
sustainability

Article

Digital Twin for FANUC Robots: Industrial Robot
Programming and Simulation Using Virtual Reality

Gaurav Garg 1,* , Vladimir Kuts 2 and Gholamreza Anbarjafari 3,4,5,6

����������
�������

Citation: Garg, G.; Kuts, V.;

Anbarjafari, G. Digital Twin for

FANUC Robots: Industrial Robot

Programming and Simulation Using

Virtual Reality. Sustainability 2021, 13,

10336. https://doi.org/10.3390/

su131810336

Received: 5 July 2021

Accepted: 10 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Technology, Robotics and Computer Engineering, University of Tartu, 50090 Tartu, Estonia
2 Department of Mechanical and Industrial Engineering, School of Engineering,

Tallinn University of Technology, 19086 Tallinn, Estonia; vladimir.kuts@taltech.ee
3 Department of Intelligent Computer Vision (iCV), Institute of Technology, University of Tartu,

50411 Tartu, Estonia; shb@icv.tuit.ut.ee
4 Institute of Higher Education, Yildiz Technical University, Istanbul 34349, Turkey
5 PwC Advisory, FI-00180 Helsinki, Finland
6 iVCV OÜ, 51011 Tartu, Estonia
* Correspondence: gaurav.ncl@outlook.com

Abstract: A Digital Twin is the concept of creating a digital replica of physical models (such as a robot).
This is similar to establishing a simulation using a robot operating system (ROS) or other industrial-
owned platforms to simulate robot operations and sending the details to the robot controller. In
this paper, we propose a Digital Twin model that assists in the online/remote programming of a
robotic cell by creating a 3D digital environment of a real-world configuration. Our Digital Twin
model consists of two components, (1) a physical model: FANUC robot (M-10iA/12), and (2) a digital
model: Unity (a gaming platform) that comes with specialized plugins for virtual and augmented
reality devices. One of the main challenges in the existing approach of robot programming is writing
and modifying code for a robot trajectory that is eased in our framework using a Digital Twin. Using
a Digital Twin setup along with Virtual Reality, we observe the trajectory replication between digital
and physical robots. The simulation analysis provided a latency of approximately 40 ms with an error
range of −0.28 to 0.28° across the robot joint movements in a simulation environment and −0.3 to
0.3° across the actual robot joint movements. Therefore, we can conclude that our developed model
is suitable for industrial applications.

Keywords: digital twin; robot programming; virtual reality; FANUC

1. Introduction

At present, nearly all industrial simulation software is based on an offline simulation,
where we set up the simulation environment and generate a program, which can be
transferred to a physical system [1]. However, the programs developed through offline
simulation environments lack accuracy, which results in time-consuming rework overhead
on physical models [2]. To overcome this limitation, the Digital Twin comes with the Online
Simulation, allowing one to connect with the robot and move it along the desired path on
the simulation screen and actual model.

However, one of the challenging tasks of these Digital Twin models is to create and
connect them with the actual model, as this requires a well-defined digital 3D structure [3].
Generally, for industrial purposes, CAD software for 3D modeling is used. However, at
present, CAD software does not support file formats, such as filmbox (.fbx), collado (.dae),
that are supported by game engines [4].

Game engines are proven to be excellent in terms of graphics displays [5]. The level of
detail that can be shown or designed on gaming platforms is one of the missing components
from existing industrial simulation software present in the market. In addition to their
enhanced graphics, these game engines provide an excellent environment for generating

Sustainability 2021, 13, 10336. https://doi.org/10.3390/su131810336 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5390-9424
https://doi.org/10.3390/su131810336
https://doi.org/10.3390/su131810336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su131810336
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su131810336?type=check_update&version=2


Sustainability 2021, 13, 10336 2 of 22

synthetic data. For example, gathering data for an artificial intelligence (AI) model for pick
and place applications under different illumination intensities is a time-consuming and
challenging task in a physical environment. However, on a gaming engine, all it takes is an
understanding of ray-light interaction, and then a large amount of training data for the AI
model can be generated in a short period of time.

In this work, we created a digital setup of a FANUC robot. The developed digital
model has the capability to generate the program for the actual robot setup. One can argue
that there are already many simulation software programs present in the industry that can
help to create a program, but they come with an additional cost or are limited to a single
robot type. To overcome these limitations, gaming engines for industrial applications have
been utilized, which comes with prepacked packages for integration of Virtual, Augmented,
and Mixed Reality devices from different manufacturers that are missing in the available
simulation software.

1.1. Highlights

The work in this paper covers the following:

1. Digital Twin model: Developed a digital 3D model using Unity (game engine) that
generates a program for the physical robot (PR). In particular, we used the FANUC
robot model M-10iA/12 and tested the program on the PR (Section 3.2.1).

2. Communication Setup: Established a communication channel between Digital and
PR for exchanging required data, such as joint angles and actual robot status signals
(Section 3.2.7).

3. Virtual Reality (VR) Interface: Created a VR environment on the Unity platform. For
visualizing the VR environment, we used the HTC VIVE VR device (Section 3.2.8).

1.2. Contribution

The contributions of this research work are three-fold:

1. The key contribution of this paper is that we developed a Digital Twin model of an
industrial robot, which helps in controlling a PR in synchronization with a digital model
for a desired robot trajectory. This is usually done offline or manually [6–8]. However,
using our framework, the trajectory points are stored locally or sent online/remotely via
a real-time communication setup.

2. Next, we surveyed to check the ease of robot programming using our model. The
participants found that the created virtual environment is interactive and easy to use
for robotic operations. On average, participants rated 3 on a scale of 0–10, where 0
means very easy and 10 represents highly difficult.

3. In certain works [9,10], twin models in robotics were also developed using a game
engine environment; however, the same platform (DOT NET to DOT NET) was used
for data exchange/controlling. However, we developed communication across two
different platforms (Dot Net to KAREL) as a part of our effort.

1.3. Organization

The rest of the workflow is as follows. Next, we discuss the related work. Then,
the methodology includes a description of devices used in this work along with our
proposed model in Section 3. The results and analysis of the experimentation are presented
in Section 4. In Section 5, we discuss the sustainability of the developed solution and
highlighted some use case scenarios. Finally, a conclusion with a discussion of future
directions is covered in Section 6.

2. Related Work

For the last two decades, researchers have been working on the development of Digital
Twin models. However, this has recently attracted a lot of attention, and work is being done
in a variety of research industries ranging from medical to the industrial manufacturing



Sustainability 2021, 13, 10336 3 of 22

sector as, unlike other simulation environments, it provides two-way communication
between physical and digital robot models along with a 3D view of the environment.

A Digital Twin maps a physical object or process with a digital environment that
enables simulation, education [11–13], prediction, and optimization [8,14] and helps in
product design and simulating manufacturing systems [15–18], and processes [19]. Robotic
applications [20] are the specific area of the Digital Twin domain, focusing on the ease
of programming.

In [21], the authors conducted an experiment with Mixed reality (MR) for interactive
robot programming. The researchers further compared the MR with VR and created
a framework to program different shapes using MR. In another work [22], the authors
proposed a model that encapsulates offline robot programming with VR. However, this
work used external magnetic sensors to generate the program. In another similar work, [23],
communication was established between the KUKA robot and VR device over a Modbus
TCP/IP interface. The authors tested the feasibility of controlling a robot; however, work
for defining the complete trajectories was missing.

In another line of work, research groups from the University of Oviedo and the Idonial
center of Technology created a Digital Twin of a manufacturing cell [24] and studied the
effectiveness of Digital Twin for robotic applications with various parameters, such as
acquisition costs, robots from different manufacturers, human–robot collaboration, virtual
reality, environment customization, usability for training.

Since Industry 4.0 is in high demand [25,26], this research is moving towards the
creation of intelligent and resilient systems. The study shows an implementation of a
knowledge-driven Digital Twin manufacturing cell (KDTMC) [27]. KDTMC approach
targets an intelligent manufacturing system that supports autonomous manufacturing by
integrating perception, simulation, prediction, optimization, and controlling strategy. This
work utilizes the Digital Twin to study the manufacturing cell and integrate intelligence
into it.

In addition to this, there have been different approaches and methods used by other
researchers for the implementation of a digital twin. In a recent paper, a research group
conceptualized a digital twin with a five-dimensional framework [28] that represents the
complex relationship between digital twin objects and their attributes. In another work,
a reference model for a digital twin was introduced, where it is provided as a service,
Digital Twin as a Service (DTaaS) in Industry 4.0 [29]. As the manufacturing sector is
focusing on optimizing energy consumption, the researcher worked on utilizing a digital
twin for implementation of Industry 4.0 in the field of construction as well as smart
cities with a primary focus towards optimizing the energy consumption and maximizing
productivity [30].

In our experimentation, a PR is controlled via a digital model that operates in the
virtual environment. There are certain robot status signals that are being captured and
are necessary for any twin model, which are not mentioned in the existing literature.
Additionally, this work has elaborated more on the controlling algorithms used in the
physical and digital setup, compares the joint movement, and visualizes the errors between
guided and executed joint angles.

3. Methodology
3.1. Experimental Devices

Here, the experimental setup is explained, which includes two components. The first
component is a Robot. In this experimentation, we used the FANUC robot. The second
main component of this setup is the VR controller, for which the HTC Vive VR device
was used.

3.1.1. Robot

In this work, the FANUC robot model M-10iA/12 is used for experimentation. This is
a hollow arm design that provides space for cable integration inside robot arm links rather



Sustainability 2021, 13, 10336 4 of 22

than outside [31]. Such design protects the cables from wear and tear, making maintenance
more manageable and lowering maintenance costs. Another benefit of the hollow arm is
the high productivity and shortened cycle times due to the rigid arm and servo motors
by allowing increasing speed during operation. The specifications and other information
related to robot joint speed and robot motion range are shown in Table 1.

Table 1. FANUC Robot M-10iA/12 Specifications [31].

Robot Specifications Motion Speed Motion Range

Axes: 6 J1: 230°/s (4.01 rad/s) J1: +340° −360°
Payload: 12 kg J2: 225°/s (3.93 rad/s) J2: ±250°

H-Reach: 1420 mm J3: 230°/s (4.01 rad/s) J3: ±447°
Repeatability: ±0.8 mm J4: 430°/s (7.5 rad/s) J4: ±380°

Robot Mass: 130 kg J5: 430°/s (7.5 rad/s) J5: ±380°
Structure: Articulated J6: 230°/s (11 rad/s) J6: ±720°

Mounting: Floor, Inverted, Angle

Table 1 column-1 shows the robot specifications like the number of axes is 6, the mass
of the robot body being 130 kg, its lifting capacity is 12 kg, etc. The lifting capacity is a
sum: (end effector/gripper weight+ component weight). The end effector/gripper is an
attachment to the sixth axis of a robot, and its design depends on the type of application a
robot has to handle. The component weight is the object weight that the robot needs to lift
using its end-effector/gripper. Individual joints speed limits in mm/s, and rotation limits
in degrees are also defined in Table 1 columns 2 and 3, respectively.

3.1.2. VR Device

The next main component of this experimental setup is a VR device. HTC Vive is
a Virtual Reality (VR) device that is used to project a virtual environment. The virtual
environment is developed digitally. In this case, we developed a digital environment for a
robot using a Unity platform. There are many VR devices that are available in the market,
such as Oculus Rift, HTC Vive, Valve, and Sony. Each year there have been continuous
improvements in graphics and controls using VR devices in virtual environments.

As in this case, we used HTC Vive due to its availability in our lab. In particular, we
are utilizing the HTC Vive VR device [32]. However, any VR model can be used for a
virtual environment projection. The two main units of any VR device are:

1. A central Head-Mounted Device (HMD) unit equipped with a camera: This unit
helps in immersing a digital view into the real world. It acts as an eye in a virtual
environment and helps to visualize the virtual scenes.

2. Handheld controllers: To perform any action in the VR world, controllers act as a
human hand. The actions defined in SDK of Vive are defined similarly to our daily
routine work with human hands, such as grab, hold, button push, etc.

Table 2 shows the specifications of the VR device [33]. The “Field of View (FOV)”
defines the range covered with cameras that are mounted in HMD. In this device, a single
camera is embedded in HMD. However, in the newer version, two cameras are used
to increase the FOV. The HMD refresh rate defines the virtual view capturing rate, and
the “pose refresh rate” defines the rate of capturing pose actions performed in a virtual
environment using a handheld controller, which is 4 ms (milliseconds). To create a specific
action or to interact with objects in a VR environment, SteamVR is used.

SteamVR is an interface that comes along with its software development kit (SDK)
that provides an extensive library to assign and read controllers actions, such as grabbing
components, hitting an object, teleporting, and many other human body actions. These can
be implemented by using this SDK inside the VR environment [34].



Sustainability 2021, 13, 10336 5 of 22

Table 2. HTC Vive specifications of the headset along with cntrollers.

Display refresh rate 90 Hz

Resolution each eye 1080 × 1200

Field of View (FOV) 110°

HMD refresh rate 225 Hz

Controller Pose refresh rate 250 Hz

3.2. Proposed Framework

Here, we discuss our architecture for establishing a twin model. A twin model consists
of two sections, the Physical and Digital sections. A Physical section consists of a PR, which
is manufactured by robotic companies. A few examples of manufacturer of industrial
robots are FANUC, ABB, and KUKA, that produce PR. In this work, we created a Digital
Twin of the FANUC robot. Our work mainly focuses on the digital section, as it is a main
missing component for creating a Digital Twin for industrial robotics. However, a PR still
requires scripts development to control and communicate with a Digital Twin. The digital
section includes creating a digital replica of a PR, with which we can control or program
a PR.

Figure 1 shows the architecture that defines the steps of creating a digital model and
establishes communication between PR and digital robot. Our model of DT is divided into
two main sections:

1. Digital Robot
2. Physical Robot (PR)

Figure 1. Control cycle between a Digital and Physical model. This figure is divided into six steps,
step (1) shows a Twin model of robot in a gaming engine, (2) VR device interface, (3) Inverse
Kinematics algorithm (BioIK), (4) Data Communication between a Digital robot and PR over socket
messaging, (5) Actual Robot, and (6) Forward Kinematics algorithm that runs on the robot.

The components of both sections can be divided into two categories; hardware and
software. For example, in Figure 1, the HTC Vive device is a hardware component (HW)
that is used in the Digital section, whereas Inverse Kinematic is a software component (SW)
that is used to calculate the joint angles of the robot for its desired movement. The layout is
explained in six steps as follows:

1. In step-1, we create a digital model of a robot that controls the PR. The gaming
platform is used to set up a digital model, and the process of creating a digital model
is explained in Section 3.2.1.

2. Once the digital model is established, we need to provide a VR interface using a VR
device. The VR interface is programmed through the OpenVR package of the Unity
platform. This VR device controls the robot movement of both digital and PR.

3. When a VR controller moves in the digital environment, it generates a position value
for the movement of a robot arm. This position value is fed to BioIK, which is provided



Sustainability 2021, 13, 10336 6 of 22

via Unity assets, for calculating inverse kinematic (IK). The IK generates the joint
angles for individual robot joints to reach the position defined by the VR controller.

4. After generating the joint angle values, these values need to be communicated to PR
to move it to the desired position as defined by the VR controller. This is achieved
with the help of socket messaging. Socket messaging is a server-client communication
channel created in this work between a digital model and a PR.

5. The FANUC PR supports the KAREL programming language. Therefore, the coding
for establishing communication (Digital model and PR) and replicating VR move-
ments in PR is done in KAREL.

6. Once a PR receives the joint angle data, it is processed with the help of Forward
Kinematics (FK). FK converts the joint angle data to position data in a 3D space.
Finally, this position data is transferred back to the PR.

3.2.1. Creation of Digital Model

As mentioned earlier, a digital model is a digital replica of a PR. To define this replica,
we first create a 3D drawing of a PR, also known as a CAD model. Almost every robotic
company provides a CAD file of their robot. This CAD file includes the details of the
dimensions of robot links and the position of joints between these links. The CAD file can
be extracted in CAD software, such as SolidWorks or CATIA.

In our experimental setup, to create a digital model, we need to project the CAD file
in a gaming engine. However, this CAD file cannot be imported directly into a gaming
platform. There are specific details, such as parent–child relation and pivot point (for
details refer Section 3.2.2), that have to be added to CAD drawing to use it in a game engine
(Unity game engine or Unity is considered in this work). Such details can be added by
using computer graphics software like Blender/Maya 3D. In this work, we employ Blender
computer graphics software to incorporate additional details into the CAD file.

3.2.2. CAD Rendering in Computer Graphics Software

This work utilizes a FANUC Robot model M-10iA/12 (already discussed in Section 3.1.1).
As discussed, to create its twin model, we first need to process its CAD file. The CAD file of
the robot is accessed in SolidWorks and exported in stl format, which is accepted by blender
software. In a blender, the Parent–Child relationship is defined, where the Base is a parent, and
consecutive links are the child to it. Figure 2a shows a 3D model in the blender, and all the
six-axis/links (Axis-1, Axis-2, Axis-3, Axis-4, Axis-5, and Axis-6) are marked. In Figure 2a,
“Base” is also marked, which is a parent to all the links.

“Axis-1” is a child to “Base” and parent to “Axis-2”, and a similar parent–child relation-
ship exists among other axis/links. This parent–child relationship is established in blender
software. A tree structure of parent–child relationships among links is shown in Figure 2b.
The concept behind establishing this relationship is to control the movement. For example, if
we rotate “Axis-1”, then rest all links from “Axis-2” to “Axis-6” will move along with it, as
“Axis-1” is defined as a parent to “Axis-2” to “Axis-6”, but it will not affect the movement of
the Base. However, if we move Base, the entire model will move along with it.

In addition to the information mentioned above, the pivot point of each link must be
specified. A pivot point, also known as a joint central point, is a point around which the
motion of a link is defined [35]. Thus, the parent–child relation specifies the movement of
the links, and the pivot point represents the joint movement, forming the complete model.
Finally, the defined model is exported from the blender software in fbx (film box) format.

By default, the links are pivoted with respect to the center of origin of an individual
link. However, this results in the wrong move as the movements are programmed for this
point. Thus, the pivot point position is corrected using Blender, as shown in Figure 3, for
all six joints of the robot arm.



Sustainability 2021, 13, 10336 7 of 22

(a) 3D model with axis. (b) Parent–child relation.

Figure 2. 3D model in Blender software.

(a) Link-1 (b) Link-2 (c) Link-3

(d) Link-4 (e) Link-5 (f) Link-6

Figure 3. Defining Pivot Points across the links of a robot arm.

3.2.3. Import 3D Model in Unity

After adding the details to the CAD file in a blender, a digital model is exported from
blender software in fbx format and is ready for animation and scripting inside the Unity
platform. After importing the model in the Unity platform, some additional components
are added to the digital robot, such as the Ground Plane, Robot Bench, Component Bench,
Component, and Robot (see Figure 4). From a simulation perspective, this environment



Sustainability 2021, 13, 10336 8 of 22

should replicate the actual robot setup. The programming accuracy is highly dependent
on these additional details, e.g., the height of the robot bench, height, and distance of the
component with respect to a robot. Any mismatch between the dimensions of these details
can lead to errors in robot movement.

Figure 4a shows a unity environment setup. It also shows a setup of the robot with
respect to its operating table (component bench). A similar setup is shown in Figure 4b,
which reflects an actual robotic cell environment. In this paper, the feasibility is tested
on Roboguide software. Roboguide is FANUC’s proprietary software that is used in the
industry for simulation, program generation, and testing. It incorporates all the details
of robot joints, starting from a joint encoder to controller details. The robot model in
Roboguide software is considered as a PR in the testing environment for our work.

(a) Unity environment. (b) Physical setup.

Figure 4. Robot setup and the environment.

3.2.4. Defining Tool Center Point (TCP)

The robot model is associated with specific frames of reference in a 3D space, such as
the World Frame and tool Center frame known as tool center point (TCP) [36]. The robot
movement is defined with respect to its TCP, which is typically located at the center of the
end-effector in most applications. The end-effector is an operational tool attached to the
robot structure and performs a desired task, such as grabbing a component, welding, or
some other application specified tasks. The end-effector changes as per the application. In
this experimentation, we considered a welding end-effector and a TCP, which is defined at
the tip of the end-effector as shown in Figure 5b.

(a) PR tool center point. (b) Digital robot tool center point.

Figure 5. Tool center point.



Sustainability 2021, 13, 10336 9 of 22

Additional to this, in some cases, a User Frame is defined for components. The
commanded coordinates for the movement of the end-effector joint can be either defined
relative to the TCP or user frame. The User frame is a frame attached to the working area
of the component, where components are placed for robotic operations. In this case, we
tested the robotic movement with respect to its TCP. TCP of the digital model should be
as close as possible to the TCP of the physical model. The closer the value, the higher the
accuracy between them. Figure 5a shows a TCP of a PR, and Figure 5b exhibits the TCP of
the digital model.

Here, TCP is an imaginary point that is defined as per the application and end-effector
design. In this case, since the target is to control and program in the digital model, we
attached a component shown in green color in Figure 5b for visualization purposes. The
relative pose of the hand in a virtual environment is determined by the position of the
TCP. Once we capture the digital TCP with a VR controller, the robot achieves an updated
position relative to the TCP.

3.2.5. Inverse Kinematic (IK) for Digital Model

For any mechanical structure, starting from a 2-link to an n-link robot arm, an algo-
rithm is required to calculate its joint angles to reach a specific point in 3D space, which is
done using IK.

As already discussed in Section 3.1.1, in this experimentation, we used a six-link robot
arm. To calculate its joint angles, the BioIK package from Unity Asset was used.

BioIK is a more dynamic single solution package, which can be plugged into any
n-link model. Figure 6 shows the parameter settings for a model definition. The main
parameters for this model are velocity and acceleration, which may vary for specific robot
models. In this case, we refer to Table 1, column 2 (shown in Section 3.1.1), which shows
the individual joint speed in radians per second (rad/s). In this case, we considered an
average of 5 rad/s, and it generates data considering this value for all joints.

Figure 6. BioIK parameters.

3.2.6. Tranform Matrix between Unity and Physical Robot (PR)

In addition to the above details, to successfully mimic the movement of a PR with its
digital model we must look into the coordinate system. The model in Unity and the PR
may have a different coordinate system, where Unity uses a left-handed coordinate system,
Y points upward, Z points to the right and X toward the viewer with positive rotation in
a clockwise direction. The FANUC robot follows different orientations Z points Upward,
Y to the right, and X toward the viewer. The coordinates of both the digital model and
physical model are shown in Figure 7. Here, Figure 7a shows Unity coordinate where Z is
pointing upwards and Figure 7b shows X coordinate points upwards.



Sustainability 2021, 13, 10336 10 of 22

(a) Coordinates in unity space. (b) Coordinates in physical space.

Figure 7. Coordinates system.

With the help of the transform matrix, the Cartesian coordinates of the Unity model can
be transformed to Cartesian coordinates of a PR system using the Hadamard product [37–39]
as shown in Equation (1):

J1ux J1uy J1uz
J2ux J2uy J2uz
J3ux J3uy J3uz
J4ux J4uy J4uz
J5ux J5uy J5uz
J6ux J6uy J6uz

°



0 0 −1
0 −1 −0
0 1 0
−1 0 0
0 1 0
−1 0 0

 =



J1 f x J1 f y J1 f z
J2 f x J2 f y J2 f z
J3 f x J3 f y J3 f z
J4 f x J4 f y J4 f z
J5 f x J5 f y J5 f z
J6 f x J6 f y J6 f z


(1)

where, J1 f x, J1 f y, and J1 f z show the X, Y, and Z components of J1 joint for FANUC
robot, respectively, and J1ux, J1uy, and J1uz indicate the X, Y, and Z components of the
J1 joint of the Unity digital model. With the help of element-wise multiplication or the
Hadamard product, we transformed the Unity Cartesian coordinates for the J1–J6 joints to
PR joint coordinates.

3.2.7. Communication Channel

After establishing the digital model in the gaming engine, next comes selecting a
communication link between the Digital and Physical model, which is the backbone of the
Digital Twin.

FANUC robots support various communication protocols, starting from Modbus
TCP/IP to Dot Net-based API. However, the types of data that can be accessed using these
communication protocols are minimal. Most of the protocols support position registers,
as well as digital input and output registers. These communication methods are easy to
implement as a base code for this is provided by the company.

There exist another communication protocol known as socket messaging, which is
based on Client-Server architecture. It is one of the oldest client–server-based protocols
and is used in many industrial devices. In the case of FANUC robots, the KAREL pro-
gramming language compiler is available, and, by using this compiler, the required socket
messaging channel is written (for both Client and Server) with customized functions for
motion execution.

Talking about the KAREL programming language, KAREL is an educational program-
ming language designed for beginners by Richard E. Pattis in 1981 and adapted to use in
programming robots and is named after Karel Čapek. He introduced the word “Robot” [40].
The benefits of using the KAREL programming language are two-folded. First, the KAREL
programming language is native to FANUC robots. Second, FANUC KAREL enlists the
functions to handle robot motion commands and provides access to all data registers from
system variables to digital signals. Thus, we implemented a socket messaging server with



Sustainability 2021, 13, 10336 11 of 22

KAREL usage that receives joint angle data from the socket client, shares robot status data
to its client, and calls the motion execution function.

On the unity platform, the socket messaging client is written in C# script. Now, both
physical and digital models are ready to communicate via socket channel. After a successful
handshake between Unity and Robot Controller, as shown in Figure 8, required data can
be exchanged between them.

Figure 8. Communication channel setup between the Physical and Digital robot.

Programming for Communication Setup: The programming part is designed consid-
ering the modularity of adding features to the robot both on the physical and digital sides.
In this experimentation, the Unity scripts are divided into three parts:

1. Socket server client: Responsible for initiating a connection with socket server written
on the robot side.

2. Reading and sending data: This script reads the robot joints data, which is generated
by IK, and sends it to the robot over socket messaging port.

3. Data recording: If the Digital Twin is not connected to the PR, a provision is created
to temporarily store the data inside the Unity environment in a text file format. In
addition to this, work has also been done to save the data sent to the robot via socket
client in PR memory for its repetitive operations.

3.2.8. Virtual Reality (VR) Interface

VR interface is present in the gaming industry for a long time. Currently, companies
and researchers have been exploring the possibilities to utilize this technology in different
sectors as well. The manufacturing industry is one of them, and they are exploring the
benefits and use cases of VR interface. In this experimentation, we integrated VR with
an industrial robot, with the scope of easing the programming and monitoring robotic
actions. In the traditional approach, to program a robot for a specific task, we teach the
intermediate points via teach pendant or by guiding a robot by holding its axes (also known
as collaborative robots) and save these intermediate points inside robot memory. However,
to successfully guide and generate an effective path requires training and experience for
the operators.

Setting VR Environment in Unity: In contrast to the existing approach, the VR
interface provides a simplified way of programming the desired trajectory. In this work,
HTC Vive is used to interact with the robot. This interaction is facilitated using the robot’s
digital model in a virtual environment that is created on a Unity platform.

In a virtual environment, the VR controller generates a new position by holding the
digital model’s TCP and guiding it around the component/region of interest. The updated
position data is sent to an inverse kinematic algorithm, and the algorithm generates the
corresponding joint angles for the robot joints to reach the updated position of TCP. By
doing so, the tip of the end-effector follows the TCP and generates an entire program from
the initial position to the complete trajectory. Figure 9 shows controlling of twin model in a
virtual environment using VR controller.



Sustainability 2021, 13, 10336 12 of 22

Figure 9. Controlling the twin model via virtual reality controller.

4. Experimentation and Results

We experimented to analyze the responsiveness and feasibility of the twin model to
generate a robot trajectory program for a PR. We consider the setup environment as shown in
Figure 4. The component for which the trajectory is generated is highlighted in Figure 10.

Figure 10. Trajectory component.

By holding a VR controller in the digital environment, we traced the circular edge of
the above component and generated a trajectory from the robot’s initial position to its final
position. We studied various parameters that focus on the capability for real industrial
applications, such as time delay, trajectory replication on the PR side.

4.1. Time Delay

First, we examined the time-lapse between the digital model and PR to exchange the
data. As per the experiment’s setup, the time-lapse for transferring the joint angles (six joint
angles in this experimentation) data of the digital model to the PR model was observed.
We analyzed that using socket messaging takes approximately 40 ms (milliseconds) to
transfer the joint data and read robot status signals in a digital setup. This is a considerable
improvement compared to the 150 ms that was reported in previous research [41].

The process for calculating the time delay is explained step-by-step in Algorithm 1.
Given the socket client object (S) that is connected to the Digital Twin socket server. Now, S
is able to read robot joint data by using the READ command. The output of the algorithm is
average latency (L). In steps 4–12, we are reading the robot joint data in between start_time
and end_time, the moment a keyword “bye” is received by S, it understands that there is
no more data, and it terminates the loop. In the end, the total time difference is divided by



Sustainability 2021, 13, 10336 13 of 22

the number of values received, i.e., c, which gives us a total latency L or total time taken
over a client-socket communication channel to receive robot joint angles for one trajectory.

Algorithm 1: Time Delay Calculation

1 Input: Socket Client Object, S; where S is the socket client that is connected to the
server.

2 Output: Average Latency/Time taken by socket server to send robot joint data to
client, L.

3 Initialization: Empty file, F; Count variable, c = 0; L = 0.
4 var = READ(S)
5 while var != "bye" do
6 start_time = System current time;
7 append var in F; // READ(S) read one row containing robot joint

data.
8 var = READ(S);
9 end_time = System current time;

10 time_diff = end_time - start_time; // Calculates time taken to receive a
set of joint data for 6-joint robot

11 L = L + time_diff; // Calculates total time for receiving joint data
for a complete trajectory

12 c = c+1;
13 end
14 L = L/c; // Calculates average value of latency

4.2. Joint Movement Analysis of Simulation Platforms (Digital Twin and Roboguide)

Now, let us dive into the accuracy of robot movement attained in a Digital Twin
process. Figure 11 shows a trajectory path created via VR controller movement in the
virtual environment. The path traced by the TCP of a robot is plotted in a 3D graph. Here
the movement in 3D space is in mm (millimeters).

x axis

800
900

1000
1100

y a
xis

200
150

100
50

0
50

z a
xi

s

200
300
400
500
600
700
800

Figure 11. Robot trajectory (axis values in mm).

For the above trajectory, Figure 12, shows the range of movement of joints J1–J6 (in
degree) of a robot arm to attain the intermediate points across the motion path. At every
step, when the TCP position is updated, the IK algorithm generates a new set of Joint
angles (J1–J6).



Sustainability 2021, 13, 10336 14 of 22

Figure 12. Range of movement of individual joints.

After looking into the trajectory and joint angle movement, let us compare the joint
movement data of digital and PR, as we discussed earlier in Section 3.2.5 that on digital
and PR model, we are using IK and forward kinematics (FK) algorithms. As a result, there
is a possibility of some difference in the Commanded and Executed Joint movements.

Figure 13 shows the difference between commanded joint angles, which is the data
generated from the digital robot model and executed motion in a PR. It is observed that
the value of error across each joint J1–J6 varies from 0.01° and 0.28° on the positive range
of motion.

Figure 13. Difference between the Commanded (IK) and Executed (FK) joint angles.

Table 3, shows the range of movement of robot joints for a specific component, compo-
nent already shown in Figure 10. Columns 2 and 3 indicate the minimum and maximum
value of joint movement in degree, and columns 4 and 5 show the range of errors recorded
in PR, where the joint movement is executed with the FK algorithm. Similarly, we created
a random trajectory and showed the range of motion and error values in columns 6 to 9.
From Table 3, it can be observe that the range of error is between −0.28 to 0.28°.

Therefore, we can infer that this error value is quite low (in respect of industrial robots).
The error is at its peak at the start and end of a trajectory. There can be two different factors



Sustainability 2021, 13, 10336 15 of 22

contributing to this error, (1) error can be due to acceleration and deceleration cycle across
robot joints, and (2) can be induced by the conversion process of IK to FK.

Table 3. The joint movement for specific and random trajectory, movement range, and error range
shows the minimum and maximum values in degrees.

Component Trajectory Random Trajectory

Movement Range Error Range Movement Range Error Range

Min Max Min Max Min Max Min Max

J1 −18.800 0.100 −0.138 0.077 −4.220 39.800 −0.131 0.148

J2 −9.300 30.300 −0.092 0.077 −43.200 19.900 −0.112 0.125

J3 −51.900 0.000 −0.092 0.077 −38.400 22.200 −0.139 0.155

J4 −89.900 11.100 −0.232 0.277 −89.400 63.600 −0.255 0.282

J5 −47.900 39.500 −0.185 0.155 −48.200 79.400 −0.282 0.216

J6 −0.100 62.900 −0.270 0.232 −28.6 90 −0.212 0.226

To analyze the cause of error, a random trajectory is generated in VR, and we analyzed
the errors across the joints of the PR. Figure 14 shows the range of movement of a robot
arm joint angles. The purpose of the random movement is to obtain more details on the
error. Whether it increases with an increase in joint movement range or it depends on
acceleration and deceleration cycle.

Figure 14. Joint angle movement for a random trajectory.

Figure 15, shows the same error range as compared to Figure 13, even during the
random motion of TCP, the error range remains in the same window of 0.1 to 0.28°.

From the above error plots, there is a possibility that the deviation of joint movements
is due to acceleration or deceleration values. As the joint moves from 0 to 80°, the error also
increases. However, after attaining a particular value, the error gradually decreases if the
movements remain in that range. In addition to this, it is observed that the error across the
J4–J6 joint is more as compared to J1–J3 joints, as the movement across J4–J6 varies more
abruptly in the range of 0–100° as compared to J1 to J3 movement pattern, which is smooth,
and its range of motion is less (0–30°) compared to other joints.



Sustainability 2021, 13, 10336 16 of 22

Figure 15. Difference between Commanded (IK) and Executed (FK) joint angles.

4.3. Joint Movement Analysis of Digital Twin and FANUC Robot

We used a real robot of FANUC (model M-10ia/12), as shown in Figure 16. Further,
we tested another random trajectory generated by a digital platform and executed it on a
real robot.

Figure 16. Real robot M-10ia/12 (FANUC).

Figure 17, compares the error between joints angles of commanded data which is
generated in Unity via VR movement and executed data on Roboguide and robot. In this
paper, we referred to PR as a PR on Roboguide, which is a simulation software of FANUC.
However, we further tested the program on the actual FANUC robot also. Figure 17a
shows a random path execution on the FANUC robot, and Figure 17b shows roboguide
simulation joint error. The joint error in both cases is almost the same, except the rising and
falling edges are sharp in actual robot joint angle movement. Apart from slight deviation
in joint angle errors, the range of error is slightly increased in the case of the actual robot.
As Figure 17a shows, the error touches the value of 0.3°, whereas the roboguide simulation
shows the maximum value of 0.28°.



Sustainability 2021, 13, 10336 17 of 22

(a) Trajectory on FANUC robot.

(b) Random trajectory on simulation software (Roboguide).

Figure 17. Trajectory comparison between FANUC Robot and FANUC simulation software (Roboguide).

5. Discussion

Here, we discuss the solution/framework developed in this work. The model prepared
in this experimentation is a sustainable solution, in a way that it is independent of the robot
model (see Section 5.1 for detail). Additionally, we showed some advantages of using VR
interface for programming robot and how it can benefit in various challenging tasks using
Used Case scenarios in Section 5.2.

5.1. Sustainable Solution For FANUC Robots

The software components under this experimentation are developed in such a way that
we can generalize this implementation process for any FANUC robot. The generalization
provides sustainability for programming a wide range of FANUC robots. This Digital Twin
model removes the overhead of spending time to learn robot programming and obtaining
technical details and can provide a friendly environment for even first-time users. To
extend the solution developed in this paper, there are a few steps that need to be followed.
The first step towards establishing Digital Twin is to develop a 3D animated compatible
robot, which can be done by following the steps defined in Section 3.2.2 (Model Rigging).

After importing the 3D animated robot developed above, it can be imported in Unity,
and other scripts that are developed in this work can be simply plugged into any digital
and PR model. This provides a generalized solution for the entire range of FANUC robots.
However, this solution has a limitation that it may not be compatible with other robotic
manufacturer companies, such as KUKA, NACHI, ABB, YASKAWA, etc.



Sustainability 2021, 13, 10336 18 of 22

5.2. Use Case Scenarios

The concept of Digital Twin has applications in vast domains, such as Industry Plan-
ning, production estimation, medical division for remote surgery, robot trajectory simula-
tion, etc. Here, we discussed a few applications that give a more specific idea about VR
environment utilization and the benefits of Digital Twin two-way communication. These
applications include trajectory programming for complex edges and space-constrained
environments and generating synthetic data for machine learning applications for robotic
programming, such as robot perception models.

5.2.1. Trajectory Planning for Complex Edges

Pointing/guiding a PR end-effector at a particular position and its orientation can be
a difficult or time-consuming task via a manual programming method. One such setup is
shown in Figure 18. The edges of the component that requires high accuracy take a lot of
time and often lead to minor adjustments. This rework can be avoided by visualizing the
component details in a VR environment, where we can clearly see the detailed 3D view of
the region of interest and move the VR hand around it.

Figure 18. VR Environment for programming an engine component.

5.2.2. Program Creation in Space Constrained Surroundings

The space required or available for a new setup is always a challenge for factories and
manufacturing units. This pushes the limits and demands a minimum space acquisition
for setting up robotic/machine cells. Here, the capability of a virtual environment can be
used to create a motion path in constrained spaces and simulate the feasibility of setting up
a physical system.

Figure 19 shows a setup of a tank welding application. Here robot bench and com-
ponent are closely placed. Such setup creates difficulties in creating or troubleshooting a
robot’s motion path. However, performing this task in a virtual environment provide a
safe and well-defined environment for human–robot interaction.



Sustainability 2021, 13, 10336 19 of 22

Figure 19. Robotic operation in constrained space.

5.2.3. Training Robotic Operations via Machine Learning

Currently, as we are trying to deploy robots for a broad range of applications, such
as warehouse operations, agriculture, kitchen work, etc., the main challenge for making
applications with a robot is to teach it for a dynamic handling environment. The process of
teaching a robot can be done by creating synthetic data using a VR setup. Let us consider
agriculture applications. To operate robots in an open environment, we have to gather
data for the robot vision system under different illumination intensities. This environment
is easy to create in a gaming engine as compared to capturing data in a real scenario.
Gathering data in real scenarios can be time-consuming and costly.

6. Conclusions

In this paper, we successfully created a Digital Twin model of an industrial robot. The
developed digital model communicates with the PR using client–server architecture via
socket messaging. By integrating VR in a digital environment, we tested robot trajectory
programs. The trajectories that are created in a virtual environment are easy to follow in a
PR. In addition to this, we analyzed the accuracy of the trajectories executed in the PR as
well as in Roboguide simulation software in comparison to the data generated via a VR
environment, which was developed in this experimentation.

Based on the developed Digital Twin model for industrial robots, our contribution
towards research enhancement can be summarized as follows: (1) Online motion between
the virtual environment and PR for desired trajectories, and a generalized program was
created on the PR for repetitive motion execution. (2) Ease of programming for complex
edges and space-constrained environments: Based on the survey, we can confidently
conclude that the VR environment was easy to operate and highly interactive for robot
programming as compared to other available programming tools. (3) Communication
across different platforms (Dot Net and Karel) was established.

The simulation analysis showed the latency of approximately 40 ms (milliseconds)
with an error range of −0.28 to 0.28° across the robot joint movements in a simulation
environment and −0.3 to 0.3° across the actual robot joint movements. Therefore, with
this latency and accuracy, we can utilize this model effectively for industrial applications.
However, for high precision control, there is a need to smooth out the joint movements by
implementing a smoothing function or other algorithms.

Limitations: There are a few limitations of this work as this work can only be
copied/applied to FANUC robots. On the robot side, the scripts were developed in KAREL
language, which is native to FANUC robots only. As per our knowledge, the KAREL
platform is not being used by any other robot manufacturer company. However, this
limitation can be removed with work to establish communication with other manufacturer



Sustainability 2021, 13, 10336 20 of 22

robot libraries. Some of them provide Dot Net libraries or Java-based APIs to interact and
establish communication and control joint movements.

Future Work: Gaming platforms are loaded with many features that can be extended
to an industrial environment. One such example is the multiple user single-server virtual
reality system. There are several networking games where players from different locations
create their virtual avatars and interact in a simulated environment. The same concept can
be implemented in the industrial environment via a game engine. The main advantage of
this is a better understanding of the problem. For example, suppose there is a robot that is
installed at a remote location, and you, as a service provider, must listen to and understand
the customers and also help them to solve the problem.

Assisting over telephonic discussion takes a great deal of time to obtain a gist of the
problem as a client is less likely to be comfortable with technical terms and may land on
different understanding nodes. However, having a Digital Twin model eases the process of
explaining and understanding the problem in a short span of time.

The accuracy of the trajectories generated via VR environment depends on human
hand movement, and most of the motion path appears rough compared to the trajectories
generated via simulation software. To overcome this, further work is required to smooth
the trajectories. This will help in utilizing the complete potential of the Digital Twin in a
broad range of application areas. At present, there is not much work that compares the
motion path between Digital and Physical models. At present, most of the focus is on
interaction system development with VR/Augmented Reality/MR.

Author Contributions: Conceptualization, methodology, validation, formal analysis, literature re-
view, writing—original draft preparation, G.G.; writing—review and editing, funding acquisition,
G.A. and V.K.; supervision, G.A. and V.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by project AR16077 Smart Industry Centre (SmartIC)
No. 2014-2020.4.01.16-0183, supported by the EU Regional Development Fund and by the Esto-
nian Research Council under grant PSG453 “Digital twin for propulsion drive of an autonomous
electric vehicle”.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAD Computer Aided Design
3D 3 dimensional
fbx Filmbox 3D file format
FK Forward Kinematics
HMD Head Mounted Device
IK Inverse Kinematics
KAREL Programming Language based on PASCAL
KDTMC Knowledege Driven Digital Twin Manufaturing Cell
MR Mixed Reality
PR Physical Robot
STL Standard Triangular Language
TCP Tool Center Point
VR Virtual reality



Sustainability 2021, 13, 10336 21 of 22

References
1. Cordes, M.; Hintze, W. Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. Int. J.

Adv. Manuf. Technol. 2017, 90, 1075–1083. [CrossRef]
2. Olabi, A.; Damak, M.; Bearee, R.; Gibaru, O.; Leleu, S. Improving the accuracy of industrial robots by offline compensation of

joints errors. In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March
2012; pp. 492–497.

3. Kuts, V.; Modoni, G.E.; Otto, T.; Sacco, M.; Tähemaa, T.; Bondarenko, Y.; Wang, R. Synchronizing physical factory and its digital
twin through an IIoT middleware: A case study. Proc. Est. Acad. Sci. 2019, 68, 364–370.

4. Design Presentation Associates, Inc. CAD File Formats. Available online: https://www.designpresentation.com/blog/cad-file-
formats/ (accessed on 1 July 2021).

5. Eberly, D. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics; CRC Press: Boca Raton, FL, USA, 2006.
6. Burghardt, A.; Szybicki, D.; Gierlak, P.; Kurc, K.; Pietruś, P.; Cygan, R. Programming of industrial robots using virtual reality and

digital twins. Appl. Sci. 2020, 10, 486. [CrossRef]
7. Hart, J.W.; DePalma, N.; Pryor, M.W.; Hayes, B.; Kruusamäe, K.; Mirsky, R.; Xiao, X. Exploring Applications for Autonomous

Nonverbal Human-Robot Interaction. In Proceedings of the Companion of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction, Boulder, CO, USA, 8–11 March 2021; pp. 728–729.

8. Muszyńska, M.; Szybicki, D.; Gierlak, P.; Kurc, K.; Burghardt, A.; Uliasz, M. Application of Virtual Reality in the Training
of Operators and Servicing of Robotic Stations. In Proceedings of the PRO-VE 2019: Collaborative Networks and Digital
Transformation, Turin, Italy, 23–25 September 2019; Springer: Cham, Switzerland, 2019; pp. 594–603.

9. Kuts, V.; Otto, T.; Tähemaa, T.; Bondarenko, Y. Digital twin based synchronised control and simulation of the industrial robotic
cell using virtual reality. J. Mach. Eng. 2019, 19, 128–145. [CrossRef]

10. Malik, A.A.; Bilberg, A. Digital twins of human robot collaboration in a production setting. Procedia Manuf. 2018, 17, 278–285.
[CrossRef]

11. Kamińska, D.; Sapiński, T.; Wiak, S.; Tikk, T.; Haamer, R.E.; Avots, E.; Helmi, A.; Ozcinar, C.; Anbarjafari, G. Virtual reality and its
applications in education: Survey. Information 2019, 10, 318. [CrossRef]

12. Kamińska, D.; Smółka, K.; Zwoliński, G.; Wiak, S.; Merecz-Kot, D.; Anbarjafari, G. Stress reduction using bilateral stimulation in
virtual reality. IEEE Access 2020, 8, 200351–200366. [CrossRef]

13. Kamińska, D.; Zwoliński, G.; Wiak, S.; Petkovska, L.; Cvetkovski, G.; Di Barba, P.; Mognaschi, M.E.; Haamer, R.E.; Anbarjafari, G.
Virtual Reality-Based Training: Case Study in Mechatronics. Technol. Knowl. Learn. 2020, 1–17. [CrossRef]

14. Zhang, H.; Ma, L.; Sun, J.; Lin, H.; Thürer, M. Digital twin in services and industrial product service systems: Review and analysis.
Procedia CIRP 2019, 83, 57–60. [CrossRef]

15. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big
data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [CrossRef]

16. Lu, Y.; Liu, C.; Kevin, I.; Wang, K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model,
applications and research issues. Robot. Comput.-Integr. Manuf. 2020, 61, 101837. [CrossRef]

17. Liu, J.; Du, X.; Zhou, H.; Liu, X.; Ei Li, L.; Feng, F. A digital twin-based approach for dynamic clamping and positioning of the
flexible tooling system. Procedia CIRP 2019, 80, 746–749. [CrossRef]

18. Petkovska, L.; Cvetkovski, G.; Kaminska, D.; Wiak, S.; Firych-Nowacka, A.; Lefik, M.; Sapinski, T.; Zwolinski, G.; Di Barba, P.;
Mognaschi, M.E.; et al. ViMeLa PROJECT: An Innovative Concept for Teaching Students in Mechatronics Using Virtual Reality.
In Proceedings of the 7th Symposium On Applied Electromagnetics (SAEM’18), Podcetrtek, Slovenia, 17–20 June 2018; pp. 17–20.

19. Oleksy, M.; Budzik, G.; Sanocka-Zajdel, A.; Paszkiewicz, A.; Bolanowski, M.; Oliwa, R.; Mazur, Ł. Industry 4.0 Part I. Selected
applications in processing of polymer materials. Polimery 2018, 63, 531–535. [CrossRef]

20. Zhang, C.; Zhou, G.; He, J.; Li, Z.; Cheng, W. A data-and knowledge-driven framework for digital twin manufacturing cell.
Procedia CIRP 2019, 83, 345–350. [CrossRef]

21. Ostanin, M.; Klimchik, A. Interactive robot programing using mixed reality. IFAC-PapersOnLine 2018, 51, 50–55. [CrossRef]
22. Manou, E.; Vosniakos, G.C.; Matsas, E. Off-line programming of an industrial robot in a virtual reality environment. Int. J.

Interact. Des. Manuf. (IJIDeM) 2019, 13, 507–519. [CrossRef]
23. Pérez, L.; Diez, E.; Usamentiaga, R.; García, D.F. Industrial robot control and operator training using virtual reality interfaces.

Comput. Ind. 2019, 109, 114–120. [CrossRef]
24. Pérez, L.; Rodríguez-Jiménez, S.; Rodríguez, N.; Usamentiaga, R.; Garcia, D.F. Digital Twin and Virtual Reality Based Methodology

for Multi-Robot Manufacturing Cell Commissioning. Appl. Sci. 2020, 10, 3633. [CrossRef]
25. Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J.

Prod. Econ. 2019, 210, 15–26. [CrossRef]
26. Castelo-Branco, I.; Cruz-Jesus, F.; Oliveira, T. Assessing Industry 4.0 readiness in manufacturing: Evidence for the European

Union. Comput. Ind. 2019, 107, 22–32. [CrossRef]
27. Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards intelligent manufactur-

ing. Int. J. Prod. Res. 2020, 58, 1034–1051. [CrossRef]
28. Wu, C.; Zhou, Y.; Pessôa, M.V.P.; Peng, Q.; Tan, R. Conceptual digital twin modeling based on an integrated five-dimensional

framework and TRIZ function model. J. Manuf. Syst. 2021, 58, 79–93. [CrossRef]

http://doi.org/10.1007/s00170-016-9461-z
https://www.designpresentation.com/blog/cad-file-formats/
https://www.designpresentation.com/blog/cad-file-formats/
http://dx.doi.org/10.3390/app10020486
http://dx.doi.org/10.5604/01.3001.0013.0464
http://dx.doi.org/10.1016/j.promfg.2018.10.047
http://dx.doi.org/10.3390/info10100318
http://dx.doi.org/10.1109/ACCESS.2020.3035540
http://dx.doi.org/10.1007/s10758-020-09469-z
http://dx.doi.org/10.1016/j.procir.2019.02.131
http://dx.doi.org/10.1007/s00170-017-0233-1
http://dx.doi.org/10.1016/j.rcim.2019.101837
http://dx.doi.org/10.1016/j.procir.2019.01.063
http://dx.doi.org/10.14314/polimery.2018.7.7
http://dx.doi.org/10.1016/j.procir.2019.04.084
http://dx.doi.org/10.1016/j.ifacol.2018.11.517
http://dx.doi.org/10.1007/s12008-018-0516-2
http://dx.doi.org/10.1016/j.compind.2019.05.001
http://dx.doi.org/10.3390/app10103633
http://dx.doi.org/10.1016/j.ijpe.2019.01.004
http://dx.doi.org/10.1016/j.compind.2019.01.007
http://dx.doi.org/10.1080/00207543.2019.1607978
http://dx.doi.org/10.1016/j.jmsy.2020.07.006


Sustainability 2021, 13, 10336 22 of 22

29. Aheleroff, S.; Xu, X.; Zhong, R.Y.; Lu, Y. Digital twin as a service (DTaaS) in industry 4.0: an architecture reference model. Adv.
Eng. Inform. 2021, 47, 101225. [CrossRef]

30. Sepasgozar, S.M. Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable
built environment. Buildings 2021, 11, 151. [CrossRef]

31. Team, R. FANUC Robot Specifications. 2017. Available online: https://www.robots.com/robots/fanuc-m-10ia-12 (accessed on 1
July 2021).

32. Team, H.V. HTC VIVE Specification Specifications. Available online: https://www.vive.com/eu/product/vive/#vive-spec
(accessed on 1 July 2021).

33. HTC VIVE Review. Available online: http://doc-ok.org/?p=1478 (accessed on 1 July 2021).
34. Wasilenko, L. Getting Started with SteamVR and Unity. 2019. Available online: https://www.taylorfrancis.com/chapters/edit/

10.1201/b21598-3/getting-started-steamvr-unity-lee-wasilenko (accessed on 1 July 2021).
35. Jafari, A.; Tsagarakis, N.G.; Caldwell, D.G. AwAS-II: A new actuator with adjustable stiffness based on the novel principle

of adaptable pivot point and variable lever ratio. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 9–13 March 2011; pp. 4638–4643.

36. Abtahi, M.; Pendar, H.; Alasty, A.; Vossoughi, G.R. Calibration of parallel kinematic machine tools using mobility constraint on
the tool center point. Int. J. Adv. Manuf. Technol. 2009, 45, 531. [CrossRef]

37. Blanton, M.; Stephens, A.; Knuth, E.; Gardiner, A.M.; Isler, I.; Kim, J.S. The development of children’s algebraic thinking: The
impact of a comprehensive early algebra intervention in third grade. J. Res. Math. Educ. 2015, 46, 39–87. [CrossRef]

38. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012.
39. Davis, C. The norm of the Schur product operation. Numer. Math. 1962, 4, 343–344. [CrossRef]
40. Pattis, R.; Roberts, J.; Stehlik, M. Karel the Robot. A Gentele Introduction to the Art of Programming; John Wiley & Sons: Hoboken, NJ,

USA, 1981.
41. Laaki, H.; Miche, Y.; Tammi, K. Prototyping a digital twin for real time remote control over mobile networks: Application of

remote surgery. IEEE Access 2019, 7, 20325–20336. [CrossRef]

http://dx.doi.org/10.1016/j.aei.2020.101225
http://dx.doi.org/10.3390/buildings11040151
https://www.robots.com/robots/fanuc-m-10ia-12
https://www.vive.com/eu/product/vive/#vive-spec
http://doc-ok.org/?p=1478
https://www.taylorfrancis.com/chapters/edit/10.1201/b21598-3/getting-started-steamvr-unity-lee-wasilenko
https://www.taylorfrancis.com/chapters/edit/10.1201/b21598-3/getting-started-steamvr-unity-lee-wasilenko
http://dx.doi.org/10.1007/s00170-009-1994-y
http://dx.doi.org/10.5951/jresematheduc.46.1.0039
http://dx.doi.org/10.1007/BF01386329
http://dx.doi.org/10.1109/ACCESS.2019.2897018

	Introduction
	Highlights
	Contribution
	Organization

	Related Work
	Methodology
	Experimental Devices
	Robot
	VR Device

	Proposed Framework
	Creation of Digital Model
	CAD Rendering in Computer Graphics Software
	Import 3D Model in Unity
	Defining Tool Center Point (TCP)
	Inverse Kinematic (IK) for Digital Model 
	Tranform Matrix between Unity and Physical Robot (PR)
	Communication Channel
	Virtual Reality (VR) Interface


	Experimentation and Results
	Time Delay
	Joint Movement Analysis of Simulation Platforms (Digital Twin and Roboguide)
	Joint Movement Analysis of Digital Twin and FANUC Robot

	Discussion
	Sustainable Solution For FANUC Robots
	Use Case Scenarios
	Trajectory Planning for Complex Edges
	Program Creation in Space Constrained Surroundings
	Training Robotic Operations via Machine Learning


	Conclusions
	References

