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Abstract: The prevailing massive exploitation of conventional fuels has staked the energy accessibility
to future generations. The gloomy peril of inflated demand and depleting fuel reservoirs in the
energy sector has supposedly instigated the urgent need for reliable alternative fuels. These very
issues have been addressed by introducing oxyhydrogen gas (HHO) in compression ignition (CI)
engines in various flow rates with diesel for assessing brake-specific fuel consumption (BSFC)
and brake thermal efficiency (BTE). The enrichment of neat diesel fuel with 10 dm3/min of HHO
resulted in the most substantial decrease in BSFC and improved BTE at all test speeds in the range of
1000–2200 rpm. Moreover, an Artificial Intelligence (AI) approach was employed for designing an
ANN performance-predicting model with an engine operating on HHO. The correlation coefficients
(R) of BSFC and BTE given by the ANN predicting model were 0.99764 and 0.99902, respectively.
The mean root errors (MRE) of both parameters (BSFC and BTE) were within the range of 1–3%
while the root mean square errors (RMSE) were 0.0122 kg/kWh and 0.2768% for BSFC and BTE,
respectively. In addition, ANN was coupled with the response surface methodology (RSM) technique
for comprehending the individual impact of design parameters and their statistical interactions
governing the output parameters. The R2 values of RSM responses (BSFC and BTE) were near to 1
and MRE values were within the designated range. The comparative evaluation of ANN and RSM
predicting models revealed that MRE and RMSE of RSM models are also well within the desired
range but to be outrightly accurate and precise, the choice of ANN should be potentially endorsed.
Thus, the combined use of ANN and RSM could be used effectively for reliable predictions and
effective study of statistical interactions.

Keywords: diesel; oxyhydrogen; artificial neural network; response surface methodology; predic-
tion; desirability

1. Introduction

Ever-growing industrialization and unprecedented use of non-renewable fuels have
brought us to a very feeble junction where we have to be a bit vigilant or we may run out
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of fossil fuels [1]. Hydrocarbon reserves found in nature are going to become extinct in
the future if we continue using them without any restrictions because these reserves are
being consumed at a rate faster than their formation [2,3]. The world energy demand is
excessively soaring and is likely to be 28% higher in 2040 if consumption continues at the
current pace. The intensifying pressure of depleting energy resources and fear of damage
to the environment has consequently made scientists to look for alternative or green fuels.
The use of oxygenated, alcoholic, and hydrogen fuels in CI engines has been the locus of
interest of engineers for the past few years [4–10].

Compression ignition (CI) engines have long been the power generation source for
heavy machinery in energy and aquatic transport owing to their high efficiency, torque,
and feasibility of operation on a lean mixture of air and fuel [11]. Diesel is a commonly
used fuel in CI engines. However, due to the incessant usage of fossil fuels to generate
diesel, the focus of the researchers, engineers, and scientists made a paradigm shift towards
the study of more efficient, promising, and greener fuels [12–16].

Hydrogen itself cannot be used in CI engines due to its high auto-ignition tempera-
tures, which requires a very high compression ratio, but it can be mixed with fuel with low
autoignition temperatures. Hydrogen gas is a good blending agent and could be effectively
used in engines because of its low ignition temperature and high flammability [17]. The
use of hydrogen as a mixing fuel is a concept with novelty and therefore much work has
been reported. The earliest studies were conducted by T. Litzinger et al. on the operations
of the IC Engines with multi-blended fuels. They validated the role of H2 inside the IC
engines and found it as a potential replacement of fossil fuels [18]. Moreover, with scientific
and technological development, many researchers have discovered that H2 can be used
as a blend with other gases to reduce its combustibility and increase its ignition energy.
H.K Abdel Aal carried out one such study to generate a safe method of H2 enrichment by
using methane as a blending agent with H2. He used Le Chatelier’s principle for predicting
flammability and determining a safe ratio [19].

Similarly, among many fuels available for mixing, the use of diesel has also been an
area of interest of researchers [20,21]. Kadir Aydin et al. conducted experimentation on
a Mitsubishi 4 stroke CI engine using HHO gas dm3/min as a blended fuel with diesel.
They observed a 19.1% increase in brake power (BP) and a 14% decrease in brake-specific
fuel consumption (BSFC) with the addition of HHO as compared with simple diesel. Their
study identified 1750 rpm as a critical speed, below which the HHO addition was not
favorable for engine performance [22]. Similarly, Alfredas et al. used an Audi 1.9 TDI (IZ
type) CI engine to investigate the effect of HHO addition at three liters per minute (LPM)
with diesel on the performance of the engine. Within the rpm range of 1900–3700, HHO
proved to be favorable for engine performance [23]. Ali Yimilaz et al. also studied the
outcome of HHO addition on engine performance and reported that engine torque was
amplified by 19.1%, and an average gain of 14% was achieved using HHO [24]. The effect
of HHO gas on the performance of a Mitsubishi Canter brand, four-stroke, water-cooled
diesel engine was conducted by Raif et al. They varied the flow rate of HHO from 3 LPM
to 7 LPM and observed that with HHO enrichment, the torque and brake power increased,
whereas fuel consumption decreased [25]. HHO has also the potential to be used as a
blending agent with other fuels. In this regard, Usman et al. used HHO with LPG and
CNG and reported improved performance and reduced emissions with the addition of
HHO for both cases [26].

Owing to the cost and time of simply random experiments, researchers nowadays are
utilizing computer systems to attain similar efficiency by performing the least number of
experimental runs. Artificial neural network (ANN) and response surface methodology
(RSM) techniques are currently used to solve problems in science and engineering, espe-
cially where classical modeling methods have pathetically failed. The predictive capability
of the ANN model is based on the training of experimental data values and followed by
validation. If new data values are not desired, the ANN model may re-learn to enhance
the performance [27,28]. Raif Kenanoglu et al. used an artificial neural network for perfor-
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mance and emission analysis of a hydroxy gas-enriched CI engine for odd flow rates of
3.5 and 7 L/min. They used the Levenberg-Marquardt (LM) training function and found
a 95.82% accuracy for torque [29]. Similarly, Yildrium et al. studied the effect of HHO
enrichment on three different biodiesels using ANN. They used artificial intelligence for
fixing optimum hydrogen enrichment and found that developed models had a coefficient
of determination close to 1 [30].

Similarly, the RSM has the statistical regression technique for prediction [31,32]. Over
the last few years, the combined application of ANN and RSM methods has been hailed
with significant success in the power industry. Ghobadian et al. utilized diesel and biodiesel
fuel blends for ANN-based prediction of performance and emission. The developed ANN
model was viable with correlation coefficients (R-values) of 0.999 and 0.9487 for BSFC and
torque, respectively [33]. The ANN coupled RSM-based optimization of SI engine was
carried by Samet Uslu et al., which rendered the use of the ANN-supported RSM model as
an effective tool for performance prediction [34].

Considering the literature cited, the use of ANN for predicting the performance of
engines fueled with diesel HHO blends has already been studied [30]. However, the
optimization of the engine with the same blend has not been reported so far. In the current
study, ANN was used to predict the performance (BSFC and BTE) of a CI engine operating
on diesel with HHO in flow rates of 2–10 LPM. Moreover, the ANN-assisted RSM optimiza-
tion was applied to identify the optimized working conditions. The obtained optimum
conditions were validated using experimentation. Thus, the combined use of artificial
intelligence and RSM proved valuable in estimating and optimizing the performance of a
CI engine.

2. Materials and Methods
2.1. HHO Generator

The HHO (hydroxy gas) was produced using an Ironside HHO Generator, shown in
Figure 1. The features of the used HHO generator are itemized in Table 1. The power to
the electrical unit was supplied using an AC source. Water was ionized using potassium
hydroxide as a catalyst that generated hydrogen (positive charge) and hydroxide (negative
charge) ions. On supplying the potential across ionized water, the generated HHO traversed
first from a bubbler and later from a flow meter. Prior to injection in the engine’s intake
manifold, the flow rate of the gas was monitored using the flow meter. The potentiometer
was connected with the electrical box for regulating the flow through the cell.
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Table 1. HHO generator specifications.

Feature Description

Material of Plate Stainless steel (316-l)
Dimensions of Plate 16.5 cm by 16.5 cm by 0.1 cm

Electrode configuration Center anodes, end cathodes
Plate spacing 2 mm

HHO flow rate up to 10 LPM
Maximum Voltage 35 V
Maximum Current 40 A

Relation between current and LPM Direct relation up to 10 LPM

2.2. Experimental Methodology and Test Fuels

A direct injection, four-stroke, three-cylinder diesel engine was used for performance
tests whose specifications are shown in Table 2. The speed, load, and fuel flow measuring
system were equipped with the engine, as comprehensively demonstrated in the experi-
mental setup (see Figure 2). The engine was attached with a 3-phase AC generator having
85% efficiency. Five breakers with equal loading capacity were utilized from the control
unit, as shown in the schematic of the engine testbed (Figure 3). The loads were applied to
the test engine utilizing the generator.

Table 2. Engine specifications.

Features Description

Engine type Perkin/AD 3.152
Bore 91.4 mm

Stroke 127.0 mm
Number of holes of nozzles 4

Brake mean effective pressure 7.1570 bars
Injection timing 17 0 BTDC
Displacement 2.5 Liters

Compression ratio 18.5
Maximum speed 2200 rpm
Maximum power 36.8 kW at 1500 rpm
Maximum torque 243 N.m at 1400 rpm

The fuels used for conducting the experimental runs were pure diesel and HHO-mixed
diesel with 2, 4, 6, 8, and 10 LPM enrichment. The physicochemical properties of liquid
and gaseous fuels are shown in Table 3.

Table 3. Properties of fuels.

Properties Diesel Hydrogen

Research octane number 30 >130
Density at 20 ◦C 833.1 kg/m3 0.0827 kg/m3

Net heating value 42.5 MJ/kg 119.93 MJ/kg
Flame velocity 30 cm/s 265–325 cm/s

Autoignition temperature 530 K 858 K
Chemical composition C12H23 H2
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First, the diesel engine was allowed to warm up for 10 min ahead of recording the
experimental observations. The tests were started at an engine speed of 1000 rpm and
ceased at 2200 rpm, with equal increments of 200 rpm at each stage. The performance
parameters, BSFC and BTE, were calculated at each constant strategic engine speed with
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varying loads (9%, 18%, 27%, 36%, 45%) and HHO concentration of 2, 4, 6, 8, and 10 LPM
by using the following mathematical modelling equations:

BTE =
Break Power × 3600

Fuel Consumption × Calorific Value
(1)

BSFC =
Fuel Consumption

Break Power
(2)

Considering all the possible combinations of continuously varying factors, 210 experi-
mental observations were documented. The experimental work was restricted to lower half
partial loading conditions considering the safety aspect associated with HHO utilization in
engine. Moreover, using hydrogen accompanies better combustion and higher flame speed
and temperature inside the engine, which may lead to thermal degradation if operated at
higher loading conditions. Later, the ANN technique was implemented for designing the
predictable model of engine performance. Finally, the performance was optimized using
response surface methodology (RSM) and the desirability aspect was investigated.

3. Experimental Results and Discussion

Non-renewable fuels are normally associated with enhanced performance and re-
duced exhaust emissions [35]. Hydroxy gas is believed to facilitate cleaner and smoother
combustion compared with conventional fuels. The experimental deliverables signifi-
cantly demonstrated the decrease in BSFC and increase in BTE by virtue of HHO addition
to diesel. The detailed effect of HHO on performance parameters is presented in the
following sections.

3.1. Brake Specific Fuel Consumption

The patterns of BSFC variation with varying flow rate and engine load are shown
in Figure 4a–g. The BSFC of all operating conditions of HHO enriched fuel was lower
than for neat diesel. The addition of gaseous fuel to diesel evidenced promising fuel
economy. At the speed of 2200 rpm and a load of 9%, the parameter (BSFC) differed
by 12% for neat diesel and the one having 10 LPM of HHO, with the latter being more
fuel-efficient. Similarly, the speed of 1600 rpm rendered un-blended diesel less efficient
on the account of an average of 8.44% higher fuel consumption when juxtaposed with
10 LPM HHO-enriched diesel. Moreover, the higher engine speeds seem to have a greater
decrement in BSFC compared with low speeds. Equated at loads of 9% and 18% for speeds
1800 and 2200 rpm, the BSFC values diverged by 0.33 and 0.64 kg/kWh for low and high
speed, respectively. The higher flammability at higher speeds is the reason for augmented
variations (decline) in BSFC for increased revolutions of the power-producing shaft. The
improved fuel economy of the engine functioned with HHO could be apprehended by the
high calorific value of hydrogen and efficient combustion due to the availability of oxygen
atoms in the HHO structure [19,36–38].
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3.2. Brake Thermal Efficiency

Figure 5a–g shows the brake thermal efficiencies of all operating conditions at different
HHO flow rates and loads. Identical to BSFC, the engine exhibited boosted thermal
efficiencies for all HHO-enriched fuels compared with pure diesel. The test speed of
1400 rpm and flow rates of 2, 4, 6, 8, and 10 HHO at the constant load of 18% returned
BTE values of 11.11%, 19.80%, 27.37%, 29.16%, and 31.55%, respectively. Thus, with
the successive addition of HHO to the pure diesel, the engine exhibited a more efficient
behavior. Figure 5c is seen to be following a different pattern compared with other test
speeds. The manufacturer provided the maximum torque of 243 Nm at 1400 rpm (see
Table 2). Therefore, at 36% loading condition for 1400 rpm, the fuel consumption was
observed as higher, which resulted in a lower rate of increase in BTE, as made evident by
the part of curve after the 25% load. Of all the experimental runs, the maximum recorded
efficiency was 42.39% at the following conditions: 1000 rpm, 10 LPM HHO, and 45% load.
Compared at a speed of 2000 rpm, diesel with 10 LPM HHO presented an average of 9.07%
better performance than neat fuel. The chemical structure of diesel reveals the presence of
23 hydrogen atoms. The addition of hydroxy gas augments the number of hydrogen atoms
and hydrogen to carbon ratio increases, which could be held accountable for significantly
improved efficiency [39]. Moreover, enhanced combustion, the high calorific value of fuel
mixture, diffusivity, and fast flame propagation speed of hydrogen are the phenomena
governing the better performance of the engine [29,30,40,41].
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4. ANN Application
4.1. Data Preprocessing

Prior to the development of the model, the input data (speed, load, and flow rate) and
output data (BSFC and BTE) were normalized between the (0, 1) range using Equations (3)
and (4). All the data were within 0 to 1 and no faulty data were detected.

InputN =
input − min(input)

max(input)− min(input)
(3)

OutputN =
Output − min(output)

max(output)− min(output)
(4)

4.2. ANN Model

ANN is chiefly a statistical model that stems from the very idea of the information
processing system of the human brain [42]. Over the few decades, ANN models have
been growing exceptionally more common, owing to their widespread use for analyzing,
processing, system controls, and optimization applications. With similar popularity in
other fields, it has also been expansively used in the automotive sector as performance
parameters could be correctly estimated using it. Depending upon the complexity of data,
the ANN could have many layers, but generically it is reported with three stages: input
layer, hidden layer, and output layer [43,44]. Neurons are information carriers that act
as a connecting medium between the three layers. The neurons are interlinked through
communication links which are in turn connected with connection weights. The signals are
transmitted to the neurons by connection weights.

In the current study, engine speed, HHO flow rate, and engine load were designated
as input parameters for input layers while performance parameters (BSFC and BTE) were
dedicated to the output layer. The number of experimental observations recorded were
210, which served as a dataset to the input layer of ANN. MATLAB NN Toolbox was
used for developing the model, which randomly divided the input into three groups as
training (70%), validation (15%), and testing (15%). The network used in the hidden and
output layers of the ANN model was a feedforward backpropagation network because
of its valuable uses in the modelling of the system, signal processing of data with non-
linearities, and accuracy [43,45]. The Trainlm training function and mean square error
(MSE) performance function were employed, which is generally a preferable combination
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for faultless predictions [46]. Owing to the magnitude of the data set and higher reported
efficiency rates, the tansig transfer function was selected. For diminishing the errors,
LEARNGDM learning function was used. The quantity of neurons in the hidden layer
is central to the efficient prediction of the ANN model, as with too low a number the
connection between input data and output predicted results could be feeble and the
resultant model will be considered inappropriate [43,47]. Moreover, the criteria of ceasing
the training on the escalation of validation error was used. Usually, the use of 10 neurons
is widely reported in the literature and the same could also be considered for the present
case. However, with such a rough guess, the results may often be misleading. Therefore,
the optimum neurons were identified by iterations 5 points above and near 10 below which
identified the use of 10 neurons for achieving desirable results. The trained ANN model
may have an error in form overfitting, which is a considerable difference of error between
the training and testing. Figure 6 shows the performance of ANN training for 1000 epochs,
from which it could be arguably concluded that the test error is comparable to the training
error and are converging at one value. Therefore, the ANN model is not over fitted. The
attributes of the ANN models are epitomized in Table 4 and the detailed network structure
of the ANN model is shown in Figure 7. The working of ANN for the current case is
clarified by the process diagram shown in Figure 8. It encompasses three stages. Input
parameters were introduced in the first stage, which were repetitively trained in the second
stage for minimizing disparity, and checked for the desired results in the third stage.
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The output results of the ANN model were tested using the statistical measures of
mean relative error (MRE), Root mean square error (RMSE), and correlation coefficient (R2),
as defined in Equations (5)–(7):

MRE(%) =
1
n ∑n

i=1

∣∣∣∣100
ti − pi

pi

∣∣∣∣ (5)

RMSE =

√
1
n ∑n

i=1 (pi − oi)
2 (6)

R2 = 1 −
(

∑n
i=1 (pi − oi)

2

∑n
i=1 (oi)

2

)
(7)

The best output results could be adjudicated by ensuing certain statistical ranges
associated with the above formulas. In the current scenario, the ANN predicted outputs
rendered appropriate based on two statistical indicators: (a) correlation coefficient (R) close
to positive unity and (b) the MRE of input and output within the defined range of 1–3%.
In the case the predicted results failed to meet the demarcated criterion, the ANN model
learning rate was varied.

4.3. ANN Prediction Comparison and Discussion

The prediction of performance characteristics of test engine fueled with diesel-HHO
blends using the artificial intelligence approach proved exceptionally valuable. The overall
regression graphs yielded by the ANN application are shown in Figure 9a–d. The results
generated by the model were in line with the statistical criterion defined in the preceding
sections. The correlation coefficients for the three stages of the developed neural network
were found qua 0.99998 for training, 0.99988 for validation. 0.99978 for testing, and 0.99994
for training, testing, and validation as a whole. The correlation coefficients for all stages
were precisely near to +1, which demonstrates the well-matching of the experimental and
ANN-predicted results.

The further analysis was initiated by evaluating the predicted and experiment re-
sults of BSFC and BTE on an individual basis as shown in Figure 10a,b. The correlation
coefficient for BSFC returned a value of 0.99764. The MRE and RMSE accuracy-defining
equations proved solid testimonies of BSFC model-generated results with values of 2.64%
and 0.0122 kg/kWh. The statistical parameters showed that the prediction of the BSFC of a
diesel engine operating on blended fuel using ANN has enough competence and efficiency.
Similarly, the BTE-guessed values were significantly close to experimental values shown
with R, MRE, and RMSE values of 0.99902, 1.91%, and 0.2768%. The BTE ANN model
proved remarkable in the prediction of performance parameters.

The comprehensive comparison of two data sets, experimental and predicted, for
each observation of parameters (BSFC and BTE) is shown in Figure 11a,b. The plotted line
graphs depict the overlapping data points for most of the test runs, signaling the negligible
deviations. From 210 observations, there are only a few sets for which the predicted values
were seen escalating on either extreme, but collectively, they could merely be ignored due
to an inconsequential effect. The in-depth analysis of the obtained statistical parameters
unequivocally advocates that the ANN prediction model is suitable for performance
parameters.
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5. RSM-Based Optimization

Optimization of any process aims at achieving the maximum output by manipulating
the controlled variables. In any optimization technique, numerical constraints are typically
introduced for either maximizing or minimizing the response variables. Several available
optimization techniques could admirably define the optimized parameters within the
provided range. Response surface methodology (RSM) is a well-known statistical technique
employed for the optimization of involved parameters using experimentally extracted
data for solving multiple simultaneous equations. Over the years, the RSM has been seen
extensively used in the engineering sector owing to its accurate prediction of response(s)
influenced by multiple discrete factors. In the current optimization study, the BSFC and
BTE of the test engine were nominated as response variables. The goal was to maximize
BTE and minimize BSFC. The RSM design factors considered for optimization of diesel
engine performance attributes were engine speed (rpm), HHO flow rate (LPM), and load
of the engine (%). Design Expert 11 was used for creating the model and response surfaces.
A multilevel design for a pre-defined experimental strategy was developed using historical
data feature. The model defining parameters, listed in Table 5, were three numeric factors,
seven levels of speed, six levels of HHO blend, and five levels of engine load.

Table 5. Factors and levels.

Factors Units Levels L [1] L [2] L [3] L [4] L [5] L [6] L [7]

Speed Rpm 7 1000 1200 1400 1600 1800 2000 2200
Flow rate LPM 6 0 2 4 6 8 10 —

Load % 5 9 18 27 36 45 — —

5.1. Selection of an Empirical Model

The fit summaries of BSFC and BTE are listed in Tables 6 and 7. Generally, the selection
of the appropriate model is governed by (a) p-value (b) predicted R2 and (c) reasonable
agreement between predicted and adjusted R2 [48]. Based on the mentioned assessing
parameters, the first two models (linear and 2FI) had small values of R2. However, the
quadratic model had the signs of best fit, owing to p < 0.0001 and R2 significantly close
to 1. Recent studies have also shown that the engine combustion process is complex and
therefore could be aptly described with a quadratic model [49]. Thus, referring to the
deduced observations and published literature, the quadratic model was designated for
optimization purposes.
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Table 6. BSFC fit summary.

Source p-Value Adjusted R2 Predicted R2

Linear <0.05 0.7224 0.7135
2FI <0.05 0.7482 0.7316

Quadratic <0.05 0.9939 0.9922

Table 7. BTE fit summary.

Source p-Value Adjusted R2 Predicted R2

Linear <0.05 0.9187 0.9161
2FI <0.05 0.9368 0.9335

Quadratic <0.0001 0.9940 0.9958

5.2. Analysis of Variance and Predicting Equations

Analysis of variance (ANOVA) is a statistical tool used for assessing the statistical
significance of the model, individual terms, and interactions. It provides a detailed under-
standing of the regression model as the interactions between the factors and the responses
can be explicitly comprehended. Tables 8 and 9 provide the ANOVA for the quadratic
models of BSFC and BTE. The model F values of 383.56 and 1298.30 for BSFC and BTE
imply that models are significant. The model terms have been abbreviated as A—Speed,
B—HHO flow rate, and C—load. The p values less than 0.0500 indicate the significance of
model terms. In the case of BSFC, A, B, C, AC, BC, A2, and C2 are significant model terms.
The p values of the terms AB, BC, and C2 indicate the model terms that are insignificant.
The accuracy of the models under consideration has been verified using the diagnostic
predicted vs actual and residual vs run plots as shown in Figure 12a–d. Figure 12a,b
demonstrates that for BSFC and BTE, the RSM predicted values are in close agreement
with the ANN values, indicated by the colored data point falling on the linear inclined line.
Similarly, the deviation of RSM and actual (ANN) values were in the narrow residual range
of [−3.7428, +3.7428], as depicted in Figure 12c,d. The even distribution atop and below
the reference axis, for both the cases, signals the statistical significance of BSFC and BTE
RSM models. The response surfaces of BSFC and BTE variation with engine speed, HHO
percentage, and engine load are shown in Figures 13 and 14 respectively. It is visible that
all the design factors had a significant effect on responses. The dark and light dots on the
response surfaces shows the design points above and below predicted values, respectively.

Table 8. ANOVA for BSFC.

Source Sum of
Squares Df Mean

Square F-Value p-Value

Model 11.51 9 1.28 383.56 <0.0001
A-Speed 1.06 1 1.06 317.29 <0.0001

B-Flow rate 0.0357 1 0.0357 10.71 <0.0001
C-Load 7.75 1 7.75 2324.75 <0.0001

AB 0.0000 1 0.0000 0.0032 0.9551
AC 0.3384 1 0.3384 101.49 <0.0001
BC 0.0156 1 0.0156 4.68 0.0317
A2 0.0606 1 0.0606 18.18 <0.0001
B2 0.0001 1 0.0001 0.0240 0.8771
C2 2.25 1 2.25 674.88 <0.0001
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Table 9. ANOVA for BTE.

Source Sum of
Squares Df Mean

Square F-Value p-Value

Model 15229.95 9 1692.22 1298.30 <0.0001
A-Speed 2724.04 1 2724.04 2089.93 <0.0001

B-Flow rate 110.22 1 110.22 84.56 <0.0001
C-Load 11414.41 1 11414.41 8757.34 <0.0001

AB 19.49 1 19.49 14.95 0.0001
AC 262.83 1 262.83 201.65 <0.0001
BC 9.03 1 9.03 6.93 0.0091
A2 31.18 1 31.18 23.92 <0.0001
B2 0.3481 1 0.3481 0.2671 0.6059
C2 658.42 1 658.42 505.15 <0.0001
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Second-order regression equations relating the input parameters and responses for
estimation of performance are given by coded Equations (8) and (9). The coded alphabets
A, B, and C correspond to the study design factors: speed, HHO flow rate, and load,
respectively. By using the corresponding values of speed, flow rates, and engine load, in
the regression equations, the values of BSFC and BTE could be accurately predicted.

BSFC = 0.3055 + 0.0165 ∗ A − 0.0191 ∗ B − 0.2717 ∗ C + 0.0005 ∗ AB − 0.0852 ∗ AC

+0.0178 ∗ BC + 0.0441 ∗ A2 − 0.0015 ∗ B2 + 0.2475 ∗ C2 (8)

BTE = 23.71 − 5.40 ∗ A + 1.06 ∗ B + 10.43 ∗ C − 0.6690 ∗ AB − 2.37 ∗ AC

+0.4239 ∗ BC + 1 ∗ A2 + 0.1020 ∗ B2 − 4.23 ∗ C2 (9)
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5.3. Optimization Results and Validation

In the current study, objective of RSM was to recognize the engine optimum working
conditions. The speed, flow rate, and load were design factors, and ANN estimated values
of BSFC and BTE were the outputs (responses). The design expert optimization feature
demands optimal constraints to be defined for the factors and responses. Table 10 illustrates
the defined constraints and setup for optimization. The goal was to optimize the engine
with targets of minimizing BSFC and maximizing BTE while keeping the within range
criterion for study factors.

Table 10. Optimization setup.

Factors
Desired

Goal
Lower
Value

Upper
Value

Lower
Weight

Upper
Weight Importance

A: Speed (rpm) Is in range 1000 2200 1 1 3
B: HHO Flow rate (LPM) Is in range 0 10 1 1 3

C: Load (%) Is in range 0 45 1 1 3
BSFC (kg/kWh) Minimum 0.196822 1.27606 1 1 3

BTE (%) Maximum 6.22221 41.9617 1 1 3
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The best operating parameters for engine performance came out to be 1000 rpm, 10 L
per minute flow rate of HHO, and 45% engine load. The performance parameters against
these optimal values of design factors are 0.301 kg/kWh BSFC and 40.939% of BTE. The
composite desirability (D) is a unitless number that lies within the range of zero to one. It
is a measure of favorability to which input defining factors optimize the objectives as a
whole. The closer the value to the 1, the more favorable the optimization. In the current
study, the composite desirability was detected to be 0.971. A value sufficiently close to 1
indicates that the employed RSM models are highly efficient and could be used to predict
the optimum design factors for the efficient performance of the diesel engine.

The RSM-optimized results could be easily validated by conducting the experimental
runs. Therefore, experimental observations of BSFC and BTE were recorded correspond-
ing to optimized values of speed, flow rates, and loads, and the comparison is shown
in Figure 15a,b. The experimental observation returned a value of BSFC 5.64%, less as
compared with an optimized parameter. Similarly, the optimum value for brake thermal
efficiency was 6.15% lower in comparison with experimental observation. With sufficient
agreement between optimized and experimental observations as the basis, the RSM is
viable and practically implementable.
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6. Comparison of ANN and RSM Models

The artificial intelligence and statistically based predicting models of BSFC and BTE
seemingly have alike reliability and efficiency. However, due to the generic association of
methods root task to the same domains, the comparative assessment of the two will be an
ideal approach. The detailed comparison of MRE and RMSE of ANN and RSM models is
shown in Table 11. The statistical comparison discloses that the ANN models of BSFC and
BTE have a better ability to efficiently predict parameters of an engine due to lower MRE
and RMSE. ANN and RSM returned MRE values of 1.91% and 2.26% for BTE and 2.64%
and 2.94% for BSFC, respectively. Similarly, the RMSE given by ANN and RSM for BSFC
were 0.012 and 0.088 kg/kWh, respectively. The comparison vouched for ANN’s efficiency
and reliability as the statistical parameters (MRE and RMSE) of both parameters were less
than its competitor.
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Table 11. ANN and RSM comparison.

Models Parameters MRE% RMSE

ANN
BTE (%) 1.91 0.27

BSFC (kg/kWh) 2.64 0.012

RSM
BTE (%) 2.26 0.41

BSFC (kg/kWh) 2.94 0.088

7. Conclusions

This study evaluated the use of oxyhydrogen gas with diesel at different flow rates in
a CI engine. ANN and RSM tools were collectively used for performance prediction and
optimization. The results could be summarized as:

• 10 LPM HHO with diesel was found to be most fuel efficient among all test fuels.
• HHO addition to the diesel improved BTE for all flow rates. Pure diesel showed the

least BTE among all combinations of fuels.
• The correlation coefficients of training, testing, and validation of the ANN model came

out to be 0.99998, 0.99988, and 0.99978 respectively. Moreover, MRE values were in
the range of 1–3%.

• RSM identified all the study factors as statistically significant owing to p values less
than 0.005.

• Optimum operating conditions for engine were 1000 rpm, 10 LPM HHO, and 45%
loading condition.

• Composite desirability of 0.971 for multi-response optimization indicated the appro-
priate optimization setting.

• The experimental BSFC and BTE differed by 5.64% and 6.15% from RSM-optimized values.
• The ANN model proved better than RSM due to low RMSE and MRE values.

Thus, the addition of HHO to diesel proved highly valuable for improved performance.
The statistical assessment tools (R, MRE, and RMSE) revealed that the performance could
be accurately predicted by ANN and RSM models. Conclusively, the HHO enrichment
to the diesel is desirable for better performance and could be optimized using Artificial
Intelligence and statistical methods.

The authors aim at conducting studies to investigate the effect of HHO with a stepwise
increment beyond 45% loading condition along with the collective and individual ANN
modelling for outputs with different algorithms and training functions.
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36. Uludamar, E.; Tosun, E.; Tüccar, G.; Yıldızhan, Ş.; Çalık, A.; Yıldırım, S.; Serin, H.; Özcanlı, M. Evaluation of vibration
characteristics of a hydroxyl (HHO) gas generator installed diesel engine fuelled with different diesel–biodiesel blends. Int. J.
Hydrog. Energy 2017, 42, 23352–23360. [CrossRef]

37. Masood, M.; Ishrat, M.; Reddy, A. Computational combustion and emission analysis of hydrogen–diesel blends with experimental
verification. Int. J. Hydrog. Energy 2007, 32, 2539–2547. [CrossRef]

38. Uludamar, E. Effect of hydroxy and hydrogen gas addition on diesel engine fuelled with microalgae biodiesel. Int. J. Hydrog.
Energy 2018, 43, 18028–18036. [CrossRef]

39. Dahake, M.; Patil, S.; Patil, S. Effect of hydroxy gas addition on performance and emissions of diesel engine. Int. Res. J. Eng.
Technol. 2016, 3.

40. Sun, Z.-Y.; Liu, F.-S.; Liu, X.-H.; Sun, B.-G.; Sun, D.-W. Research and development of hydrogen fuelled engines in China. Int. J.
Hydrog. Energy 2012, 37, 664–681. [CrossRef]

41. Premkartikkumar, S.; Annamalai, K.; Pradeepkumar, A. Using hydrogen as a fuel in automotive engines–an investigation. Int. J.
Innov. Technol. Res. 2013, 1, 90–93.

42. Ahmed, E.; Usman, M.; Anwar, S.; Ahmad, H.M.; Nasir, M.W.; Malik, M.A.I. Application of ANN to predict performance and
emissions of SI engine using gasoline-methanol blends. Sci. Prog. 2021, 104, 00368504211002345. [CrossRef]

43. Kesgin, U. Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission. Fuel 2004, 83,
885–895. [CrossRef]

44. Çay, Y.; Korkmaz, I.; Çiçek, A.; Kara, F. Prediction of engine performance and exhaust emissions for gasoline and methanol using
artificial neural network. Energy 2013, 50, 177–186. [CrossRef]

45. Cay, Y. Prediction of a gasoline engine performance with artificial neural network. Fuel 2013, 111, 324–331. [CrossRef]
46. Yusaf, T.; Yousif, B.; Elawad, M. Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches. Energy

2011, 36, 4871–4878. [CrossRef]
47. Sayin, C.; Ertunc, H.M.; Hosoz, M.; Kilicaslan, I.; Canakci, M. Performance and exhaust emissions of a gasoline engine using

artificial neural network. Appl. Therm. Eng. 2007, 27, 46–54. [CrossRef]
48. Abdalla, A.N.; Tao, H.; Bagaber, S.A.; Ali, O.M.; Kamil, M.; Ma, X.; Awad, O.I. Prediction of emissions and performance of a

gasoline engine running with fusel oil–gasoline blends using response surface methodology. Fuel 2019, 253, 1–14. [CrossRef]
49. Dey, S.; Reang, N.M.; Das, P.K.; Deb, M. Comparative study using RSM and ANN modelling for performance-emission prediction

of CI engine fuelled with bio-diesohol blends: A fuzzy optimization approach. Fuel 2021, 292, 120356. [CrossRef]

http://doi.org/10.3390/pr8010074
http://doi.org/10.1080/15567036.2019.1638995
http://doi.org/10.26701/ems.321789
http://doi.org/10.1080/15567036.2018.1550540
http://doi.org/10.1016/j.renene.2020.05.158
http://doi.org/10.1016/j.renene.2008.08.008
http://doi.org/10.1016/j.fuel.2019.116922
http://doi.org/10.1016/j.ijhydene.2017.01.192
http://doi.org/10.1016/j.ijhydene.2006.11.008
http://doi.org/10.1016/j.ijhydene.2018.01.075
http://doi.org/10.1016/j.ijhydene.2011.09.114
http://doi.org/10.1177/00368504211002345
http://doi.org/10.1016/j.fuel.2003.10.025
http://doi.org/10.1016/j.energy.2012.10.052
http://doi.org/10.1016/j.fuel.2012.12.040
http://doi.org/10.1016/j.energy.2011.05.032
http://doi.org/10.1016/j.applthermaleng.2006.05.016
http://doi.org/10.1016/j.fuel.2019.04.085
http://doi.org/10.1016/j.fuel.2021.120356

	Introduction 
	Materials and Methods 
	HHO Generator 
	Experimental Methodology and Test Fuels 

	Experimental Results and Discussion 
	Brake Specific Fuel Consumption 
	Brake Thermal Efficiency 

	ANN Application 
	Data Preprocessing 
	ANN Model 
	ANN Prediction Comparison and Discussion 

	RSM-Based Optimization 
	Selection of an Empirical Model 
	Analysis of Variance and Predicting Equations 
	Optimization Results and Validation 

	Comparison of ANN and RSM Models 
	Conclusions 
	References

