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Abstract: Estimating sediment flow rate from a drainage area plays an essential role in better
watershed planning and management. In this study, the validity of simple and wavelet-coupled
Artificial Intelligence (AI) models was analyzed for daily Suspended Sediment (SSC) estimation of
highly dynamic Koyna River basin of India. Simple AI models such as the Artificial Neural Network
(ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were developed by supplying the
original time series data as an input without pre-processing through a Wavelet (W) transform.
The hybrid wavelet-coupled W-ANN and W-ANFIS models were developed by supplying the
decomposed time series sub-signals using Discrete Wavelet Transform (DWT). In total, three mother
wavelets, namely Haar, Daubechies, and Coiflets were employed to decompose original time series
data into different multi-frequency sub-signals at an appropriate decomposition level. Quantitative
and qualitative performance evaluation criteria were used to select the best model for daily SSC
estimation. The reliability of the developed models was also assessed using uncertainty analysis.
Finally, it was revealed that the data pre-processing using wavelet transform improves the model’s
predictive efficiency and reliability significantly. In this study, it was observed that the performance
of the Coiflet wavelet-coupled ANFIS model is superior to other models and can be applied for daily
SSC estimation of the highly dynamic rivers. As per sensitivity analysis, previous one-day SSC (St-1)
is the most crucial input variable for daily SSC estimation of the Koyna River basin.

Keywords: ANN; ANFIS; sediment deposition; sediment rating curve; wavelet transform

1. Introduction

To prevent soil degradation and improve the water quality, the soil and water manage-
ment treatments must be carried out at the watershed level. Sediment loss measurement
is crucial to assess soil and water conservation treatments on sediment flow through the
river [1–3]. Sediment transport information is essential for designing and planning soil and
water conservation structures on the river. The sediment movement’s magnitude depends
on rainfall volume and intensity, Land Use/Land Cover (LULC), topography, and soil
physical properties [4]. Sediment concentration flow prediction is important because the
accumulation of sediments reduces the reservoir capacity. It also reduces the productiv-
ity of such land over which sedimentation takes place. Sedimentation is responsible for
increasing the flood hazard due to sediment mass trapping over the river bed [2,5].

Accumulated sediment also blocks the entrance of the intake structure. It also reduces
the flow capacity and increases the maintenance and repair cost of irrigation and drainage
channels. Increased sediment concentration reduces the available dissolved oxygen in
water; hence it is responsible to retard water life [6]. Increased sediment concentration
is responsible for increasing the domestic and drinking water purification cost. Higher
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sediment flow also carries contaminants developed over upstream areas due to point and
non-point pollution sources and increases environmental pollution. Sediment flow forms
visual pollution, and hence it reduces the recreational potential of wetlands and lakes.
It also reduces fish eggs proliferation by accumulating over the surroundings [6,7]. Sedi-
ment load information is essential for the design of reservoirs and dams, stable channels,
the design of lakes and estuaries, the reduction of sediment and pollutants flow in rivers,
environmental impact assessment, and the wildlife protection of fish habitats [4].

Suspended sediment load measurements are carried out by taking samples along the
river section using different samplers. Such samplers truly represent the flowing sediment
concentration at a given measuring point of river cross-section. It is still very time-consuming,
expensive, and frequent sampling cannot be easily conducted [8,9]. Another method of
suspended sediment load measurement is empirical and semi-empirical equations that de-
pend on laboratory experiments conducted under uniform flow conditions with uniform bed
material [1]. Still, it is contradictory to real practical conditions [7]. The existing empirical
equations and theories available in the literature for sediment load computation are only
approximate values because of the complex interaction between sediment transport and water
movement. It is challenging to describe sediment flow mathematically because of such a
complex relationship between discharge and sediment flow. Different empirical equations
provide different results with significant errors [7,10]. The relationship between suspended
sediment and discharge is significant in the estimation of sediment load. In the past, many
studies have been conducted for the sediment modeling process.

Generally, mathematical models require many data with a long response time, which is
rarely available [11]. The detailed information of the watershed’s physical properties must
be known [12]. The traditional methods are limitedly used and not preferable because of
non-linear relationships among hydrological variables and dependence on many hydrological
field data [13]. Hence, it is quite a tricky task to forecast a non-stationary time series by using
statistical models. However, it is essential to select alternative models to disseminate non-
stationary and non-linearity in the time series data. The Artificial Intelligence (AI) technique
has an advantage over traditional methods. It can perform well with a large amount of noisy
data resulting from the dynamic and non-linear system where the system’s fundamental
physical relationships are unknown [14–17]. AI techniques can solve the complex problems of
different hydrologic processes [18]. A black box model such as an Artificial Neural Network
(ANN) does not need watershed physical characteristics to transform inputs into an output
and to recognize any hydrologic process [8,19]. AI-based data-driven models such as ANN
do not need site-specific information that is rarely available but instead focuses on forming
the relationship between input and output variables [20–22]. The modeling of different
hydrological processes using ANN is the latest technique [23]. It considers both linearity and
non-linearity concepts for model construction. It can perform satisfactorily for the memoryless
or dynamic input–output system.

Therefore, ANNs have been used in most of the application areas. Some of the appli-
cation areas are water resource and hydrology, including modeling of drought, rainfall-
runoff, water quality, runoff-sediment, precipitation forecasting, climate change impacts
on streamflow, sediment transport process, and groundwater quality and groundwater
level forecasting, water level forecasting in aquifers and lakes [7,24–26] •ANN is a mod-
eling tool capable of identifying high complexity present in input-output data, which
operates by considering previously recorded input-output data [12] •ANN modeling is
crucial for predicting suspended sediment concentration in the river flow [27] • ANN is
considered as a lumped parameter model to simulate rainfall, runoff, and sediment • ANN
undergoes strong generalization ability; once the ANN architecture is adequately trained,
ANN can give accurate results even for those that have never been seen before [28]. •Many
researchers have recently applied the ANN model for rainfall–runoff and runoff–sediment
modeling [4,19,20,24,28].

The time-series data used for rainfall–runoff–sediment modeling usually contains
uncertainties. In such a case, the fuzzy theory can be adapted to model these uncertainties to
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solve real-world problems. Adaptive Neuro-Fuzzy Inference System (ANFIS) can be made
by combining ANN and fuzzy logic and subsequently receiving benefits from both [22,26].
The ANN model must perform a trial-and-error process to generate the optimal network
architecture. Still, the ANFIS model is free from such a tedious procedure. The ANFIS is a
multilayer self-organize network structure that adapts the fuzzy system’s parameters to
predict the system output. However, the fuzzy logic approach’s main problem is that no
systematic procedure is available to design a fuzzy controller [12]. The ANFIS technique
has recently been applied successfully for rainfall–runoff–sediment modeling [7,21,23].
Generally, Fourier transform requires static data for investigation purposes, but signals of
hydrological time series are highly non-stationary. The difficulty with Fourier transforms
during non-stationary hydrologic modeling is that it only considers the central time-series’
frequency feature. It is suitable only for static time series [29].

To overcome this weakness, a wavelet transform can be used. Wavelet transform
comes into effect while modeling with non-stationary data. It can produce different
series which identify possible trends, seasonal variations, and internal correlation among
different components [20]. Wavelet analysis consists of the shifting and scaling of the
original (mother) wavelet. Wavelet transform improves the model performance because
it simultaneously considers both temporal and spectral information available within the
signal; this feature overcomes the Fourier analysis’s fundamental limitation. The Fourier
spectrum provides only globally averaged information [26]. Wavelet transform decomposes
primary time series data into different sub-components without losing any information and
extracting required information from historical data using few coefficients. It reveals the
hidden information available in the data. It provides a more concise form of original time
series data with a timescale representation of processes relationships within them [30,31].
Hence, wavelet data-driven models use these different sub-components’ data, which
improves the model’s performance by capturing the required information available in the
central time series hydrological data [22,32]. Different researchers recently used the wavelet
transform technique for hydrological time series modeling to improve models’ performance
accuracy. Grossmann and Morlet [33] introduced wavelet transform, which can reveal the
different aspects of time series data such as breakdown points, trends, and discontinuities;
this is the superiority of wavelet over other signal analysis techniques [31,32,34].

In a few last years, simple data-driven models, as well as the coupling of data-driven
models and wavelet transform, have been applied successfully for hydrological model-
ing [29,35–37]. Accordingly, this study has been carried out with the following objectives:
(a) Select the best input variables for reasonable daily SSC prediction of Koyna River basin
using the Gamma test (GT). (b) Develop simple AI and hybrid wavelet-coupled AI models
for daily SSC prediction of the study area. (c) Assess the reliability of the best-selected
models using uncertainty analysis, and (d) analyze the sensitivity of selected input vari-
ables for daily SSC modeling using sensitivity analysis. Different AI techniques behave
differently at varying climatic and topographic conditions. Hence, in this study, such a
complex river basin having a highly dynamic nature was selected to assess different AI
techniques’ performance. In this study, different simple AI and hybrid wavelet-coupled AI
models were developed to compare their suspended sediment estimation performances.
The performance of the developed models was assessed using standard model performance
criteria. The novelty of this study includes the finding that the coiflet wavelet-coupled
ANFIS model could be used for daily suspended sediment estimation in highly dynamic
rivers like the Koyna River basin.

2. Materials and Methods
2.1. Study Area and Data Collection

The Koyna River (a tributary of Krishna River) originates at Mahabaleshwar in the
Satara district of Maharashtra, India. The Konya River flows North to South from its origin
for about 65 km and then flows for about 56 km eastward to meet the Krishna River. Before
taking an eastward turn, it is dammed at Koynanagar, called Koyna dam. The study area
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lies between 17◦7′55” N to 17◦57′50” N latitude and 73◦33′15” E to 74◦11′10” E longitude,
as shown in Figure 1a.
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The Koyna River basin has a geographical area of 1917 km2 on the Deccan plateau.
The study area comes under the survey of India toposheets 47G/9, 47G/11, 47G/11,
47G/13, 47G/14, 47G/15, 47G/16, 47K/13, and 47K/14. The study area comes under
varying climatic and topographic conditions. The annual rainfall at the upstream part
of the basin is 5000 mm, reducing to 866 mm downstream. About 88% rainfall occurs
in the monsoon (1 June to 30 September) season. In this study, the mean areal rainfall
of the study area was determined using the Thiessen polygon method in ArcGIS 10.2
software. The study area comes under a subtropical climate. The winter season starts in
October and extends up to January, while the summer season extends from February to
May. The daily mean monthly maximum temperature varies between 31 ◦C to 37 ◦C, while
the daily mean monthly minimum temperature varies between 10 ◦C to 14 ◦C. Agriculture
is the primary source of income for people who lives in the River basin. The soil at the
upstream part of the basin is light laterite, while the central and downstream area is under
black cotton soil. The elevation in the basin varies between 534 m to 1437 m above the
mean sea level. The dominant part of the basin is under the steep sloping condition with
varying topography and prone to soil loss. The entire basin area is covered by agriculture
(717.13 km2), bare soil (491.69 km2), open forest (342.60 km2), dense forest (159.84 km2),
built-up land (120.20 km2), and water body (85.68 km2), as shown in Figure 1b which was
prepared using ArcGIS 10.2 software in this study runoff and sediment measurements
were conducted at the basin’s outlet, situated at Warunji village in the Satara district.

The monsoon season’s daily rainfall data from 1999 to 2005 (7 years) were collected
from the agricultural department of Maharashtra state, India. The daily runoff and sus-
pended sediment concentration (SSC) data of monsoon season for the same duration
reported for rainfall were collected from India’s central water commission (CWC). Out of
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the total data, the first 70% data were used for training. The remaining 30% of the data
were used for testing the developed models.

2.2. ANN

ANN is inspired by the biological (brain) neuron system. Each neuron receives
processes and sends the signal to make functional relationships between future and past
events [38]. The most common structure of ANN is shown in Figure 2.
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Figure 2. The basic structure of ANN.

ANN consists of the input layer, one or more hidden layers, and the output layer. In the
neural network, each neuron (node) has input variables and output variables. A neuron
determines the output variable’s value after applying the net and activation (transfer)
function on input variables. The net function (u) is determined by adding the product
of input variables (xi) with their corresponding connection weights (Wi) plus the bias or
threshold value (b) of a neuron. Usually, the net function is in the linear form given as:

u =
N

∑
i=1

xiWi + b (1)

where xi is an input variable, Wi is the connection weight from the ith neuron in the input
layer, and b is the bias/threshold value of the neuron [39]. The net function (u) at a hidden
node is transformed into output (y) using a non-linear activation function. More details of
ANN were added in the Appendix A.

2.3. ANFIS

The Fuzzy Inference System (FIS) is a popular computing framework that depends on
fuzzy set theory. The building blocks of FIS are the fuzzy operators, fuzzy sets, and the
knowledge base. It allows extracting fuzzy rules from expert knowledge or numerical
data and constructs a rule base adaptively. Moreover, it can adapt to the complicated
conversion of human intelligence to fuzzy systems. Fuzzy theory can be adapted to
model the uncertainties to solve real-world problems. For prediction purposes, the ANFIS
model is better than the ANN model in peak flow prediction accuracy, prediction error,
and computational error [26]. ANFIS is functionally equivalent to FIS; it is a multilayer feed-
forward network that uses ANN learning algorithms and fuzzy reasoning to characterize
an input space to an output space, powerful in modeling numerous time series processes.

ANFIS is a universal approximator because it has set-off If-Then rules that have the
learning potential to approximate a non-linear system. It can approximate any real con-
tinuous function. ANFIS structure consists of many nodes connected through directional
links with each other. Each node has to perform a specific function with adjustable or fixed
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parameters [40]. For first-order Takagi-Sugeno-Kang (TSK) FIS with two inputs (x and y)
and one output (f), two typical rules can be expressed as:

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 (2)

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2 (3)

where Ai and Bi are Membership Functions (MFs) for input x and y, respectively. Si-
multaneously, pi, qi, and ri are the design (consequent) parameters estimated during the
training process. The TSK model’s fuzzy reasoning mechanism derives an output (f) with
inputs (x and y). General ANFIS structure with two inputs, two rules, and a single output.
The functioning of the ANFIS structure (five layers) is described below. The description of
the ANFIS layers functions was presented in the Appendix B.

2.4. Subtractive Clustering

Data clustering is a process that puts similar data into groups. A clustering algorithm
divides the whole data into various groups. The existence of similarity within a group is
more than in other groups. Clustering algorithms are mostly used for data categorization
as well as data compression and model construction. When there is no clear idea to select
how many clusters in a given data set, then the subtractive clustering method can be used.
It is a fast, one-pass algorithm to estimate the number of clusters and cluster centers in a
given data set [37]. In subtractive clustering, the number of the fuzzy rule set is equal to
the number of cluster centers.

Considering n data points (x1, . . . .., xn), subtractive clustering assumes each data
point act as a candidate for representing the cluster center. The subtractive clustering
depends on data density. The density index at any point xi is expressed as:

Di = ∑n
j=1 e

(−
‖Xi−Xj

2‖

(ra/2)2
)

(4)

Di represents density index, and ra is positive (ra > 0), indicating the neighborhood
radius in each cluster center. So, the data point which has more neighborhood points
indicates more potential to represent as cluster center. Those data points which are located
outside the radius create less impact on the density index. Selection of clustering radius
receives greater importance while determining the number of clusters. The high value of ra
causes the minimum number of clusters and vice versa. After determining a data point
with a high potential to act as a cluster center, say Xc1 is a point act as a first cluster center
determined by the Dci density index. The expression recalculates the next density index for
each data point Xi:

Di+1 = Di − Dcie
(−
‖Xi−Xj‖

2

(rb/2)2
)

(5)

where rb is a positive constant (rb > 0), which indicates the neighborhood radius for which
the most significant reduction in the density will be achieved. To prevent closely spaced
cluster centers, rb is usually equal to 1.5 times of ra. After this density measurement, the
next cluster center Xc2 is selected. The same process is repeated until sufficient numbers of
cluster centers are achieved.

2.5. Wavelet Transform

In total, two types of wavelet transform, namely, Continuous Wavelet Transform
(CWT) and Discrete Wavelet Transform (DWT), are used. The DWT can capture the
non-linear and non-stationary time series’ dynamic properties using different wavelet
coefficients [11]. DWT analysis is mostly preferred for forecasting water resource system
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problems because it needs a short computational time [30]. The discrete mother wavelet
can be expressed as [26]:

Ma,b(t) =
1√
ma

0
M(

t − bn0ma
0

ma
0

) (6)

where a and b are the integers that control the wavelet dilation and translation, respectively.
The most commonly used value for these parameters is m0 = 2 and n0 = 1, where n0 is the
location parameter. It must be greater than zero and m0 displays fined dilation step that
is greater than one. The DWT scale and position are based on the power of two (dyadic
scales and positions); this power of two logarithmic scalings of the translation and dilation
is known as the dyadic grid arrangement. The dyadic wavelet function is defined as [41]:

Ma,b(t) = 2−(
a
2 )M

(
2−at− b

)
(7)

For a discrete-time, series, xi, the dyadic wavelet transform becomes [26]:

Ta,b = 2−(
a
2 )

L−1

∑
i=0

M
(
2−ai− b

)
xi (8)

Ta,b is the wavelet coefficient for the discrete wavelet with scale m = 2a and location
n = 2a, b. (i = 0, 1, 2, . . . , L-1; and L is an integer power of 2: L = 2A).Also, the signal’s
smoothed component, which represents the time series’ overall trend, is considered T.
The discrete inverse transform can reconstruct the signal xi as [42]:

xi = T(t) +
A

∑
a=1

Ta,b (t) (9)

where T(t) is the approximate sub-signal at level A and Ta,b(t) are details sub-signals at
levels a = 1, 2,..., A and time dimension of t (t = 1, 2,.., b). The wavelet coefficients, Ta,b(t)
with (a = 1, 2, . . . , A), give the detailed sub-signals which can capture small features of
interpretational value available in the time series data. The residual term T(t) indicates
an approximate sub-signal, representing background information available in the time
series data. An approximate sub-signal represents the general trend of the original time
series signal. In contrast, a detailed sub-signal represents high-frequency components
of the original time series signal [42]. Using these approximate and detail sub-signals,
the characteristics of time series like jump, period, hidden period, and dependence can
be identified easily [22]. When the original signal passes through low and high pass filter
at each decomposition level, it gets resolved into approximate and detail sub-signals; the
decomposition at each level is satisfied by the condition given as:

X(n) = cA1 + cD1 = cA2 + cD1 + cD2 (10)

In this study, original rainfall, runoff, and SSC time series data were decomposed
through DWT into approximate and detail sub-signals using MATLAB (R2015a) wavelet
toolbox.

2.6. Mother Wavelets

Different mother wavelets are characterized by their features, such as their support
region and the corresponding number of vanishing moments. In this study, for investigation
purposes, Haar, Daubechies, and Coiflets mother wavelets were selected for assessing
their comparative prediction performance for daily SSC prediction. Some of the most-used
mother wavelets are described below.

Haar wavelet: It is the first and the most straightforward form of all other wavelets.
It is discontinuous and resembles a step function. It is suitable for such time series which
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has sudden transitions. Nevertheless, this property may be a disadvantage of the Haar
wavelet as it is not differentiable [31]. Daubechies wavelet (db): It is compactly supported
(finite length) orthonormal wavelets and makes discrete wavelet transform possible. It is
represented by dbN where N is the number of vanishing or zero moments. The ordinary
members of this family are db2, db3, db4, db5, db6, db7, db8, db9, and db10.

Coiflets wavelet (coif): In the Coiflet wavelet, both the scaling function and wavelet
function have vanishing moments. It facilitates wavelet transformation and provides
an excellent approximation of polynomial function at different resolutions, increasing
computational efficiency. This wavelet family has four members, namely coif1, coif2, coif3,
and coif4. In this study, for investigation purposes, Haar, Daubechies (db2), and Coiflets
(coif2) mother wavelets were selected to assess their comparative prediction performance
for daily SSC prediction. Schematic representation of the selected mother wavelets.

2.7. Gamma Test (GT)

Hydrological processes are highly complex, dynamic, and non-linear. To select the
best input combination, it needs to carry out a trial-and-error procedure. GT provides
useful information to select the best input variables for constructing a reliable and smooth
model. It also reduces the workload required to develop models by considering all input
combinations [12]. GT is a non-parametric test. GT determines the variance of noise or the
Mean Square Error (MSE) without any over-fitting. GT evaluates the non-linear correlation
between two random variables like input and output pairs.

GT assumes that if two variables b and b’ are close together in the input space, their
corresponding output variables c and c’ should also be close in the given output space.
If the outputs are not close together, then it will indicate noise. Suppose the data set is
given in the form as:

{(bi, ci), 1 ≤ i ≤ N} (11)

where vector b ε RN denotes input, corresponding scaler c ε R denotes output. Here, the
assumption is that the input vector consists of useful information that can affect output c.
The relationship among variables in the system is assumed in the form as:

c = f (b1 . . . ..bN) + s (12)

where s denotes the noise. Here, it is also assumed that variance of the noise is bounded.
The additional Gamma test forms were illustrated in the Appendix C.

In this study, the best input combination for daily SSC prediction was selected based
on a minimum value of gamma (Γ) and Vratio. To apply the GT, win GammaTM software
was used.

2.8. Data Normalization

In this study, the original time series data were normalized between 0 and 1 for
practical training of the developed models. It will give equal attention to all input param-
eters and helps in fast convergence during training. Interpretability of models improves
due to normalization [30]. Here, the normalization of supplied input data was done for
eliminating their dimensions using the expression as:

xi =
Si − Smin

Smax − Smin
, (i = 1, 2, . . . , n) (13)

where Smax and Smin are the maximum and minimum values of original time series data,
n is the number of data points, and x is the original input variable’s normalized value.

2.9. Training and Testing of Developed Models

MLP based feed-forward ANN is the most commonly used in hydrology while cou-
pling with wavelet transform [32]. In this study, feed-forward MLP based ANN models
were trained and tested in MATLAB (R2015a) software. The single hidden layer with (BP)
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algorithm can model the input-output system’s complex and non-linear behavior [30].
Hence, in this study, three layered (one input, one hidden, and one output layer) neural
network models were developed for daily SSC prediction. The most accurate, reliable,
and fast BP based Levenberg-Marquardt (LM) learning rule was used to train neural net-
work models [30,39]. The selection of the number of neurons in the hidden layer is also a
difficult task. The number of neurons in the input layer is equal to the number of input
variables. In contrast, the number of neurons in the output layer is the same as that of the
number of output variables (only one in this study). To date, no clear guideline is available
to select the optimum number of neurons in the hidden layer. However, Olyaie, et al. [11]
suggested that the hidden layer neurons should be increased from (2(

√
n) + m) to (2n +

1) for selecting the optimal number, where n is the number of input variables and m is
the number of output variables. It can solve the problem of under- and over-fitting of
models. Due to under- and over-fitting, the model cannot detect signals [30]. In this study,
the number of neurons was increased from 1 to 2n + 1 in the single hidden layer of both
ANN and WANN models to avoid under- and over-fitting. The non-linear sigmoid transfer
function is capable of solving a complex problem. Hence, the hyperbolic tangent sigmoid
(tan sig) transfer function was used in this study, whose mathematical representation is
given in Equation (21). Developed ANN and WANN models were trained with maximum
iterations of 1000. In this study, feed-forward MLP based ANN/WANN models were
developed using ‘’nntool” in MATLAB (R2015a) software.

f (x) =
1

1 + e−x (14)

Generally, grid partitioning and subtractive clustering are used for FIS generation.
Nevertheless, the problem with grid partitioning is that it creates mn number of fuzzy rules
(here, n is the number of input variables, and m is the number of MFs per input). Hence,
when the inputs increase slightly, fuzzy rules increase rapidly [43]. Grid partitioning
can be easily used for solving problems with less than 6 input variables [44]. Hence,
in this study, subtractive clustering was employed to develop ANFIS/WANFIS models.
In total, eight input MFs were used by changing the number of MFs per input from 2
to 4. The rule base was constructed with OR logical operation by changing the number
of rules from 2 to 4. A total of two output MFs, such as constant and linear, were used.
Hence, individually 48 (8 input MFs × 2 output MFs × 3 rules) ANFIS models were
developed by applying simple ANFIS or any WANFIS models technique by keeping the
error tolerance of 0.001 and maximum iterations of 1000 in MATLAB (R2015a) software
with a hybrid learning algorithm. In this study, different ANFIS/WANFIS models were
developed using ‘’anfisedit” tool in MATLAB (R2015a) software with hybrid learning
algorithm and Takagi–Sugeno–Kang (TSK) FIS.

2.10. Performance Evaluation of Developed Models
2.10.1. Quantitative Evaluation

To avoid personal bias for selecting the best performing model with qualitative assess-
ment method, different statistical and hydrological parameters were used quantitatively
to evaluate the developed models’ effectiveness. Statistical indices applied such as root
mean squared error (RMSE), the correlation coefficient (r), and Willmott Index (WI) were
included in Appendix D.

2.10.2. Hydrological Indices
Coefficient of Efficiency (CE)

Reference [45] introduced the coefficient of efficiency. It is used to evaluate the
predictive power of developed models in the field of hydrology. Its value ranges between
−∞ to 1. The CE value of 1 indicates perfect matching of predicted and observed values.
The CE value of 0 indicates that the model’s prediction is as accurate as the mean value of
the observed data values. When the CE value is less than 0, the observed data series is a
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better predictor than the developed model. As the CE value is closer to 1, the model will be
more accurate. It is expressed as:

CE = 1− ∑n
i=1
(
Qo −Qp

)2

∑n
i=1
(
Qo − Qo

)2 (15)

Pooled Average Relative Error (PARE)

PARE can be used to judge the model’s under-prediction and over-prediction perfor-
mance [23]. PARE’s positive value indicates over-prediction, and PARE’s negative values
indicate the under-prediction performance of the developed model. It can be expressed as:

PARE (%) =
1
N

{
∑n

i=1
(
Qp −Qo

)
∑n

i=1 Qo
× 100

}
(16)

2.11. Qualitative Evaluation

The qualitative and quantitative evaluation was carried out to select the best model
for prediction purposes to assess developed models’ performance. Hence, both qualitative
and quantitative evaluation was performed to judge the goodness of fit between predicted
and observed values. Here, the qualitative evaluation was completed from the graphical
comparison of time series (sedimentographs) and scattered plots of observed and predicted
SSC values. The best model was selected based on quantitative and qualitative evaluation
criteria like maximum CE, r, WI, R2and minimum RMSE, and PARE.

2.12. Uncertainty Analysis

Due to the highly stochastic nature of hydrologic processes, the developed models
may have too much uncertainty. The predicted values are not the same as observed values,
while predicted values always have some uncertainties. Hence, in this study, to test the
reliability of developed models, an uncertainty analysis was also carried out using the
following indices.

2.12.1. Width of Uncertainty Band of Error Prediction (We)

The uncertainty band’s width at a 95% confidence level is + (1.96 σ/
√

n). It indicates
the margin of the prediction error, where σ is the standard deviation of prediction error,
and it is expressed as:

σ =

√
∑n

i=1(e− e)2

n
(17)

e =
1
n

n

∑
i=1

e (18)

where e is the mean error of prediction, and e is the individual prediction error, e = Qp − Qo.

2.12.2. 95% Confidence Interval of Error Prediction (CIe)

It represents the 95% probability that the error incorporated in the model’s prediction
can lie within the specified interval. A wider interval indicates the presence of more
uncertainty or vice versa. Its expression is given as:

CIe = (e± 1.96
σ√
n
) (19)

The flowchart of the methodology adopted for daily suspended sediment estimation
is shown in Figure 3.
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3. Results
3.1. Data Analysis

Different statistical parameters of original rainfall, runoff, and SSC time series used in
this analysis are presented in Table 1.

Table 1. Statistical parameters of the dataset used for daily SSC prediction.

Statistical
Parameters

Whole Data Training Data Set Testing Data Set

Rt (mm) Qt (m3/s) SSCt (g/L) Rt (mm) Qt (m3/s) SSCt (g/L) Rt (mm) Qt (m3/s) SSCt (g/L)

Mean 14.60 215.65 0.059 12.00 141.03 0.048 20.61 388.02 0.084
Standard
Deviation 22.91 405.67 0.088 17.33 191.73 0.069 31.53 646.81 0.118

Kurtosis 11.85 41.33 20.03 7.62 14.54 17.105 6.81 15.67 13.261
Skewness 3.01 5.38 3.643 2.51 3.41 3.175 2.47 3.48 3.180

Range 193.32 4641 0.841 119.51 1397.00 0.717 193.32 4640.50 0.839
Minimum 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.50 0.002
Maximum 193.32 4641 0.841 119.51 1397.00 0.717 193.32 4641.00 0.841

Count 854 854 854 596 596 596 258 258 258
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The lower values of skewness of rainfall, runoff, and SSC were observed in both the
training and testing data set. The low value of skewness is necessary for appropriate
modeling. Table 2 represents the existence of a degree of correlation among rainfall (R),
runoff (Q), and SSC (S) with three days lagged duration. The previous 3 days’ rainfall,
runoff, and SSC were considered for applying GT based on the degree of correlation.

Table 2. Cross-correlation matrix between different variables for daily SSC prediction.

Variable St Rt Rt-1 Rt-2 Rt-3 Qt Qt-1 Qt-2 Qt-3 St-1 St-2 St-3 p-Values

St 1.00 -
Rt 0.70 1.00 5.65 × 10−26

Rt − 1 0.68 0.74 1.00 0.73
Rt − 2 0.61 0.58 0.74 1.00 0.97
Rt − 3 0.51 0.45 0.58 0.74 1.00 0.27

Qt 0.62 0.66 0.68 0.63 0.56 1.00 0.04
Qt − 1 0.54 0.48 0.66 0.68 0.63 0.89 1.00 0.78
Qt − 2 0.44 0.37 0.48 0.66 0.68 0.75 0.89 1.00 0.93
Qt − 3 0.35 0.29 0.37 0.48 0.66 0.65 0.75 0.89 1.00 0.10
St − 1 0.72 0.51 0.70 0.68 0.61 0.59 0.62 0.54 0.44 1.00 1.82 × 10−27

St − 2 0.60 0.41 0.51 0.70 0.68 0.56 0.59 0.62 0.54 0.72 1.00 0.00016
St − 3 0.49 0.33 0.41 0.51 0.70 0.52 0.56 0.59 0.62 0.60 0.72 1.00 0.18

3.2. GT for Input Selection

As the hydrologic processes are highly dynamic, the present response depends on the
current response system and the past response in the hydrologic system’s memory. Hence,
it is considered that present-day SSC response depends on the present day’s response of rain-
fall and runoff and the past three days’ response of rainfall, runoff, and SSC. The relationship
between input and output variables can be expressed mathematically as:

St = f (Rt, Rt−1, Rt−2, Rt−3, Qt, Qt−1, Qt−2, Qt−3, St−1, St−2, St−3) (20)

where Rt and Qt are the present day’s rainfall and runoff, respectively. Rt − 1, Rt − 2, and Rt

− 3 are the previous one, two- and three-days rainfall, respectively, Qt − 1, Qt − 2, and Qt

− 3 are the previous one, two- and three-days runoff, respectively, St − 1, St − 2, and St

− 3 is the previous one, two- and three-days SSC, respectively. Here, initially, a total of
11 input variables (j) were selected for GT. Based on these 11 input variables, a total of
2j − 1 (i.e., 2047) input combinations can be possible, but, in this study, reliable 58 input
combinations were made and analyzed as presented in Table 3.

Table 3. Selection of the best input combination using a Gamma test (GT).

Model Model Input Combination Mask Gamma V − Ratio

M1 Rt 10000000000 0.0047802000 0.5471600
M2 Rt, Rt − 1 11000000000 0.0042625000 0.4879000
M3 Rt, R t− 1, Rt−2 11100000000 0.0041758000 0.4779800
M4 Rt, Rt − 1, Rt − 2, Rt − 3 11110000000 0.0032813667 0.4219459
M5 Rt, Rt − 1, Rt − 2, Qt 11110000000 0.0038298000 0.4383700
M6 Rt, Rt − 1, Rt − 2, Rt − 3, Qt 11111000000 0.0030169776 0.3879486
M7 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1 11111100000 0.0034506204 0.4437100
M8 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2 11111110000 0.0034489278 0.4434924
M9 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, Qt − 3 11111111000 0.0032920565 0.4233205

M10 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, Qt − 3, St − 1 11111111100 0.0032920565 0.4233205
M11 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, Qt − 3, St − 1, St − 2 11111111110 0.0032920306 0.4233172
M12 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, Qt − 3, St − 1, St − 2, St − 3 11111111111 0.0032920306 0.4233172
M13 Rt, Rt − 1, Rt − 2, Qt, St − 1, St − 2 11101000110 0.0034097067 0.4384490
M14 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, St − 1 11111000100 0.0030159990 0.3878227
M15 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, St − 1, St − 2 11111000110 0.0030159998 0.3878228
M16 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, St − 1, St − 2, St − 3 11111000111 0.0030165903 0.3878988
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Table 3. Cont.

Model Model Input Combination Mask Gamma V − Ratio

M17 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, St − 1, St − 2, St − 3 11111100111 0.0034493755 0.4435500
M18 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, St − 1, St − 2, St − 3 11111110111 0.0034489289 0.4434925
M19 Rt, Rt − 1, Rt − 2, Qt, Qt − 1, Qt − 2, Qt − 3, St − 1, St − 2, St − 3 11101111111 0.0033026471 0.4246824
M20 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, Qt − 3, St − 1, St − 2 11111111110 0.0032920306 0.4233172
M21 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1, Qt − 2, St − 1, St − 2, St − 3 11111110111 0.0034489289 0.4434925
M22 Rt, Rt − 1, Rt − 2, Qt, Qt − 1 11101100000 0.0042706000 0.4888370
M23 Rt, Rt − 1, Rt − 2, Rt − 3, Qt, Qt − 1 11111100000 0.0034506204 0.4437100
M24 Rt, Rt − 1, Rt − 2, Qt, Qt − 1, Qt − 2 11111100000 0.0040742000 0.4663550
M25 Rt, Rt − 1, Rt − 2, Qt, Qt − 1, Qt − 2, St − 1 11101110100 0.0040742000 0.4663550
M26 Rt, Rt − 1, Rt − 2, Qt, Qt − 1, Qt − 2, St − 1, St − 2 11101110110 0.0040742000 0.4663550
M27 Rt, Rt − 1, Rt − 2, St − 2 11100000010 0.0041747000 0.4778580
M28 Rt, Rt − 1, Rt − 2, St − 1, St − 2 11100000110 0.0041719000 0.4775350
M29 Rt, Rt − 1, Rt − 2, Qt, St − 1 11101000100 0.0038292000 0.4383100
M30 Rt, Rt − 1, Rt − 2, Qt, St − 1, St − 2 11101000110 0.0038289000 0.4382700
M31 Rt, Rt − 1, Rt − 2, Qt, Qt − 1, St − 1, St − 2 11111100110 0.0042695000 0.4887090
M32 Rt − 1 01000000000 0.0045396000 0.5196200
M33 Rt − 1, Rt − 2 01100000000 0.0046157000 0.5283400
M34 Rt − 1, Rt − 2, Qt 01101000000 0.0048902000 0.5597500
M35 Rt − 1, Rt − 2, Qt, St − 1 01101000100 0.0048889000 0.5596100
M36 Rt − 1, Rt − 2, Qt, St − 1, St − 2 01101000110 0.0048885000 0.5595600
M37 Rt − 1, Rt − 2, Qt, Qt − 1, St − 1, St − 2 01101100110 0.0045635000 0.5223630
M38 Rt − 1, Rt − 2, Qt, Qt − 1, Qt − 2, St − 1, St − 2 01101110110 0.0044611000 0.5106410
M39 Rt − 2 00100000000 0.0059649000 0.6827700
M40 Rt − 2, Qt 00101000000 0.0049465000 0.5662000
M41 Rt − 2, Qt, St − 1 00101000100 0.0049457000 0.5661100
M42 Rt − 2, Qt, St − 1, St − 2 00101000110 0.0049452000 0.5660450
M43 Qt 00001000000 0.0053284000 0.6099170
M44 Qt, St − 1 00001000100 0.0053036000 0.6070760
M45 Qt, St − 1, St − 2 00001000110 0.0052017000 0.5954070
M46 St − 1 00000000100 0.0045528000 0.5211380
M47 St − 1, St − 2 00000000110 0.0046496000 0.5322160
M48 St − 2 00000000010 0.0060325000 0.6905120
M49 Rt, Rt − 2, Qt, St − 1, St − 2 10101000110 0.0041118000 0.4706530
M50 Rt, Qt, St − 1, St − 2 10001000110 0.0042217000 0.4832370
M51 Rt, St − 1, St − 2 10000000110 0.0039567000 0.4529040
M52 Rt, St − 2 10000000010 0.0042196000 0.4830030
M53 Rt, Rt − 1, Qt, St − 1, St − 2 11001000110 0.0038594000 0.4417640
M54 Rt, Rt − 1, St − 1, St − 2 11000000110 0.0042129000 0.4822330
M55 Rt, Rt − 1, St − 2 11000000010 0.0042181000 0.4828270
M56 Rt, Rt − 1, Rt − 2, St − 1, St − 2 11100000110 0.0041719000 0.4775350
M57 Rt, Rt − 1, Rt − 2, St − 2 11100000010 0.0041747000 0.4778580
M58 Rt, Rt − 1, Rt − 2, Qt, St − 2 11101000010 0.0038293000 0.4383140

The best input combination was selected based on minimum Gamma (Γ) and Vratio
value. As per GT, the model (M14) with six input variables (Rt, Rt − 1, Rt − 2, Rt − 3, Qt,
St − 1) were selected and used to develop different models.

3.3. Hydrological Model Development
3.3.1. ANN/ANFIS Models for Daily SSC Prediction

The original input variables selected by GT were directly used to construct simple
ANN and ANFIS models. The schematic representation of different ANN/ANFIS models
for daily SSC prediction is shown in Figure 4.
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Figure 4. Schematic representation of ANN/ANFIS models for daily SSC prediction.

In simple ANN models, the number of neurons in the single hidden layer varied from
1 to 2n + 1 (2 × 6 + 1). Hence, 13 simple ANN models were developed to assess their
performance for daily SSC prediction.

3.3.2. WANN/WANFIS Models for Daily SSC Prediction

For the prediction of daily SSC using WANN/WANFIS models, the original time series
data selected by GT were decomposed by applying DWT and fed as input to ANN/ANFIS
models. Here, wavelet transformed data were linked to the ANN/ANFIS network to
develop WANN/WANFIS models, respectively. Haar, db2, and coif2 mother wavelets were
used to decompose selected six input variables into different multi-frequency sub-signals
at the appropriate decomposition level. The appropriate decomposition level was selected
using the suggested empirical relation as [29,42]:

i = int[log(N)] (21)

where i is the appropriate decomposition level, N is the number of data points (Here, N was
taken as 854 data points, and int [.] is the integer part function. Therefore, selected six input
variables were decomposed at level (i) 2 using selected mother wavelets. Here, each of
the selected input variables was decomposed at level 2, which produced 1 approximate
(A2) and 2 detail (D1, D2) (total 3) sub-signals. Now, the best selected six input variables
(i.e., Rt, Rt-1, Rt-2, Rt-3, Qt, St-1) produced 18 (6 × 3) sub-signals. Hence, these total
18 sub-signals (input variables) were fed to ANN/ANFIS to develop WANN/WANFIS
models, respectively, for daily SSC prediction, as shown in Figure 5 schematically.
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Figure 5. Schematic representation of wavelet coupled ANN/wavelet coupled ANFIS models for daily SSC prediction.

The decomposed sub-signals of normalized rainfall, runoff, and SSC time series with
selected mother wavelets at level (i) 2 are shown in Figures 6–8, respectively.
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Figure 6. Decomposition of original rainfall time series using different mother wavelets. (a) Haar, (b) db2, (c) coif2.
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Figure 7. Decomposition of original runoff time series using different mother wavelets. (a) Haar, (b) db2, (c) coif2.
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Figure 8. Decomposition of original SSC time series using different mother wavelets. (a) Haar, (b) db2, (c) coif2.

Each sub-signal plays a different role during prediction [30]. In WANN models,
the number of neurons in the hidden layer varied from 1 to 2n + 1 (2 × 18 + 1). Hence,
a total of 37 WANN models per single mother wavelet were developed to assess their daily
SSC prediction performance.

3.4. Quantitative Performance Evaluation of Developed Models for Daily SSC Prediction

Quantitative performance evaluation indicators like RMSE, r, WI, CE, and PARE
were used to assess developed models’ predictive performance. Different AI techniques
were employed for that purpose. The single best model was selected from each technique
presented in Tables 4 and 5.
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Table 4. Quantitative performance evaluation indices of the best selected Artificial Neural Network (ANN) and wavelet
coupled ANN (WANN) models.

Model Architecture

Training Testing

RMSE
(g/L) r WI CE PARE

(%)
RMSE
(g/L) r WI CE PARE

(%)

ANN-3 6-3-1 0.040 0.81 0.78 0.655 0.0017 0.078 0.75 0.73 0.560 −0.013
Haar-WANN-21 18-21-1 0.042 0.80 0.73 0.633 0.0041 0.069 0.83 0.74 0.661 0.006
db2-WANN-21 18-21-1 0.031 0.90 0.72 0.801 0.0236 0.061 0.86 0.75 0.734 −0.012
coif2-WANN-11 18-11-1 0.021 0.95 0.81 0.903 0.0134 0.065 0.84 0.76 0.696 −0.017

Table 5. Quantitative performance evaluation indices of the best selected ANFIS and WANFIS models.

Model

Training Testing

RMSE
(g/L) R WI CE PARE (%) RMSE

(g/L) r WI CE PARE
(%)

ANFIS-29 0.041 0.80 0.78 0.638 6.6 × 10−9 0.080 0.78 0.73 0.545 0.060
Haar-WANFIS-27 0.032 0.88 0.83 0.782 1.7 × 10−9 0.074 0.82 0.76 0.605 0.017
db2-WANFIS-25 0.023 0.94 0.85 0.892 2.1 × 10−10 0.068 0.84 0.77 0.666 0.051
coif2-WANFIS-43 0.029 0.91 0.83 0.821 3 × 10−11 0.060 0.87 0.80 0.745 0.015

After comparing the quantitative performance among 13 simple ANN models, it was
revealed that RMSE, r, WI, CE, and PARE varies from 0.04 g/L to 0.067 g/L and 0.078 g/L
to 0.119 g/L, 0.48 to 0.83 and 0.32 to 0.75, 0.56 to 0.78 and 0.56 to 0.73, 0.063 to 0.67 and
−0.016 to 0.560, −0.09% to 0.032% and −0.189% to 0.089% during training and testing,
respectively. Among 13 simple ANN models, the ANN-3 model with architecture (6-3-1)
was the superior model compared to others based on quantitative performance criteria.
The results obtained were extremely acceptable and agree with those suggested by Ra-
jaee [46], who applied the ANN for predicting daily SS under different time series and
found that determination coefficients (R2) ranged from 0.12 to 0.87 for training and from
0.10 to 0.83 for testing datasets. Moreover, these results coincide with Sudhishri, et al. [47]
observation, who investigated that ANN produced high correlations for predicting SS
varied from 0.81 to 0.83. From 0.74 to 0.75 for training and validation periods, respectively.
Similarly, from all 37 Haar-WANN models, it was observed that RMSE, r, WI, CE, and PARE
ranges from 0.026 to 0.083 g/L and 0.069 g/L to 0.120 g/L, 0.22 to 0.93 and 0.55 to 0.85,
0.38 to 0.87 and 0.48 to 0.75, −0.454 to 0.852 and −0.039 to 0.661, −0.166% to 0.142% and
−0.181% to 0.185% during training and testing, respectively. Out of 37 Haar-WANN mod-
els, the Haar-WANN-21 model with architecture (18-21-1) was selected as the best among
others. The findings were parallel to Nourani and Komasi [26] results, who predicted
daily multi-step ahead SS based on WANN. Their results confirmed high correlations from
0.6 to 0.89 for calibration, and from 0.55 to 0.85 for verification periods were obtained.
These findings were similar to those revealed by Rajaee [46], who used several mother
wavelets for daily SS simulation and stated that Haar-WANN at ANN structure (6-4-1)
generated R2 0.63 RMSE of 4321 ton/day. Additionally, research outcomes are in line with
those who evaluated wavelet-based ANN models for estimating daily SS and obtained
a positive relationship (R2 = 0.70) between the observed–predicted data. By comparing
prediction performance among 37 db2-WANN models, it was revealed that RMSE, r, WI,
CE, and PARE varies from 0.015 g/L to 0.042 g/L and 0.061 g/L to 0.132 g/L, 0.81 to 0.98
and 0.43 to 0.86, 0.65 to 0.90 and 0.62 to 0.76, 0.628 to 0.952 and −0.025 to 0.734, −0.018% to
0.054% and−0.071% to 0.138% during training and testing, respectively and db2-WANN-21
model with architecture (18-21-1) was observed to be the best model for SSC prediction.
These models generated more favorable outcomes compared with the results of Rajaee [46],
who observed that db2-WANN at ANN structure (6-1-1) achieved R2 of 0.55 and RMSE of
4751.8 ton/day. Similarly, from all 37 coif2-WANN models, it was observed that RMSE, r,
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WI, CE, and PARE varies between 0.020 g/L to 0.041 g/L and 0.065 g/L to 0.120 g/L, 0.86 to
0.96 and 0.49 to 0.84, 0.69 to 0.88 and 0.62 to 0.76, 0.650 to 0.915 and−0.033 to 0.696,−0.033%
to 0.056% and−0.10% to 0.123% during training and testing, respectively. By comparing all
coif2-WANN models’ predictive performance, the coif2-WANN-11 model with architecture
(18-11-1) was observed to be the best. These results agree with Rajaee [46], who found
that the coif-WANN gave satisfactory results (R2 = 0.74, and RMSE =3601.1 ton/day) at
ANN structure 4-1-1. After analyzing the quantitative prediction performance among all
48 simple ANFIS models, it was revealed that RMSE, r, WI, CE, and PARE varies between
0.033 g/L to 0.044 g/L and 0.080 g/L to 1.23 g/L, 0.77 to 0.88 and −0.43 to 0.78, 0.71 to
0.80 and 0.27 to 0.74, 0.587 to 0.772 and −107.9 to 0.545, −1 × 10−8% to 2.3 × 10−8% and
−0.736% to 0.975% during training and testing, respectively. Among all 48 simple ANFIS
models, the ANFIS-29 model (triangular input MF, constant output MF and 3 MFs/input)
performed better during the training and testing period. Similarly, for all 48 Haar-WANFIS
models, it was found that RMSE, r, WI, CE, and PARE ranges from 0.016 g/L to 0.050 g/L
and 0.074 g/L to 0.288 g/L, 0.69 to 0.97 and 0.1 to 0.82, 0.63 to 0.88 and 0.5 to 0.76, 0.47
to 0.947 and −4.955 to 0.605, −4 × 10−9% to 2.5 × 10−9% and −0.105% to 0.094% during
training and testing, respectively. Here, the Haar-WANFIS-27 model (triangular input MF,
linear output MF, and 4 MFs/input) performed better during both the training and testing
period. After comparing the prediction performance of all 48 db2-WANFIS models, it was
observed that RMSE, r, WI, CE, and PARE varies between 0.012 g/L to 0.087 g/L and 0.068
g/L to 0.808 g/L, 0.11 to 0.98 and −0.51 to 0.84, 0.00 to 0.91 and 0.24 to 0.77, −0.607 to
0.969 and −45.92 to 0.666, −5 × 10−9% to 0.029% and −0.96% to 0.115% during training
and testing, respectively. Here, the db2-WANFIS-25 model (triangular input MF, linear
output MF and 2 MFs/input) performed better during both the training and testing period.
Similarly, among all 48 coif2-WANFIS models, it was revealed that RMSE, r, WI, CE, and
PARE ranges between 0.013 g/L to 0.045 g/L and 0.06 g/L to 0.392 g/L, 0.76 to 0.98 and
−0.40 to 0.87, 0.69 to 0.92 and 0.41 to 0.80, 0.573 to 0.964 and −10.04 to 0.745, −5 × 10−9%
to 8.9 × 10−8% and −0.398% to 0.07% during training and testing, respectively. Among all
48 coif2-WANFIS models, the coif2-WANFIS-43 model (z input MF, linear output MF and
2 MFs/input) performed better for both the training and testing period. Our results are in
line with Rajaee, et al. [48], who found high linear relationships from R2 of 0.72 to 0.87 and
RMSE ranged from 1805.3 ton/day to 2459.6 ton/day applying ANFIS. While the R2 was
from 0.62 to 0.67, and RMSE varied from 2543 ton/day to 2838 ton/day by using WANFIS.

3.5. Qualitative Performance Evaluation of Developed Models for Daily SSC Prediction

Qualitative performance evaluation was carried out by comparing the scatter plots
and time series (sediment) graphs of predicted versus observed SSC during the testing
period, as shown in Figures 9 and 10, respectively.

The best models selected from each technique as per quantitative evaluation were also
assessed qualitatively to analyze their capability to capture the observed SSC time-series graph.
The capability of the best-selected models for capturing low, medium, and high (peak) SSC
values was examined using a time-series graph and observing the regression line’s shifting
from a 1:1 line in scatter plots. Here, it was revealed that the best selected coif2-WANFIS-43
model is more accurate to capture the overall shape of the observed SSC time series. The
selected coif2-WANFIS-43 model closely predicted low, medium, and high SSC values with a
strong R2 of 0.76 during the testing period compared to other selected models.

All the observed and predicted data points are concentrated near the 1:1 line. The re-
gression line is not too much shifted above or below from the 1:1 line than other models.
Hence, it is revealed that the coif2-WANFIS-43 model can predict low, medium, and peak
SSC values of the Koyna River basin.
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Figure 9. Scatter plots showing the predictive performance of different models during testing.
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3.6. Uncertainty Analysis

The strength of correlation between inputs and output determines the amount of
uncertainty present in any prediction model. The amount of uncertainty incorporated in
the best-selected models during the testing period is presented in Table 6.

Table 6. Uncertainty analysis of the best-selected models during the testing period for daily SSC predictions.

Model We (g/L) CIe(g/L)

ANN-3 ±0.0096 −0.0125 to 0.0067 (0.0192)
Haar-WANN-121 ±0.0084 −0.0071 to 0.0097 (0.0168)

db2-WANN-21 ±0.0074 −0.0100 to 0.0049 (0.0149)
coif2-WANN-11 ±0.0080 −0.0118 to 0.0042 (0.0160)

ANFIS-29 ±0.0096 0.0226 to 0.0034 (0.0260)
Haar-WANFIS-27 ±0.0091 −0.0054 to 0.0128 (0.0182)
db2-WANFIS-25 ±0.0083 0.0028 to 0.0193 (0.0221)
coif2-WANFIS-43 ±0.0073 −0.0041 to 0.0105 (0.0146)

Better prediction models must have small We and CIe. In this study, the coif2-WANFIS-
43 model represented significantly less uncertainty in prediction, indicated by smaller We
(±0.0073 g/L) and narrower CIe (0.0146 g/L) other best-selected models. All WANN
models have less uncertainty than a simple ANN model for prediction purposes.

Similarly, all WANFIS models have less uncertainty than the simple ANFIS model
for daily SSC prediction. Finally, it is concluded that the coif2-WANFIS-43 model is less
uncertain than others. Hence, it could provide accurate daily SSC predictions. Hence,
in this study, it is revealed that data pre-processing using DWT is essential to improve the
model predictive accuracy.

3.7. Sensitivity Analysis

In this study, the sensitivity analysis was completed to determine the most effective
hydrologic variable of the original time series data for daily SSC prediction. The best selected
simple ANN-3 model was selected for detecting the critical variable. In this study, the
approach given by Azamathulla, et al. [49] was used for sensitivity analysis. In this approach, a
total of 10 scenarios were considered. During each scenario, the developed model performance
was tested by varying the input variables one by one. During the first scenario, the developed
model performance was tested by using all the input variables. During the second scenario, the
developed model performance was tested by removing only one input variable and keeping
all other input variables. This process of removing a single input variable and keeping all
other input variables as it is was continued until the removal of all the input variables one by
one and tested its performance simultaneously. The model’s predictive performance will be
reduced by removing a single input variable from the selected input vector. After studying the
degree of reduction in any model’s prediction performance during the absence of any single
input variable, the degree of sensitivity of such an absent input variable can be determined.
In this way, the essential input variable for daily SSC prediction can be determined. Hence,
this approach was used here. The prediction performance observed after removing all input
variables, one by one, is presented in Table 7.

Table 7. Sensitivity analysis for detection of the most crucial variable for daily SSC prediction.

Inputs Training Testing

RMSE
(g/L) r WI CE PARE

(%)
RMSE
(g/L) r WI CE PARE

(%)

Rt, Rt − 1, Rt − 2, Rt − 3, Qt, St − 1 0.040 0.81 0.78 0.655 0.0017 0.078 0.75 0.73 0.560 −0.013
Rt − 1, Rt − 2, Rt − 3, Qt, St − 1 0.043 0.78 0.72 0.612 0.0037 0.091 0.71 0.67 0.409 0.032

Rt, Rt − 2, Rt − 3, Qt, St − 1 0.040 0.82 0.77 0.666 0.0015 0.080 0.73 0.72 0.539 0.008
Rt, Rt − 1, Rt − 3, Qt, St − 1 0.043 0.79 0.68 0.613 0.0138 0.089 0.66 0.68 0.427 −0.054
Rt, Rt − 1, Rt − 2, Qt, St − 1 0.045 0.77 0.63 0.570 0.0327 0.096 0.68 0.67 0.342 0.054

Rt, Rt − 1, Rt − 2, Rt − 3, St − 1 0.041 0.80 0.73 0.639 0.0207 0.087 0.69 0.69 0.455 −0.046
Rt, Rt − 1, Rt − 2, Rt − 3, Qt 0.045 0.75 0.69 0.563 0.0071 0.108 0.45 0.59 0.160 −0.027
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Here, it was revealed that in the absence of the previous 1-day SSC (St− 1), the selected
ANN-3model’s predictive performance decreased dramatically. Therefore, it is concluded that
St− 1 is the most critical hydrologic variable in the daily SSC prediction. The order of sensitivity
for daily SSC prediction was observed to be St− 1 followed by Rt− 3, Rt, Rt− 2, Qt, Rt− 1.

4. Discussion
Comparison of ANN, WANN, ANFIS, and WANFIS Models for Daily SSC Prediction

The best models selected after applying different techniques were compared with each
other based on quantitative and qualitative performance evaluation criteria to select the
single most accurate model with high SSC prediction performance. Different performance
indicators like RMSE, r, WI, CE, PARE, and R2 were used for that purpose. It was observed
that WANN models performed better than simple ANN models. Among WANN models,
db2-WANN models performed better than Haar- and coif2-WANN models. Similarly,
WANFIS models outperformed simple ANFIS models. Among all WANFIS models, coif2-
WANFIS models performed better than Haar- and db2-WANFIS models (Figure 11).
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Here, it was revealed that the coif2-WANFIS model performed better than all other
models. Here, it is observed that the wavelet-coupled hybrid models performed better
than simple data-driven models. Based on sensitivity analysis, it was observed that the
previous one day SSC is an essential input variable for daily SSC estimation. Koyna River
basin is a very complex River basin having varying climatic and topographic conditions.
Due to the complex nature of the basin, the sediment flow is highly dynamic. In this study,
it is found that the coiflet mother wavelet-coupled ANFIS model is capable of predicting
the highly dynamic behavior of the Koyna River basin. Hence, it can be concluded that the
coiflet mother wavelet, coupled with the ANFIS model, can be able to predict the dynamic
nature of the suspended sediment flow of any other complex river basin. Hence, it can
be applied to other areas that have highly varying climatic and topographic conditions.
Hence, the coiflet mother wavelet, coupled with the ANFIS model, is highly recommended
for the river basins that come under varying climatic and topographic conditions.
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5. Conclusions

In this study, the predictive performances of simple and wavelet-coupled AI models were
analyzed for daily SSC prediction. In this study, 124 ANN/WANN and 192 ANFIS/WANFIS
models were developed to predict daily SSC and tested their predictive performance. The de-
veloped models’ capability to capture the observed sediment graph at low, medium, and peak
SSC was evaluated. Finally, it is revealed that the hybrid wavelet-coupled AI models can
model non-linear behavior between inputs and output variables.

Hybrid AI models outperformed simple AI models. Hydrologic processes such as
runoff flow and sediment flow are highly complex and non-stationary; hence data pre-
processing with DWT receives too much importance. Here, it was observed that simple
AI models like ANN or ANFIS could not precisely model the hydrologic process without
pre-processing original time series data. Out of 316 models, the coif2-WAFIS-43 model
performed better based on quantitative and qualitative performance evaluation criteria.
Hence, it could be applied for daily SSC prediction of the Koyna River basin. The final
selected model is better, consistent, and accurate for daily SSC predictions among all other
models. The reliability of the developed models was evaluated using uncertainty analysis.
Here, it was revealed that simple AI models’ reliability increased after coupling it with
wavelet transform. The uncertainty analysis also indicated that the coif2-WAFIS-43 model
is more reliable than others for daily SSC prediction. St-1 input variable was observed to be
the most critical input variable, followed by Rt-3, Rt, Rt-2, Qt, Rt-1 for daily SSC modeling
based on sensitivity analysis.

Here, in this study, it was found that the coiflet wavelet-coupled ANFIS model can
predict sediment flow of highly complex river basin with varying climatic and topographic
conditions. Hence, it is concluded that a coiflet mother wavelet, coupled with the ANFIS
model, is more capable of modeling the dynamic behavior of complex river basins like the
Koyna River basin. The future study should be focused on investigating the validity of this
approach for multiple time steps (1, 2, 3 days/months ahead) SSC prediction. The impact
of some additional inputs such as rainfall intensity, soil moisture content, maximum and
minimum temperature, wind speed, relative humidity, bright sunshine hours, etc., should
be assessed to improve the model’s predictive efficiency. The applicability of other AI
models like a genetic algorithm (GA), support vector machine (SVM), and wavelet-coupled
SVM should be investigated to improve the prediction performance. Further, the result
of the hybrid mentioned above approach should also be verified by selecting only those
sub-signals with a higher correlation to output.
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Appendix A

The activation function f reduces the amplitude of output and show its non-linearity
in the form given as:

yf = (u) (A1)

The neurons’ performance can be altered by varying the transfer functions and chang-
ing the parameter like thresholds or gains. The processing at particular neurons occurs
independently of all the other neurons of a given network. The processing completed
at particular neurons can affect the whole neural network at the same time because the
output of that particular neuron becomes an input to many other neurons of a neural
network. Similarly, the neural network learns by changing the connection weights be-
tween the neurons. By using a suitable learning algorithm, the connection weights are
altered using the training data set. The weights are frozen after the completion of learning.
A feed-forward Multilayer Perceptron (MLP) neural network is the most widely used
neural network in hydrology [11]. In the feed-forward network, the input vector is first
forwarded to the output layer through a hidden layer using a non-linear transfer function
that may be differentiable, continuous, or bounded. The output layer’s error between
simulated output and target output is propagated to adjust weights through some training
mechanism. This process of “feed-forward” and “error back-propagation” is repeated until
there is an acceptable reduction in error.

Appendix B

Layer 1: Every node in this layer creates a membership grade for an input variable.
Every node i in this layer is a square node (or adaptive node), whose node function is
defined as:

Oi1(x) = µAi
(x) for i = 1, 2 (A2)

Oi1(x) = µBi−2
(y) for i = 3, 4 (A3)

where (x or y) is the input to the ith node, Ai (or Bi−2) is the fuzzy set associated with this
node, and it is characterized by MFs shape. The MF may be any appropriate functions
(continuous and piecewise differentiable) like Gaussian, Trapezoidal, Generalized bell, and
Triangular shaped functions. Different researchers apply different MFs for the search for
the solution to any problem. Considering, generalized bell function, the output of the first
layer (ith node) is determined as:

O1
i (x) = µAi

(x) =
1

1 + |(x− ci)/ai|2bi
(A4)

where (ai, bi, ci) is the premise parameter set, and by varying this premise parameter, the
shape of MF can change. For a Gaussian function, the output of the first layer (ith node) is
determined as:

O1
i (x) = µAi

(x) = e−
1
2 (

x−ci
σi

)
2

(A5)

where (ci or σi) is the premise parameter set, and by varying this premise parameter,
the shape of MF can change. Here, MFs center is represented by c while MFs width is
represented by σ.

Layer 2: Every node in this layer is a fixed node labeled as II, whose output multipli-
cate all incoming signals. The output Oi

2 indicates the firing strength of a rule, and it can
be determined as:

O2
i = Wi = µ Ai(x)i µ Bi(x)i (i = 1, 2) (A6)

Layer 3: Every node in this layer is a fixed node labeled as N. The ith node in this layer
determines the normalized firing strengths as:

O3
i = Wi =

Wi

(W1 + W2)
(i = 1, 2) (A7)
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Layer 4: Every node i in this layer is a square node with a node function given as:

O4
i = Wifi = Wi(pix + qiy + ri) (A8)

where Wi is a normalized firing strength obtained in layer 3 and {pi, qi, ri} is the parameter
set of this node (consequent parameters).

Layer 5: The single node in this layer is a fixed node labeled as sigma that computes
the overall output as the summation of all incoming signals,

O5
i = ∑

i
Wifi =

∑i Wif
∑i Wi

(A9)

The single fixed node of this layer computes the final output by adding the entire
incoming signal. In this manner, the input vector can be fed layer by layer into the ANFIS
structure. The ANFIS uses a hybrid algorithm as a learning model for training, representing
a combination of the least square and gradient descent method. The consequent parameters
{pi, qi, ri} and premise parameters {ai, bi, ci} are required to be optimized. Consequent
parameters are identified using the least square method during the forward pass of the
hybrid learning approach when the node outputs move forward. The error signals are
propagated backward during the backward pass. The premise parameters are adjusted by
using the gradient descent method [22].

Appendix C

Gamma statistic Γ defines the determination of such a part of output variance, which
cannot be accounted for in the smooth data model. Let, bT[i,k] represents kth (1 ≤ k ≤ p)
nearest neighbor, in terms of Euclidean distance to bi(1 ≤ I ≤ N). GT derived from Delta
function of the input vector is given as:

δN(k) =
1
N ∑N

i=1

∣∣∣bT[i,k] − bi

∣∣∣2 (A10)

where | . . . .| is the Euclidean distance and corresponding output values Gamma function
is denoted as:

γN(k) =
1

2N ∑N
i=1

∣∣∣cT[i,k] − ci

∣∣∣2 (A11)

After applying the least square regression analysis, Γ value can be determined through
p points (i.e., δN (k), γN(k)) which is given as:

γ = Fδ + Γ (A12)

The intercept on the vertical axis (δ = 0) gives the Γ value. It can be indicated as:

ΓN (k) Var (s) in probability as δN (k) 0

To standardize the results, another term, Vratio, can be used. It ranges from 0 to 1,
and it is defined as:

Vratio =
Γ

σ2(c)
(A13)

where σ2(c) represents the variance of output (c). The value of Vratio closer to 1 represents a
higher degree of predictability.

Appendix D

Appendix D.1 Root Mean Squared Error (RMSE)

It is an indicator of determining the prediction accuracy of any model. It compares
the values of observation versus prediction and finds the difference between them. RMSE
represents how the data points are spread around the line of the best fit. It also measures
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the average magnitude of the error. It gives positive value ranges between 0 to ∞. For a
perfect fit between observed and predicted values, the RMSE is zero. In contrast, the value
of RMSE increases as the deviation increases between observed and predicted values [50].
RMSE can be calculated using the relationship as:

RMSE =

√
∑n

i=1
(
Qoi − Qpi

)2

n
(A14)

Qo is the observed value, Qp is the predicted value, and n is the total number of values.

Appendix D.2 The Correlation Coefficient (r)

It shows the degree of closeness between observed and predicted values. It will be
zero only if predicted, and observed values are entirely independent of each other. It can
be determined using the following formula:

r =

 ∑n
i=1

{(
Qo − Qo

)(
Qp − Qp

)}
√

∑n
i=1
(
Qo −Qo

)2
√

∑n
i=1

(
Qp −Qp

)2

 (A15)

where Qo is the average of the observed values, Qp is the average of the predicted values.

Appendix D.3 Willmott Index (WI)

Willmott (1981) first invented the Willmott index (index of agreement) to overcome the
insensitivity of the coefficient of determination (R2) and Nash-Sutcliffe efficiency. WI lies
between 0 to 1; the higher WI values indicate that predicted values show better agreement
than observed values. Legates and McCabe Jr. [51] introduced a modified WI followed by
a generic form of WI proposed by Willmott [52] to overcome the limitations of original WI
against extreme values, which is expressed as:

WI = 1− ∑n
i=1
∣∣Qo − Qp

∣∣
∑n

i=1
(∣∣Qp − Qo

∣∣+ ∣∣Qo − Qo
∣∣) (A16)

where Qo is the average of the observed values. The advantage of modified WI is that the
errors and differences are not inflated. Their squared values and differences and weights
are provided with their appropriate weights. The modified WI also varies from 0 to 1,
and the higher values indicate a better fitting model.

References
1. Kuriqi, A.; Koçileri, G.; Ardiçlioğlu, M. Potential of Meyer-Peter and Müller approach for estimation of bed-load sediment

transport under different hydraulic regimes. Model. Earth Syst. Environ. 2020, 6, 129–137. [CrossRef]
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