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Abstract: Recycling municipal solid waste has become a challenging task for municipalities. Ap-
propriate recycling efficiency evaluations are, thus, essential to find practical benchmark learning
targets for inefficient municipal solid waste authorities (MSWAs). This study developed a recycling
performance evaluation procedure by subgrouping MSWAs with prominent local demographic
features, such as population density, ratio of senior citizens, tourism index etc. Principal recycling
relevant factors for MSWAs in each group were then collected, and data envelopment analysis (DEA)
was applied for efficiency evaluation and benchmark learning targets. A case study of 181 MSWAs
in Taiwan demonstrated the suitability of the proposed procedures. An assessment of the required
efforts for efficiency improvements revealed that, in an unsegregated scenario, inefficient MSWAs
representing a rural subgroup required maximum efforts to fulfill the efficiency targets, which was
on average 61% higher than that determined in their respective subgroup. Furthermore, the unsegre-
gated scenario revealed proximal efficiency results for the urban subgroup. The results indicated
that consideration of local demographic features was essential for a fair assessment of recycling
efficiency. Additionally, evaluating MSWAs with similar local demographic features was superior
in obtaining appropriate benchmark learning targets for the inefficient MSWAs and, consequently,
exhibited practicality for improving walkthroughs to achieve the efficiency goal.

Keywords: local demographic features; data envelopment analysis; municipal solid waste authorities;
recycling; subgrouping

1. Introduction

Resource consumption patterns are changing with the economic development, leading
to an unprecedented production of waste. Several waste management practices are in
existence within municipal authorities, among which the recycling and the recovery of
waste are gaining popularity owing to the limited landfill space, difficult setup, and
depletion of materials associated with other methods [1]. Successful promotion of material
recycling from municipal solid waste (MSW) has also become a major challenge for the
authorities. However, there exist some exemplary cases in MSW recycling. For instance,
in Taiwan, between 1999 and 2017, the recycling rate increased from 9.78% to 60.22% [2].
Effective enhancement of the rates depends not only on public participation but also on
capital and manpower investment made by the government.

Studies have shown that municipal authorities usually adjust inputs including fund-
ing, manpower, or machinery over outputs such as the amount or rate of recycling to
evaluate the recycling performance. For example, Worthington and Dollery [3] used waste
disposal volume, garbage collection amount, and recycling rate as output factors and waste
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collected, collection frequency, urban density, population distribution, occupation, waste
disposal cost, total recycling cost, and local government assets as the input factors to find
the improvement direction of local waste. Similarly, Bosch et al. [4] considered collection
containers, vehicles, and workers as inputs and waste collected as output to evaluate the
MSW collection system. Benito et al. [5] also used total waste collected as output and cost
for MSW management as input.

In these studies, factors such as population distribution, urban density, occupation,
etc., which are particular to a municipal area, could have been classified as local demo-
graphic features, which are difficult or sometimes impossible to be altered by the MSWAs.
However, to our knowledge, none of these studies treated the input factors independently
from those features while performing the analysis. It is always better to assess the impact of
these local demographic features before considering the improvement of recycling practice
for an MSWA. A couple of previous studies elucidated their impacts on recycling behavior
and achievements. Garces [6] indicated that household resource recycling behaviors are af-
fected by factors such as income, education, and age group. Demographic factors including
age, education level, gender, and occupation influence knowledge, attitude, and perception
regarding source separation and recycling of solid waste [7]. Population density and per
capita income play a significant role in analyzing the regional efficiencies of recycling [8].
Benito-Lopez et al. [9] demonstrated a significant relationship between efficiency and
the analyzed variables (per capita income, urban population density, tourism index, etc.).
Similarly, Almasi et al. [10] concluded that age, occupation, education, family size, marital
status, and recycling programs implemented by the private sectors affect their recycling
behavior. Some other studies have shown that the recycling performance also differs ac-
cording to economic status and standards of living [11,12]. Hence, neglecting the influential
local demographic features is likely to hinder the selection of an appropriate direction for
improving inputs and outputs of MSWAs. The effects of local demographic features on
recycling performance are, thus, significant and should be treated independently of input
and output factors. Development of a robust method for recycling performance evaluation
involving input/output improvement can be considered reliable only if the influential local
demographic features are treated independently in the overall evaluation process.

There are various local demographic features associated with MSWAs such as popula-
tion density, average age, occupation, education, tourism index, etc., which can facilitate a
more accurate understanding of the local recycling determinants. Those factors could serve
as a basis for subgrouping, and MSWAs with similar data can be arranged into an identical
category. For example, Tseng et al. [13] conducted a cluster analysis of the input resources
and output services of the medical sector in Taiwan from 2007 to 2011 and arranged similar
units into an identical subgroup to facilitate subsequent analysis of resource allocation and
service efficiency.

Data envelopment analysis (DEA) is an appropriate tool for such cases where relative
analysis can be conducted regarding the performance or efficiency of separate units [14],
whereby inefficient units can be improved by studying efficient units such as by learning
the collection process, transportation system, and collection frequency [15]. DEA is widely
used in multi-input and multi-output production. In the efficiency evaluation process,
the business and public sectors mainly use input and output factors of different decision-
making units (DMUs) to find the one at the leading edge of efficiency as a reference for
the improvement of others. Many previous studies related to determining the efficiency
and performance ability of DMUs incorporated DEA techniques. Benito-Lopez et al. [9]
used the DEA method to analyze the efficient DMUs for municipal street-cleaning and
refuse collection services in Spain. Exposito and Velasco [8] studied the use of specific
DEA methods to determine the full development of the recycling market related to waste
disposal in the Spanish region, estimated the necessary output and input forecasts, and
selected the most efficient regions for the corresponding waste management department as
a reference. Halkos et al. [16] applied DEA to study the waste recycling efficiency of 28 EU
member states and concluded that recycling rate was able to describe the DEA results,
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i.e., more efficient countries seemingly had higher recycling rates. Considering the above
findings, this study aimed to incorporate DEA to evaluate recycling performance, as well
as discover improvement measures for inefficient DMUs, i.e., MSWAs. The major goals
of this study were to evaluate the recycling performance of MSWAs by integrating local
demographic features and to estimate the required output and input projections to generate
efficient performers in each identical subgroup of MSWAs.

2. Methodology
2.1. Brief Introduction of the Research Process

Figure 1 presents the flowchart of this study. Data related to local demographic
features of the municipal area such as population density, average age, the proportion
of aboriginal group, occupation, tourism activities etc., and the input/output factors of
MSWAs, were collected. MSWAs with similar demographic features were classified in an
identical subgroup. The DEA method was then implemented using input/output factors
in each subgroup and in the unsegregated group to evaluate the recycling performance of
MSWAs. Details of the overall procedure are explained below.
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2.2. Local Demographic Features

Local demographic features, which are often not alterable by MSWAs, can have a
pronounced effect on recycling performance. Hence, such influential local demographic fea-
tures were used in this study to determine subgroups of MSWAs after the screening process.

Table 1 lists the local demographic features likely to have an impact on recycling
performance. Local demographic features such as population density and distribution can
reflect the population status of a region, whereas education level, income, municipal assets,
and occupation are related to the properties of a municipal area. These factors facilitate
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demonstrating the consumption pattern and proportion of recyclables in the waste stream,
which may reflect local urbanization. Similarly, the proportion of the aboriginal population,
age group, and dependency ratio can be used as the determinants of rural or secluded areas.
The number of hotels, tourists, and tourism activities can indicate the tourism features of
an area. As there can be several factors related to local demographic features, it is often
impossible to consider them all into account owing to uncertainties in data availability
and frequencies. Hence, such factors need to be screened, and suitable factors should be
selected depending on study criteria, data requirements, and availability. Details of factor
screening and subgrouping are described later.

Table 1. Explanation of local demographic features.

Local Demographic Features Measurement/Units Influence on Recycling Potential References

Population density
(similar features: population

distribution, size)
capita/km2 Positive [3,17,18]

Budget
(similar features: assets of municipality) NTD/year Dependent [3]

Average salary
(similar features: income) NTD Dependent [6,11]

Education level years in education * Positive [6,10]
Average age

(similar features: proportion of adults,
senior citizens)

year Dependent [6,7]

Occupation
(similar features: labor force ratio,

dependency ratio)
% Positive [7,10]

Urban, rural/aboriginal density per km2 Dependent [3,6]
Number of tourist visits

(similar feature: tourism activities,
number of hotels)

number of tourists/years Positive [9,19]

* Average years spent to obtain educational level of the adults.

Different studies conducted in various regions have found a contrasting correlation
between some local demographic features and recycling potential. The reference column
in Table 1 was provided to illustrate the relevant literature studies which incorporated
those features and presented their correlation with recycling potential. In Table 1, the
term dependent refers to the contrasting results revealed in the different literature sources
presented. For instance, Garces et al. (2002) demonstrated a negative correlation between
salary/income level and recycling practices, indicating that people with high income have
productive jobs/services and they do not have spare time to participate in such recycling
programs and activities, whereas Chang et al. (2013) demonstrated a positive correlation
between those variables, claiming that a high-income status leads to people practicing
environmentally friendly behavior and developing positive attitudes toward recycling
procedures. Such divergence in their results could be due to differences in region-specific
socioeconomic circumstances, political influences, policies, governance, etc.

2.3. Input/Output Factors

Input and output factors can objectively represent the efficiency level of MSWAs once
progression of those factors is analyzed. The performance of each MSWA within identical
subgroups is evaluated on the basis of input involvement and targeted output achievement.
These factors, after analysis, can serve as a basis for benchmark learning.

Table 2 demonstrates the possible input and output factors associated with resource
recycling. The indicators of input and output factors and their respective definitions were
based on the studies cited in the reference column of the table. Input factors included
the resources invested such as allocated budget, manpower and equipment used, number
of households served, waste collection frequency, and recycling promotion activities,
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whereas output factors were related to achievement gained such as amount of waste
collected, resources recycled, and recycling rates. Input factors are subjectively invested
by municipal authorities according to their policy objectives; thus, the number of input
factors is comparatively greater than that of output factors. Since the goal of this study was
to evaluate the recycling performance based on recycling efficiency, the rate of recycling or
the quantity of recycled resources could be popular determinant output factors. As data
availability and frequency of factors in use may vary across MSWAs, those factors under
operation or consideration of each MSW authority should be screened, and appropriate
factors should be selected on the basis of a field study, as explained in Section 2.4.

Table 2. Input/output factors of resource recycling.

Factors Indicators Definition References

Input

Collection frequency Number of times of resources being collected [3]

Resource recycling budget Total waste management (clearance, disposal,
and recycling) budget [4]

Number of waste disposal vehicles *
Total number of vehicles such as trucks and

carts used for waste pick up, transport,
disposal, and recycling

[3,5]

Manpower involved in waste management * Total waste management (cleaning, handling,
and recycling) personnel [10,16]

Waste collection containers, equipment Number of containers, equipment used in
waste recycling [4]

Recycling campaigns * Number of resource recycling training,
promotional activities for MSW management [10]

Number of households to serve Total number of houses to achieve recycling
services in each municipality [20]

Output

Amount of waste collected Total quantity of waste collection by
MSW authority [3,5]

Resources recycled * Total amount of recycled resources [21]

Recycling rate Recyclable collection as a proportion of total
waste collection [8]

* Input and output factors selected after screening.

2.4. Screening

Screening was performed after the collection of crucial information related to local
demographic features and input/output factors. Those factors/features which are not
available or have high correlations should be avoided. As required information of each
collected factor may not be obtained from all MSWAs, integration of factor screening
principles including data availability and accessibility, data compliance, data monitoring
and frequency, data integrity, and factor independence need to be considered. Moreover,
those factors with a closer meaning according to the literature can be merged to reduce the
number of factors. Selection of appropriate factors, by means of factor screening, facilitates
obtaining reliable information on factors of interest and makes the overall evaluation
process effective.

Among the possible local demographic features listed in Table 1, the relevant factors
were selected using factor screening to represent specific characteristics of a recycling area.
Population density, average income, and average education representing urban features,
proportion of indigenous people and senior citizens (>60 years) representing rural features,
and number of tourists and tourism spots representing tourism features were among the
local demographic features considered under this study.

Similarly, among the input/output factors, four indicators were selected to fulfill
the recycling performance evaluation objective of this study. Three input factors, namely,
manpower involved, number of recycling vehicles, and promotional activities, and a single
output factor, i.e., amount of recycled resources, were considered after final screening.
Selected indicator such as the manpower involved was used to reflect the assigned human
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resources for MSW recycling. Similar is the case for the number of vehicles used in
collection and recycling activities. The greater frequency of publicity for recycling activities
represents a higher awareness level and probability of more waste recycling. Likewise, the
amount of waste recycled was among the possible determinants of performance evaluation.
These factors could provide the appropriate basis for recycling performance evaluation of
each MSW authority.

2.5. Subgrouping

The screening was followed by the subgrouping of MSWAs on the basis of their local
demographic features so that MSWAs with similar local demographic features would
belong to an identical subgroup. The recognition of classified subgroups was based on
the prominent local demographic features of MSWAs in this study. Four subgroups were
classified: an urban subgroup with a higher population density, education, and income
level, a rural subgroup with a higher proportion of indigenous and senior citizens, a
tourism subgroup with higher tourist flow and tourism spots, and a general subgroup
with less significant characteristics. This method was adopted to assist decision-makers in
determining MSWAs’ proximity of resource involvement.

2.6. DEA for Performance Evaluation

The DEA method is applied to analyze the respective efficiency of DMUs in a subgroup
via the screened input/output factors. Those DMUs with high efficiency can be used as
benchmarks for other inefficient DMUs of the subgroups.

This study used the CCR [22] and BCC models [23] of DEA. The CCR model assumes
constant returns to scale (fixed scale returns), whereas the BCC model allows variable
returns to scale (variable scale returns). The efficiency of a DMU can be determined as a
function of the weighted sum of its outputs and inputs, where the objective function and
constraints are provided by the equations of CCR and BCC model. The equations of the
CCR model are as follows:

Max hk =
s
∑

j=1
ujYjk

s.t.
(1)

m

∑
i=1

viXik= 1 (2)

s

∑
j=1

ujYjr ≤
m

∑
i=1

viXir , r = 1, 2, . . . , n (3)

where k denotes the index of a DMU, j refers to the index of output factors, s indicates
the total number of output factors, uj is the nonnegative weight assigned to output factor
j, Yjk represents the value of the DMU k on output factor j, i refers to the index of input
factors, m indicates the total number of input factors, vi is the nonnegative weight assigned
to input factor i, Xik represents the value of the DMU k on input factor i, and r indicates
the index of total competitive DMUs (i.e., DMU-1, 2, . . . , n). The variables in the above
equations are constrained to be non-negative.

Equation (1) represents the objective function, which is to maximize the weighted sum
of DMU k’s output factors. Equation (2) shows the sum of weighted input factors for the
given DMU k to prevent unbounded solutions. Similarly, Equation (3) indicates that the
weighted sum of each individual DMU’s output factors should be less than or equal to the
weighted sum of its input factors. For each DMU, the above equations (Equations (1)–(3))
are applied to form a linear model to determine its efficiency. Thus, n models must be
established for the efficiencies of all DMUs.

The CCR model evaluates the overall efficiency (OE), while the BCC model evaluates
the pure technical efficiency (PTE) and the net of scale effect/scale efficiency (SE). Technical



Sustainability 2021, 13, 10446 7 of 13

efficiency refers to a DMU’s production performance with reference to the efficiency frontier,
and scale efficiency refers to the optimum size of resources/scale of production. OE is the
product of TE and SE.

The equations of the BCC model are as follows:

Max hk =
s
∑

j=1
ujYjk − ux

s.t.
(4)

m

∑
i=1

viXik= 1 (5)

s

∑
j=1

ujYjr −
m

∑
i=1

viXir − ux ≤ 0, r = 1, 2, . . . , n (6)

where ux represents an artificial variable relevant to the scale efficiency, which may be
positive, negative, or zero, whereas other variables are constrained to be non-negative.
Equation (4) represents the objective function, which is used to maximize the weighted sum
of the DMU k’s output factors, with an addition of artificial variable, to identify the scale
return status. Equation (5) shows the sum of weighted input factors for the given DMU k
to prevent unbounded solutions. Similarly, Equation (6) indicates that the weighted sum
of each individual DMU’s output factors should be less than or equal to weighted sum of
its input factors, provided an artificial variable ux. For each DMU, the above equations
(Equations (4)–(6)) are used to obtain the linear model to determine the overall efficiency.
TE can be obtained by taking the ratio of output/input values of technically efficient
reference points on the efficient frontier having the same scale size to the inputs/outputs
value of the DMU to be evaluated. Similarly, SE can be obtained by dividing the value
of OE by TE. The artificial variable enables the DMU to identify scale return status (RTS)
(i.e, constant, increasing, or decreasing returns to scale); hence, the direction of operation
scale adjustment for each DMU can be proposed.

DEA is followed by benchmark learning of DMUs. All DMUs in each subgroup are not
equally efficient for resource consumption to yield optimum outputs. Benchmark learning
enables the improvement of relative effectiveness of inefficient DMUs by following the
efficient one (i.e., closer to local demographic features and input resources) and setting the
performance goals accordingly.

3. Case Study
3.1. Case Background

This study analyzed 181 MSWAs of Taiwan for the evaluation of recycling performance.
Data associated with local demographic features and input/output factors were collected
from the relevant MSWAs, including cleaning units, environmental protection bureaus, and
statistics. Data screening for local demographic features and input/output factors, along
with subgrouping of MSWAs, was done as described above. The four subgroups, urban,
rural, tourism, and general, were categorized on the basis of prominent local demographic
features such as population density, average income, indigenous people and senior citizens,
number of tourists etc. Similarly, the screened input factors included the manpower
involved in recycling, total number of vehicles used, and number of promotional activities
for waste recycling, whereas the output factor was the total amount of resources recycled.

DEA of the DMUs was performed in two different scenarios i.e., with and without
subgrouping of DMUs, termed as the subgrouping scenario and unsegregated scenario,
respectively. A comparative analysis of each DMU’s performance level in two different
scenarios was carried out, allowing the provision of information to find the appropriate
benchmarks for inefficient DMUs.
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3.2. Scenario I: DEA for Subgroups

According to the local demographic features representing local characteristics, four
subgroups were generated, namely, the urban, rural, tourism, and general subgroups. The
DEA method was then applied to each subgroup. The urban subgroup represented the
DMUs with higher population density, education, and income level, the rural subgroup
featured a higher proportion of indigenous and senior citizens, the tourism subgroup
had a higher number of tourists and tourism spots, and the general subgroup featured
less significant characteristics. Those subgroups consisted of 28, 25, 33, and 95 MSWAs,
respectively. An input-oriented DEA model was used to determine the efficiencies of
DMUs. The concept of shortest average distance, i.e., the minimal distance required for
the inefficient DMUs toward efficient DMUs/benchmarks [24,25], was adopted. A lower
effort would be required for an inefficient DMU to achieve the targeted efficiency level if
its distance to the respective benchmark is shorter.

Figure 2 presents the determination of a benchmark target for each inefficient DMU
in the rural subgroup after obtaining DEA results. The DMU inputs/output were stan-
dardized to avoid the impact of various units with different scales of values; however,
to enhance readability of the given graph, the results were interpreted using logarithmic
values indicating the respective number of inputs. The DEA results determined four CCR
efficient, four BCC efficient, and 17 inefficient DMUs in the rural subgroup. Those efficient
DMUs acted as benchmark targets for the respective inefficient DMUs based on their
proximity/shortest average distance.

The position and distance (as denoted by arrows) between the inefficient DMUs and
proximal benchmarks suggest how to increase the output by using the existing inputs or
decreasing the input levels for current output levels to improve the efficiency. Figure 2a
illustrates the status of garbage cleaning vehicles (GCVs) versus recycling promotion
activities (RPAs), Figure 2b describes the status of GCVs versus the cleaning team (CT), and
Figure 2c illustrates the status of CT versus RPAs. According to the varying output level
(i.e., number of resources recycled), the DMUs were categorized with distinctive colors.
Most DMUs were within the range of 701–1000, while only one DMU exceeded the output
range of 3000 in each subfigure. An example of DEA application in benchmark learning is
provided below.

Figure 2 demonstrates that R18 was inefficient in both CCR and BCC evaluation and,
hence, could be guided by the nearby efficient R3 (CCR efficient). The input levels (RPA,
GCV, CT) of R18 were greater than those of R3. Therefore, to reach the efficiency frontier,
R18 should reduce the current input levels to obtain the same output by learning the
resource consumption efficiency of R3. On the other hand, R18 may increase its output
level with the existing inputs, identical to the input–output ratio of R3. It was found that
R18 should either reduce its current input levels by 33.79%, 30.48%, and 26.78% for RPAs,
GCVs, and CT, respectively, or increase its current output level by 26.4% with the existing
inputs in order achieve efficiency.

Typically, DMUs with BCC efficiency which have not yet achieved CCR efficiency
could follow the respective proximal CCR efficient DMU to adjust their scale of operation.
However, in practice, greater expansion/shrinkage of the waste scale is hard to achieve for
municipal solid waste authorities since waste collection services are mostly dependent on
their administrative districts. The possible alternative to increase the operation scale might
be to introduce centralized collection/treatment/disposal of waste for nearby districts.
However, this is highly sensitive and sometimes may cause NIMBY effects.
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promoting activities (RPAs) vs. cleaning team (CT).

Table 3 presents the result of DEA and the average values of input/output for efficient
DMUs. All average input/output values for the rural subgroup were below the mean
of all DMUs, while the average values for the urban subgroup were maximal among all
subgroups and were much higher than the mean. This implies that, among the different
subgroups, the urban subgroup had larger inputs/output and performance levels, whereas
the rural subgroup’s inputs/output and performance levels were lower/minimal. DMUs in
the urban subgroup were in densely populated areas. In such locations, resource/material
consumption remains higher. Consequently, adequate recyclables can be collected with
less effort, ultimately increasing the quantity of recycled products (output). Furthermore,
those DMUs have the advantage of economies of scale due to the higher scale of operation.
The scenario for the rural subgroup (DMUs) contrasts with the case of the urban subgroup.

The DEA results of efficiency elucidated four DMUs in the rural, nine in the general,
four in the tourism, and six in the urban subgroups that were only technically efficient
(BCC efficient), as well as four in the rural, four in the general, seven in the tourism, and
eight in the urban subgroups that were both technically and scale efficient (CCR efficient).
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Table 3. Efficiency analysis and average values of input/output for efficient DMUs.

Subgroups
I/O (Standardized Value) Number of DMUs

I1 I2 I3 O Total BCC Efficient CCR Efficient

Rural −0.23 −0.09 −0.23 −0.25 25 4 4
General −0.31 −0.19 0.25 0.57 95 9 4
Tourism 0.13 0.19 0.16 0.42 33 4 7
Urban 1.23 0.41 1.23 1.43 28 6 8

3.3. Scenario II: DEA for Unsegregated Scenario

In this scenario, DEA was applied to the 181 DMUs without subgroups. Efficiency
analysis of the DMUs and benchmark sorting for each inefficient DMU were conducted as
previously described. Table 4 presents the results of efficiency analysis and standardized
average values of input/output for the efficient DMUs. All the standardized values were
above the mean, indicating that the efficient DMUs had a higher level of inputs and output,
i.e., a larger scale of DMUs. In addition, the value for output, compared to the inputs, was
distinctly greater, indicating a significantly better performance status of efficient DMUs in
this scenario. The DEA result showed only 14 efficient DMUs, among which seven were
only technically efficient (BCC), and seven were technically and scale efficient (CCR).

Table 4. Efficiency analysis and average values of input/output for efficient DMUs.

Scenario
I/O (Standardized Value) Number of DMUs

I1 I2 I3 O Total BCC Efficient CCR Efficient

Unsegregated 0.08 0.18 0.80 1.17 181 7 7

3.4. Comparative Analysis of Subgrouping and Unsegregated Scenario

DEA revealed contrasting findings regarding efficiency and benchmark learnings
of the DMUs in two scenarios, i.e., subgroups and unsegregated. The potential bench-
marks can be determined with the shortest average distance method for each inefficient
DMU, where the distance can be used as a measure to assess the required efforts for the
DMUs [24,26]. For a comparison of results in two scenarios, the average distances of all
inefficient DMUs in the subgroups/group were used.

Table 5 presents the findings of average distance and efficiency status among the
subgroups and the unsegregated scenario. Between the two scenarios, the unsegregated
group revealed a higher average distance. This indicates that inefficient DMUs in the
unsegregated group demand more effort than those in subgroups. Regarding efficiency
analysis, a greater number of efficient DMUs from the urban subgroup were also efficient
in the unsegregated scenario, whereas none of the efficient DMUs of the rural subgroup
were efficient in the unsegregated scenario.

Table 5. Scenario analysis of efficiency and benchmark learning.

Scenario Subgroup Average Distance
Number of DMUs

CCR Efficient BCC Efficient Total

Subgrouping

Rural 15.08 4/0 * 4/0 * 25
General 22.90 4/3 * 9/3 * 95
Tourism 32.11 7/1 * 4/1 * 33
Urban 37.63 8/3 * 6/3 * 28

Unsegregated - 38.67 7 7 181

* Number of efficient DMUs from this subgroup that were also efficient in the unsegregated scenario.

Among the subgroups, the urban subgroup, having high scale efficient DMUs (average
standardized input/output values above the unsegregated mean), revealed the highest
average distance. Similarly, the rural subgroup with lower scale efficient DMUs (average
standardized input/output values below the unsegregated mean) had the shortest average
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distance. This implies that the average distance in each subgroup is determined by the
input/output levels of efficient DMUs. In comparison to the unsegregated scenario, the
shorter distances in the subgroups demonstrated a reduced level of heterogeneity across
inefficient DMUs and their respective benchmarks. As a result, benchmark learnings for
all inefficient DMUs in their respective subgroups could be more effective. Furthermore,
when urban and rural areas were evaluated together, the DEA results tended to prefer
efficient DMUs from more populated areas, as evidenced by the number of identical
efficient DMUs between subgroups and the unsegregated scenario. These DMUs benefit
from large-scale waste collection and economies of scale, resulting in higher outputs and
performance levels. The findings support the premise that, if the local demographic features
of DMUs are considered and categorized appropriately, a comprehensive evaluation of
their performance and benchmark targets may be achieved (such as subgrouping in our
case). This is particularly crucial for low-performing/disadvantaged groups of DMUs that
require more resources/scale adjustments to enhance their efficiency levels while being in
an unsegregated group. On the basis of these findings, this study recommends attempting
essential procedures, such as subgrouping of the DMUs considering local demographic
features prior to ultimate performance evaluation using statistical tools like DEA. DMU
learnings can be aided by such an approach, allowing targeted efficiency levels to be
achieved with minimal effort.

4. Conclusions

This study established a full procedure to analyze recycling efficiency, incorporating
major recycling relevant factors after subgrouping MSWAs using local demographic fea-
tures. The use of the proposed model may support reducing the arbitrary evaluation of
performance status in the waste collection/recycling problem. The developed approach
was demonstrated via a case study of MSWAs in Taiwan, and the results revealed the
significance of incorporating local demographic features for the performance evaluation
and benchmark learning of inefficient municipal authorities. Unlike the input/output
factors relevant to MSWAs, local demographic features are hardly altered by MSWAs;
hence, the study considered treating them separately before the performance analyses.

The subgroups formed for performance evaluation were more homogeneous, mak-
ing the efficiency results objective in application, as proven by the comparative results in
unsegregated and subgrouping scenarios. On the basis of the DEA findings for different sce-
narios, our study demonstrated that less effort is required for efficiency improvement in the
subgrouping scenario, which was on average reduced by 61%, 41%, 17%, and 3% compared
to that observed in the unsegregated scenario for the rural, general, tourism, and urban
subgroups, respectively. These findings revealed that, in an unsegregated scenario, ineffi-
cient DMUs from rural subgroup require maximum effort to fulfill the efficiency targets,
followed by those from general, tourism, and urban subgroups. The demographic features
of an area may have different impacts on recycling performance due to the variations in
culture, policy, economy, etc., nonetheless, it is still justifiable to cluster MSWAs which have
similar local demographic features. In our study, the rural subgroup demonstrated the
minimal average input-output scales, whereas the urban subgroup demonstrated the maxi-
mum. In addition, most of the inefficient DMUs in the rural subgroup had to adjust only
one input factor, (mainly the recycling promotional activities) to become efficient; however,
when they were evaluated in an unsegregated scenario, most of them were required to
adjust all three input resources according to their respective benchmark targets, implying
their inclination toward the urban scenario. Notable variations also existed with resource
adjustments in two scenarios for inefficient DMUs from the general and tourism subgroups,
whereas results were almost identical for those from the urban subgroup in both scenarios.
The case of maximal resource adjustments observed for the unsegregated scenario may
sometimes fail to fulfill the desired goal. The study showed that some local demographic
features, including population density, occupation, and education, are associated with the
observed results of recycling performance, and DEA was proven to be a suitable tool for
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resolving the recycling performance problem once the appropriate subgrouping procedures
are followed.

The unavailability of crucial data related to some variables limited the further ex-
ploration of issues of recycling efficiency in our study. In addition, the correlations of
some local demographic features (e.g., age, income, urban density etc.) with the recycling
activity varied in different literature studies. Future studies may be directed toward the
exploration of the underlying structure of factors influencing recycling efficiency to facil-
itate the incorporation of the local demographic features in the performance evaluation
procedure. In addition, environmental issues likely to be associated with the collection
and treatment process can be integrated, along with efficiency evaluation procedure, for
recycling performance assessment.
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