

As this framework demonstrates, starting with the question of what communities care
about can reveal new areas for inquiry regarding the knowledge needed to meet a commu-
nity’s energy needs with available technology. In space-constrained environments or areas
that culturally identify with agricultural land or waterways, these innovative technological
applications may be particularly appropriate. Even with either agrivoltaics or FPV, in
sensitive ecosystems or in areas with threatened species, the habitat impacts of solar may
be undesirable in terms of alignment with community concerns. In this case, solar energy
development through distributed generation may be desirable (i.e., rooftop installations
and small ground mount systems). While these options may represent a more complicated
process than utility-scale development, the alternative path honors varying and different
community priorities. Given the nature of utility ratemaking, the costs of these projects
will eventually be passed to ratepayers, some of whom may presumably object to funding
anything beyond the most cost-efficient, large-scale development. Although, it should be
pointed out that in many scenarios, because customer-owned PV often produces electricity
costing less than the retail rates by enabling customers to invest in the systems, costs can
be avoided for the utilities during a transition. Questions arise regarding who is included
or excluded in the definitions of community and how differences across communities
who share in the decision making and the consequences of energy system transitions are
addressed. These considerations are further explored in the discussion below.

The primary cares regarding energy systems may include community control (includ-
ing management, ownership, and sovereignty), economic concerns in which communities
seek to prioritize energy transitions that reduce the cost of electricity access, or care for the
environment. In communities that relate the direct application of energy to its end use, such
as solar-heated water or electrically pumped groundwater used for bathing, cleaning, and
agriculture, there is heightened “awareness of environmental rhythms” [73] (p. 9), creating
increased efficiency and ingenuity, resulting in a more sustainable use of resources. In a
report to the U.S. Department of Energy (DOE) published in 2008, the Saginaw Chippewa
Tribe of southeastern Michigan presented “a vision to become self-sufficient in its energy
needs and, in respect and concern for the next seven generations, to maintain its culture
and protect Mother Earth”, stating “sustainable green energy sources, such as solar, wind,
and biomass energy, are the best energy paths to travel” [74] (p. 3). These communities
reject what they view as the profit interests of privatized, corporate, fossil-fuel-dominant
business models in favor of democratically-managed, publicly-owned RE systems that
dismantle concentrated economic and political power. These systems serve the public
good by reducing GHG emissions, creating local jobs, and providing equitable access
to energy [75]. In these cases, technical or economic considerations become less salient
than issues of ownership, decision making, resilience, and sovereignty [76]. Community
energy sovereignty can be achieved through the integration of socioeconomic, political,
and technological dimensions that link social justice and equity with energy innovation to
democratize energy in support of autonomy, security, and resiliency [76]. Since 2008, the
Saginaw Chippewa Tribe has developed physical energy infrastructure, including electrical
substations, wind and solar generation, and power purchase agreements. On 30 October
2019, they established the Saginaw Chippewa Electric Authority to manage, operate, and
maintain the electric distribution and generation system for their community [77].

For many communities, their primary concerns may not be directly related to energy
at all. In low-income country contexts, consumers demonstrate more concern about the im-
pact of their consumption than consumers in high-income country contexts, and are more
likely to associate consumption habits with the degradation of personal and environmental
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health and take action to mitigate the effects [78]. In some low-income country contexts, a
lack of adequate electricity energy provision through centralized distribution can motivate
desires to learn more about solar energy as a decentralized and locally controlled option,
particularly in the context of private sector actors who are motivated by financial consid-
erations [79]. This transition framework suggests that learning about what communities
care about—whether that be unsustainable consumption, equalizing access to economic
wellbeing, decreasing the economic burdens of poverty or precarity in the community,
increasing economic development opportunities, increasing jobs in the local community,
protecting local or global environments, promoting community-level independence and
resilience, increasing community amenities, reducing health impacts of fossil-fuel-driven
air pollution, or any other community consideration—is the first and most important step
in developing energy transition planning and decision making, which can succeed by
aligning with community priorities.

3.2. What Do We Know?

When it comes to solar PV energy technology, there are several known and well-
documented technical, economic, and social advantages:

• PV are massive net energy producers: For some time now, PV modules have been
shown to produce far more energy than is used to produce them [80]. PV efficiencies
have steadily climbed [81], only driving the energy return over energy invested higher
(with some PV “paying” their energy back in a year) [82].

• PV has “generational” long lifetimes and warranties: PV modules, in general, carry a
warranty for 90% production at 10 years and 80% production at 25 years [83]. That
means 25 years after the purchase of a solar panel, consumers can expect it to still be
outputting 80% of its rated capacity. Many studies have shown that PV degradation
rates are below 1%/year [84–89].

• PV has high reliability and durability in all environments where humans live: PV is
reliable under the most extreme environmental conditions, from small losses due to
snow in harsh Canadian winters [90] to scorching desert climates in Egypt [91].

• PV has low maintenance costs and no fuel costs: Solar PV systems do not require
frequent inspection or maintenance [7] and require no fuels to operate (and thus no
transport and storage of fuel either). This is a distinct benefit for communities globally
without access to professional operations and maintenance (O&M).

• PV reduces sound pollution: PV systems operate silently and with no movement
(most systems) and minimal movement (single and dual-axis trackers).

• PV is extremely safe: PV systems do not require the use, transport, or storage of com-
bustible fuels; they have no environmental emissions during use and are electrically
safe when properly designed and installed. They also produce no nuclear waste.

• PV allows for flexible system architectures with grid-tied, decentralized generation,
and grid independence: PV systems may operate independently of grid systems, but
also can improve grid reliability with decentralized generation [92,93]. PV systems can
be operated off-grid [94] and, when coupled with storage technologies and/or hybrid
generation, can provide lower-cost power for those with poor electric infrastruc-
ture [95], as well as those in rural and low-income, previously colonized communities
continuing to lack basic infrastructure.

• PV performance improves in cold and high altitudes: PV generation increases as the
temperature drops [96,97], as well as at higher elevations (because of increased solar
flux).

• PV systems are flexible and modular: Unlike conventional systems, PV modules may
be added to photovoltaic systems to increase available power; they can be deployed
almost anywhere the sun shines at scales appropriate for the situation. This is simply
not possible with most conventional electric sources.

• PV can create jobs and enhance tax revenues: Currently, more than 250,000 Americans
work in the solar industry [98,99]. Globally, the solar industry employs more than
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3.6 million people [100]. Depending on the tax regime, some governments that support
solar see a return on investment (ROI) based on taxes; the Canadian government, for
example, would earn a profit under any scenario supporting PV, including giving
multi-million-dollar PV plants away for free [7].

• PV reduces the liability costs for conventional power plant operators: For the nuclear
case, reduced potential liability from nuclear disasters [101–103] is so substantial that
just displacing the nuclear insurance subsidy to solar would provide an additional
48,600 TWh of electricity over nuclear worth $5.3 trillion [104]. In fossil fuel cases,
moving to solar would reduce carbon emission liability costs, which, similarly, could
be worth hundreds of trillions of dollars [105].

• PV can enable low-income countries to leapfrog conventional centralized power plants
and their concomitant problems: By encouraging the adoption of PV, rural areas in
low-income and previously colonized country contexts, who have not built economies
based on extractive exploitation of global economies, have particular promise to
leapfrog conventional power sources, and the pollution and economic challenges they
represent [106–108].

• The full values of solar (VOS) have shown numerous economic benefits [109–114]:

o Reduces conventional electricity market prices due to reduced peak demand
o Provides a valuable price hedge from using a free, renewable fuel rather than

variably-priced fossil fuels
o Reduces costs due to avoiding new transmission and distribution infrastructure

to manage electricity delivery from centralized power plants;
o Reduces need to build, operate, maintain, and buy fuel for fossil fuel-generating

plants
o Reduces reserve capacity costs, distribution, and transmission costs
o Reduces electric outages due to a more reliable, distributed electric power system
o Reduces future costs of mitigating the environmental impacts of fossil fuel and

nuclear generation
o Avoids health liability costs as well as saves lives (e.g., replacing all of coal-fired

electricity with solar energy would save ~52,000 American lives per year [115]).

The points above represent collective knowledge about solar. The distribution of
these technical, economic, and social benefits, however, continue to be unknown, at least
partially, because the distribution of benefits is shaped by diverse policy and regulatory
regimes and a multitude of siting, investment, finance, and ownership choices that are
made at the state, municipality, utility, and community levels. While the benefits may be
undisputed, the matter of who receives these benefits, based on what specific kinds of
choices shape development, is still an open question, representing factors unknown for
communities to explore—and research illustrates that the distribution of these benefits is a
primary concern shaping public support for solar energy development [116,117].

Despite the numerous benefits, solar PV also has inevitable, as well as potentially
negative impacts. There are real negative environmental consequences of PV production
and disposal [118]. These negative impacts could be partially offset by recycling [94],
and policies should encourage responsible industrial practices [119]. Solar PV is a capital
asset and often consumers do not have access to capital, which reduces PV velocity and
demands some form of financing [120–123] or securitization [124]. Life cycle assessments
(LCA) performed on five common PV systems demonstrated that, while manufacturing
and installation processes consume energy and generate some GHGs, the energy payback
time (EPBT) for PV falls within the range of 0.7–3.5 years, with GHG emission rates an
order of magnitude smaller than those of fossil-based electricity [125].

Because solar is an intermittent resource, it must be coupled with other renewable
energy sources like hydro or wind, as well as storage, to completely offset all conven-
tional generation. Intermittency can be reduced and accommodated by interconnecting
intermittent resources, forecasting their variation, and integrating them with dispatchable
renewable sources (such as hydropower, geothermal, and biomass). Demand response
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(or demand-side management), can shift flexible loads in order to optimize intermittent
production. With the growth in demand, electrical energy storage (EES) and power bal-
ancing technologies are rapidly developing, with year-on-year growth of EES in emerging
markets expected to reach 40% through 2025 [126]. Various means of EES can be utilized
for frequency regulation, flexible ramping, black start services, and to reduce curtailment
of variable renewable energy production [127,128].

Regulations are evolving as well, for example, the U.S. Federal Energy Regulatory
Commission (FERC) FERC Order No. 2222, approved in 2020, creates pathways for storage
and distributed energy resources (DERs) to participate in wholesale markets serviced by
regional transmission operators or independent system operators (RTOs/ISOs) by estab-
lishing distributed energy resources (DERs) as a market participant category and allowing
them to aggregate in order to satisfy minimum size and performance requirements [129]. It
is necessary to develop both these technologies and the enabling regulations that support
their deployment at a pace adequate to fully leverage solar energy’s potential contribution
to collective electrical energy needs.

The points above address what is known technically and economically about solar
energy technology. There is, however, another way to address the question posed above
about what is collectively known. Individuals and communities know things through
their lived experience, through their traditions and cultures, and through intergenerational
ontologies, knowledge systems passed down through generations representing collective
understandings of reality.

Some communities, including within the United States, hold different understandings
of technologies and the willingness to accept their potential impacts. For example, consider
the viewpoint of a community regarding the impact of a PV system on a particular wild
animal whose habitat may need to be drained to install a solar farm. For Indigenous
Nations communities in the United States and throughout the world, the collectively held
understanding of reality may involve extended understandings of kinship, relationality,
and responsibility [130]. As just one example, there are multiple possible perspectives
for understanding the nature of the beaver—is this animal a pest who creates damage to
waterways, or is it a relative, demonstrating to the world the building capacity of making
homes in ways that are synergistically beneficial for other species and entire ecologies? The
answer depends on ontology [131], which can vary across communities as well as across
time and place. There are different ways to answer the question about what is known
regarding how humans live and relate to the rest of the world, and the answer to these
questions will shape how communities make decisions regarding energy development. In
this example, understanding animals as relatives changes whether or not it is acceptable to
relocate individual animals or damage the habitat of species to pursue rapid utility-scale
solar development. Similarly, whether a community knows that their utility company is
trustworthy, their trees are sacred, or myriad other knowledge objects or systems, will
shape priorities and possibilities for community-supported solar development.

3.3. What Is Possible?

Answering the question “What is possible?” depends on the answers to the questions
above, but also depends on the utility, regulatory, and policy context, as well as the
economic and technical context of any given community. What is possible depends on
a community’s willingness to invest, environmental factors such as land availability or
shading, the quality of local infrastructure, roof engineering, access to capital and financing,
local regulations, state and federal regulations and incentives, and a multitude of other
economic, technical, and regulatory factors. Some of these conditions of possibility may be
in the community’s power to change, while others may not. A community might choose to
look at available options given current incentives and regulatory regimes. On the other
hand, they may decide to advocate for changes to the regulatory regimes in which they are
situated, in a way that better aligns with their goals and values.
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One way to address this question focuses on what is possible in the current regulatory
regime. Given the need for power purchase agreements (PPAs) to ensure that generated
solar energy can be integrated into the grid and compensated at a fair market price, utility
structures must have existing options for PPAs for community investment in solar energy
to make sense. In the United States, some IOUs create barriers to integrating solar into the
grid [132], even if there is a community willing to host and a willing financial investor. For
large scale solar, what is possible may also depend on policy beyond energy policy, as land
access, zoning issues, and policy regarding the use and taxation of agricultural land can all
shape whether or not solar development is possible.

Where they have siting jurisdiction, counties and townships have an opportunity to
proactively plan if and how they would allow utility-scale renewable development into
their communities [133]. Local governments can use the planning and zoning process
to create height restrictions, setbacks, and land use requirements that either signal to
developers they are cleared for approach, or that utility-scale projects are unwelcome. Agri-
cultural policy is often restrictive and limiting for solar development. As described above,
there is a concern about PV farms offsetting food production when sited in agricultural
communities [134]. This can be partially ameliorated by careful planning and through
agrivoltaics (the co-location of PV and conventional crops) [135,136]. When they are open
to development, municipalities may include ordinance language, encouraging or requiring
pollinator-friendly habitats and other agrivoltaic features [133]. Municipalities that own
their own electric utilities and would like to build medium- or large-scale renewable energy
projects can include such parameters in development.

The operation of the current U.S. federal economic incentive as a tax credit also
limits the possibilities for entities without a tax appetite, as one must have significant
tax liabilities in order to take advantage of these credits [137]. Municipalities and other
non-profit entities cannot benefit financially from a tax incentive for solar investment. In
the U.S., municipalities are limited in the extent to which they are allowed to accrue debt,
hindering their ability to make public investments in solar energy development. Limited
public investment in solar encourages development by private corporate actors, who may
try to co-opt new innovation in order to stymy market disruptions those innovations
may create, and reinject capital into incumbent systems. This may slow the pace of clean
energy transitions, and also acts to suppress technological innovation, and undermine
opportunities for democratic control of energy resources [138]. Municipal, community,
and cooperatively owned and controlled energy producers have the agility to prioritize
energy security, energy democracy, and community development, as they are not beholden
to generate profits for shareholders [139] but are instead accountable to citizens and their
members, respectively.

Addressing the conditions of possibility may also require collective organization to
change the incumbent electrical energy regimes. These regimes have resisted transitions
to renewable energy, citing economic and technical difficulties. However, it is perceived
that the more plausible motivation is the preservation of profits from existing business
models, regulatory frameworks, and subsidies. Incumbent regimes have formed coalitions
with politicians and think tanks to undermine climate science and resist renewable energy
transitions [140], including reforms in utility structure, as well as policy and regulatory
structures that shape solar energy technology development. Some of the ways a community
may influence the existing regime require investments, including economic investments
in publicly-owned solar. Due to the political and market power of incumbent regimes,
existing business models, and regulatory frameworks, this investment requires government
intervention [141]. In the U.S., this could take place through initiatives that would be
supported by the passing of House Resolution 109, 2019–20, also known as the Green New
Deal [142]. Communities must also invest time and knowledge to advocate for policy
change. Some of the policies that can be changed to improve the conditions of possibility
for solar energy development include subsidy reforms [143], eliminating solar rooftop bans
in homeowner’s associations, caps on carbon production, eliminating regulatory obstacles
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to grid integration of solar and related technology, eliminating caps on grid-integrated
solar [132], improving the transparency and financial benefits associated with net metering
and feed-in tariff programs [144], improving and utilizing energy efficiency programs
to lessen energy demand and the associated economic and environmental impacts, and
advocating or organizing for an increase in public utility ownership [145].

3.4. What Should We Do about It Together?

In short, the answer to this question depends on the answers to the questions that
precede it. This, we argue, is the value of this framework. Instead of starting with
an externally identified objective (such as increasing renewable energy or solar energy
deployment), this framework begins by centering and empirically examining community
concerns, values, and priorities. It also requires addressing empirically the conditions and
state of knowledge, both knowledge of technologies and the knowledge collectively held
and known to be true by communities [146]. Both community concerns and community
knowledge will shape the conditions of possibility for energy transitions; asking about
these conditions of possibility also reveals the myriad economic, technical, structural, and
regulatory factors that determine what is possible for communities. Researchers can best
support energy democracy and energy sovereignty in community scale energy transitions
by using these questions to inform proposals for what should be collectively done to
support energy transitions that align with community preferences.

4. Discussion

The application of this framework reveals several conceptual and empirical tensions.
The first is the very nature and definition of community in community energy transitions
research. Communities are never perfectly homogenous, and capturing the diversity
of community perspectives, including tensions or divergence within a community, is
also key to understanding a community’s perspective; this framework is focused on
finding generally shared understandings, but application should not ignore differences
or contradictions, as they can also help inform community decision making. Also, how a
community is defined may depend on already existing dynamics of inclusion and exclusion
that researchers should not ignore; intentionally attending to such dynamics is key for
valid empirical research.

Furthermore, the nature of community in energy research is inevitably complex, as en-
ergy systems may be developed in communities that do not benefit financially or otherwise
from that development. While utility territories (the geographical space where a utility is
given a monopoly to operate) represent a simplified way to define community, utilities
may invest in renewable energy systems sited outside their territory, and communities
may self-identify in ways that are not at all based on utility providers. Attending to this
complexity is an essential component of applying the framework proposed above.

5. Conclusions

This paper explored how a proposed framework for understanding socio-technological
system transitions can be applied to solar photovoltaic energy technology development to
reveal the complex web of factors involved in solar energy decision making. By starting
with what a community cares about, choices regarding the scale, siting, and ownership of
solar energy development can be informed by community priorities. By asking what is
collectively known, both about a technology and by a community, the framework can be
used to reveal gaps in knowledge, as well as culturally diverse ways of knowing that will
shape community values and decision making. Answering the question about what is pos-
sible requires addressing both community cares and knowledge. It also requires unpacking
the complexity of factors that shape conditions of possibility—factors such as existing
utility structures and federal, state, and local energy policies, regulation, and incentives,
but also factors such as agricultural policy and land zoning as well as land availability,
roof engineering, municipal debt burdens, and the various forms of capital, including
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economic as well as knowledge and temporal capital that will shape a community’s ability
to navigate existing regimes, or challenge and change them.

The advantages of solar energy are potentially wide-ranging, including environmen-
tal, economic, technological, distributional, and social impacts associated with justice and
equity; yet, these benefits are widely dependent on how PV development takes place,
including not only siting and scale considerations, but also ownership, participation, and
other social factors. The limitations of PV, including the need for land access, the com-
plexities of ownership and distribution, and the demand for energy storage for balancing
production and consumption, can all arguably be addressed more effectively by using a
decision-making framework that centers community values, social priorities, and partici-
patory processes. There is an urgent need to adopt frameworks, such as the one described
above, to correct the harm caused by the use of previous models in development contexts,
and to build social learning and social engagement into the processes of PV development.

Solar energy technology has enormous potential. Its flexibility is an enormous asset
for being able to deploy solar in ways that align with community priorities and values.
By centering communities rather than technologies, the framework proposed here can
encourage energy transitions that have community support because they align with com-
munity priorities. Applying this framework to solar energy technology reveals the vast
potential of this technology as well as this framework, but also reveals the challenges and
potential hurdles that could shape successful deployment. Addressing these challenges to
rapidly promote solar energy technology development that enhances energy sovereignty
and community wellbeing is essential for addressing the catastrophic consequences of the
global climate crisis being caused by the use of fossil fuels, and for promoting the social
justice consequences of a democratized energy system.
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