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Abstract: The EV penetration in the low voltage residential grids is expected to increase rapidly in
the coming years. It is expected that EV consumers will prefer overnight home charging because of
its convenience and lack of charging infrastructure. The EV battery chargers are nonlinear loads and
likely to increase the current harmonic emission in the distribution network. The imminent increase
of EV load requires upgrading or managing the existing power system to support the additional
charging load. This paper provides the estimation of the current harmonic emission of the EV
charging load at different voltage distortions using the stochastic EV load model. The impact of EV
charging on the distribution transformer is also presented.

Keywords: electric vehicle; harmonics; transformer derating; power quality

1. Introduction

The transport sector is responsible for 24% of the total CO2 emission globally, while
road transportation has the largest share and accountable for 75% of the emission from
transport. The major contributors are passenger and cargo vehicles, with a share of 45.1%
and 29.4% [1]. Fossil oil is the primary energy source by providing nearly 92% of the energy
demand for transportation. However, rising CO2 emissions and unstable oil prices have
paved the way for alternative technologies such as electric vehicles (EV). Using alternative
green energy, the electrification of transport could provide a sustainable solution to address
the greenhouse-gas-emission reduction objectives. The EVs provide zero-emission and a
high energy conversion efficiency in contrast to traditional combustion engines. However,
the rapid high integration of the EVs could pose a severe bottleneck for the existing electric
distribution systems as the EV charging infrastructure is still inadequate. At the same time,
the overnight home charging of EVs can challenge the network capacity. The EV battery
chargers are power electronic-based converters and draw nonlinear currents, thus inject
current harmonics into the power supply system. Even with the improved circuits and
power factor corrections, the harmonic content after the mass adoption of EVs would be
much higher because of the high EV charging current compared to the other domestic or
commercial load.

The uptake of EVs has been increased significantly during the last few years, and more
than seven million electric vehicles are now in use worldwide [2]. The ambitious policies
set by several countries to support the electrification of the transport sector expected to
increase EV deployment in coming years. These policies include incentives to decrease the
high upfront cost and the development of widespread charging infrastructure. As a result,
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the growth in EV stock was nearly 40% in 2019; however, the total global EV stock is still
only less than 1% of all the passenger cars in use. The share of EV in total yearly car sales
is about 2.6%. Due to the favourable government policies in different countries, the EV
uptake is expected to increase to 50 million active units by 2025 and 140 million by the end
of 2030.

Private home chargers are nearly 90% of the total low duty electric vehicle chargers
installed worldwide [3]. The primary reason for their popularity is the cost-effectiveness
and ease of use associated with home chargers. Furthermore, incentives and electricity
prices also support home charging. The majority of the EV customers in large EV markets,
such as Norway, United Kingdom (UK), United States (US), Japan and China, prefer home
charging. It requires no additional infrastructure, and EVs can be charged from the existing
electrical sockets. The public charging infrastructure is still not adequate, while only 4% of
fast EV chargers are installed worldwide by the end of 2019. The ratio of the number of
public chargers to the total number of EVs also shows a slight decline in recent years [4,5].

It is critical to evaluate the ramifications of uncontrolled EV charging on the distribu-
tion network. High penetration of EV could affect the capacity and performance of the
local power supply network. The constraints on the network can be addressed by adding
additional capacity or improve the utilisation of installed capacity. The high EV load may
challenge the network’s reliability by overloading distribution lines and substation during
peak hours [6,7]. Even with abundant electricity generation within the region, the impact
of EV charging may bottleneck the transmission and distribution system as it may not have
enough capacity to handle this additional charging load. The variability of traditional resi-
dential load provides flexibility to the grid. The residential building’s load factor is around
20%, while the aggregated load factor of several houses at the distribution transformer may
be approximately 30%. However, EV charging could follow relatively consistent patterns
as customers would like to charge their vehicle after home arrival. Range anxiety can also
contribute here, and the drivers will prefer to charge their EVs overnight for the next day
trip even when the battery has sufficient charge [8–10].

Large-scale EV charging can impact the distribution networks in terms of high har-
monic distortions, voltage regulation, and transformer overloading. EV batteries require
DC for charging; therefore, power electronic converters are employed for AC to DC con-
version and charging control. These converters present nonlinear load to the distribution
grid as they draw non-sinusoidal currents with high-frequency harmonics. The harmonic
emission of an EV charger depends on the circuit topology of the converter. Although
the modern battery chargers provide low total current harmonic distortion (THDi) with
harmonic content under the limits defined by the relevant standards, the high penetration
of EV may result in large aggregated harmonic currents. It may result in high voltage dis-
tortion that can affect the performance and harmonic emission of the other loads connected
to the network. The voltage and current distortions negatively impact the power grid by
introducing additional losses in the transmission and distribution cables [11]. The perfor-
mance of network components such as transformers will reduce [12]. Electrical appliances
and network protection equipment such as relays could malfunction under the influence of
harmonics [13]. Therefore, to understand the impact of additional EV charging load on the
network, the assessment of harmonic emission is vital for network designers and operators.

This paper provides an assessment of EV harmonic emission in the distribution
network based on a stochastic EV usage model. The EV usage model generates the state of
charge (SOC) and load profiles for the given number of EVs. Monte Carlo approach is used
to estimate the harmonic emission of the EV load and harmonic emission. The impact of
EV charging load on the distribution transformer is also estimated for uncontrolled and
controlled charging scenarios. Section 2 provides an overview of the existing literature
related to EV harmonic emission estimations. The methodology used in this paper is
explained in Section 3. EV usage model is described in Section 4 and EV current harmonic
emission estimations are provided in Section 5. The conclusions are presented in Section 6.
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2. Impact of EV on Harmonic Emission

The impact of EV on the capacity and performance of power system has been widely
discussed in the literature. It was found that EV charging load will likely match the peak
demand hours in the residential grids [14]. Many countries have sufficient generation
capacity to handle additional battery charging load for high EV penetration [15]. However,
the capacity of transmission and distribution is insufficient, especially during peak demand
hours. Load flow analysis is performed to determine the effect of PHEV charging on
the power system losses in [16]. It has been found that for a 30% penetration of PHEV,
the network capacity become insufficient to support the additional charging load. The dis-
tribution lines also need replacement to support the additional charging load while the
voltage deviations are increased up to 10%. In [17], the framework is presented for an
intelligent distribution system capable of handling EV charging that can determine the
charging schedule and grid operating conditions for the next day. However, the number of
EVs required to charge at any particular time is a stochastic process and must be treated
accordingly to formulate the EV load. A comparison of uncontrolled, off-peak and smart
charging of EV is presented in [18]. A 20% EV penetration increases the peak load by
almost 35% for unmanaged charging scenario, while smart charging provides a better
grid utilisation. The authors emphasise that a sufficient generation capacity is not a valid
parameter to assess the capability of the regional grid to handling EV load.

In [19], a charging strategy is proposed to optimise the grid capacity utilisation
in the residential grid. The authors have assumed Poisson distribution to estimate the
number of vehicles that arrive in the evening for charging at residential parking lots.
The normal distribution is used to estimate the state of charge (SOC) of the incoming
vehicles. A charging strategy is proposed by evaluating the number of incoming vehicles
and their SOC level and assigning an appropriate charging schedule to avoid evening
peaks. However, the estimation of incoming vehicles and SOC is somewhat complex and
depends on several factors influenced by the travel patterns. Queuing theory is used to
model the charging demand of PHEV in [20]. A random number of PHEV are selected to
charge on commercial fast-charging stations or in the residential grid during each iteration.
The probability distribution functions are selected based on the data for the charging
demand, and power flow analysis is used to analyse the impact of PHEV charging on the
distribution grid. The study implies the effect of charging current on the distribution grid;
however, high-frequency harmonics are not considered. The impact of EV charging on the
residential distribution network is studied in [21]. The authors have modelled the EV load
by selecting a constant SOC and fixed charging time to simulate the worst-case scenarios.
The impact of current harmonics injected during EV battery charging on the distribution
system is estimated in [22]. Although the current harmonics ranges are not estimated at
different times during the day, the study provides a relatively simple tool to evaluate the
impact of harmonics on transformer ageing.

The aforementioned studies provide valuable insight into EV penetration on LV and
MV grids; although, several simplifications were found while modelling the EV load and
SOC. The EV demand in the residential grid depends on several factors, including state
of charge (SOC) of EV, owner’s decision to charge his vehicle and the time required for
charging. These events are stochastic in nature and are influenced by the driver’s travel
patterns or electricity tariff structure. National surveys are used to gather information
regarding drivers travel pattern and preferences could provide the foundation of the
stochastic modelling of EV load [23].

In [24–26], EV charging strategies are proposed to improve voltage unbalance, net-
work overloading and cost reductions. The controlled and smart charging can improve the
network operation significantly without having an additional impact. However, the practi-
cal implementation of these strategies is not expected anytime sooner, and uncoordinated
charging may be the only mechanism for the time being.
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3. Methodology

The travel patterns are the primary influencing factors to estimate the EV load and
charging time in a distribution grid. Vehicle usage depends on several factors related to
consumer socioeconomic status, where the driving patterns are interrelated to the vehicle
ownership and number of occupants in each household. Many studies have assumed the
random number of vehicles charging at different parking lots in the residential networks.
In fact, the number of EVs present in a residential grid and connected to the grid for
battery charging will be different at distinct times during the day. Several variables will
contribute to the amount of EV load connected to the grid, such as EV arrival time at home,
the number of the trip made during a day, distance travelled during each trip and SOC
after the trips.

The selection criteria to estimate the arrival time for the incoming vehicles for charg-
ing is crucial to evaluate a realistic impact of charging currents in the distribution grid.
Few studies have used queuing theory approach to determine the incoming vehicle for
charging at the parking lots in the residential grid, while the Poisson distributions are
used to estimate the arrival time [20,27]. Since the nature of various trip by EVs could
be different, multiple distributions should be defined to estimate the arrival time of the
EVs. Furthermore, the charging decision of EVs depends on the SOC that must be de-
cided based on the distance travelled and energy consumption by the EV during different
trips. The daily driving distance of vehicles depends on the driver’s routine activities that
create the demand for the trips. Therefore, the destination and travel distance are highly
stochastic, and the researchers most often use the average trip distance to create EV usage
models [28–30]. Travel surveys could provide valuable information in this regard.

The harmonic emission of EVs depends on the charging characteristics that typically
include the battery charger circuit topology, network voltage waveforms, and charging time
of the battery. The measurement of a selective set of EVs on different voltage waveform
may provide a valuable data set because of the identical technology used in the battery
chargers in the same time span.

4. EV Usage Model

An EV usage model is developed to estimate the harmonic emission from EV penetra-
tion in the distribution grid. The model is based on the data extracted from the national
traffic survey (NTS) conducted in Finland. The survey provides data about people mobility
using different modes of transportation. It gathers yearly travel data from 30,000 people
and provides various travel related statistics. The information related to travel utilising
private cars, such as daily distance travelled by individuals, total daily trips, everyday
activities that generate the need for trips, and trip starting times, are used in the model.
The trip of chain approach is employed to evaluate different parameters of each trip using
appropriate probability distributions. A Monte-Carlo simulation is used to simulate the EV
trips based on the most common activities responsible to generate trip demand for a given
number of days. The charging of EV is decided on the SOC level at the end of each trip.
The algorithm of the EV usage model is shown in Figure 1. The details of the EV usage
model are presented in [31].

Trips are generated in response to people’s everyday activities, including work, school,
travel, and leisure. We have selected three major activities for our EV load model. The most
likely trip on weekdays is related to travel to work or school (WS). These drips have very
low variation in terms of timing and distance. The second category of trips is related to
shopping or business (SB) associated activities with significant variation for the trip starting
time and travelled distance. The last category of trips is linked with leisure or vacation (LV).
In contrast, these trips have a significantly high variance for both start-time and travelled
distance and less likely to happen, especially on weekdays.
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Figure 1. EV usage model algorithm.

The probability distribution functions (PDF) of three essential parameters, trip start-
time, trip distance and trip end-time, are defined for different trip categories that provide
the base of the EV load model. During each iteration, the number and type of trips are
selected for each day. In the next step, the trip characteristics such as start time, end time
and distance travelled are estimated from their PDFs. In the last step, battery evaluation is
performed after the end of each trip. The SOC is determined based on the energy consumed
by the vehicle during the trip.

Figure 2a shows the start-time of different trip categories chosen from the NTS survey,
where multiple peaks can be observed. This data is split up into incoming and outgoing
trips, and probability distributions are defined for each travel activity. Figure 2b shows the
outgoing and incoming time distributions for WS trips extracted from the NTS survey data.
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Figure 2. Frequency of trips at different times (a) Data obtained from the survey (b) Probability distribution of outgoing
and incoming trip for WS travel activity [31].

T-location scale distribution is used as it provides a close fit to the incoming and
outgoing time data. The probability distribution function of t-location-scale distribution is
shown by Equation (1).
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Here µ and σ represent the location and scale of the PDF while Γ is the gamma function.
v is the degree of freedom, and its lower values generate heavier tails. As the value of
v increases, t-location-scale distribution approaches a normal distribution. A similar
approach is applied to other trip activities to construct a PDF of the start time and end time
of trips.

The incoming time of a trip depends on the distance travelled and time spent at the
activity for which the trip demand is generated. Duration of leisure and shopping activities
is calculated using Poison distribution, where the average time at the leisure and shopping
activities is selected randomly between 120–180 and 20–60 min, respectively. The following
relation shows the PDF of a Poisson distribution.

f (x) =
λx

x!
e−λ (2)

Here λ shows the variance and e is Euler’s number. The data of average distance
travelled for various trip activities at different times of the day is also taken from the NTS
survey and is shown here in Figure 3. The distance travelled for each trip is estimated by
using log-normal or Poisson distributions. The PDF of a log-normal distribution is shown
by Equation (3).

f (x) =
1

xσ
√

2π
exp(− (ln(x)− µ)2

2σ2 ) (3)

µ and σ in Equation (3) represents the mean and variance of the input data. The NTS
survey provides the data for the number of trips for each activity per day and average trips
per day. This data is used to evaluate the probability of trip as shown in Figure 4.
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Figure 3. Distance frequency at different times during the day (a) Work, school and business related activities (b) Shopping,
visits and leisure related activities.
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5. EV Harmonic Emission Estimation

Accurate evaluation of the EV battery charging impact on the distribution grid requires
understanding of charging characteristics dynamics under different operating modes and
supply voltage variations. It’s a challenging task because several manufacturers are offering
EVs in various sizes and battery capacity. The advancement in power electronics has
led to notable changes in terms of the design and performance of EV battery chargers.
The majority of commercially available EVs are equipped with level 2 chargers and are
charged using slow overnight home charging as public fast-charging infrastructure is
still inadequate [32]. These chargers provide high efficiency over a wide range of supply
voltage variations, including active power factor correction (a-PFC) circuits. Their harmonic
emission is well under the limits provided by the standards, and total current harmonic
distortions is less than 15% [33,34].

A measurement setup has been made to evaluate the current harmonic emissions of
the EV battery charger under various voltage distortions. The setup consists of a 4 kVA
controllable power supply Chroma 61505, and the reference signal is provided by the data
acquisition module from National Instrument (NI). Figure 5 shows the block diagram of
the measurement setup. The voltage distortions are created using a MATLAB program by
providing voltage harmonic magnitudes and phase angles as listed in Table 1.
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Figure 5. Measurement setup block diagram.
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Table 1. Voltage waveform used for EV power quality measurements.

Harmonics Voltage Waveform 1 Voltage Waveform 2 Voltage Waveform 3
RMS (V) Phase (Degree) RMS (V) Phase (Degree) RMS (V) Phase (Degree)

H1 230 - 229.89 0 229.85 0
H3 - - 5.450 0 6.620 0
H5 - - 3.827 180 4.730 180
H7 - - 2.040 0 1.440 180
H9 - - 0.565 180 - -
H11 - - 0.308 180 - -
H13 - - 0.557 0 - -
H15 - - 0.375 180 - -
H17 - - 0.050 0 - -
H19 - - 0.182 0 - -

The power supply is controlled by a reference signal using the following relation.

VR =
Vo

Vrange
×Vcoe f (4)

The values of Vrange and Vcoe f is 300 V and 7.072, respectively. Vo is generated at a
sampling frequency of 100 kHz using the following equation.

Vo =
n

∑
i=1

√
2 × vh sin(2π fhts + αh) (5)

where, vh is the RMS value of harmonic magnitude and fh is its frequency. αh represents
the phase difference of the harmonic from the fundamental component of the voltage
waveform. The sampling interval ts is calculated using the sampling frequency fs as shown
by the following relation

ts =
1
fs

=
1

N/T
(6)

Here, T is the time duration of the generated waveform and N is the number of
samples in that interval. A-Eberle PQ box 200, capable of providing 1-second data averaged
over 200 ms recordings, is used to record the current harmonics magnitude and phase
angles. The detail of the measurements setup is provided in [35]. Eleven different EVs
including both battery-powered electric vehicle (BEV) and plug-in hybrid electric vehicle
(PHEV) are measured on the voltage waveforms defined in Table 1. The characteristics of
these vehicles are summarised in Table 2.

Table 2. Summary of the measured EVs.

Number Type Battery Capacity (kWh) Driving Range (km) THDi %

EV 1 BEV 22 170 4.80
EV 2 BEV 16.8 100 7.18
EV 3 BEV 31 160 2.87
EV 4 BEV 40 220 11.66
EV 5 BEV 14.5 171 8.39
EV 6 PHEV 11.2 50 3.10
EV 7 BEV 18.7 165 2.43
EV 8 PHEV 9.4 36 2.47
EV 9 BEV 17.6 145 4.33
EV 10 BEV 58 335 7.07
EV 11 PHEV 8.8 26 2.35

The impact of voltage waveform distortions on the individual harmonics is presented
in Figure 6. The vectors of the 3rd harmonic current show that the spread will change
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slightly for the flat top voltage waveform while the harmonic spread is nearly identical for
sinusoidal and pointy top voltage waveforms. The harmonic spread for the 5th harmonic
on pointy top voltage waveform is almost shifted 180 degrees in contrast to sinusoidal or
flat top voltage waveform for the majority of the EVs. On the flat top voltage waveform,
the 5th harmonic current is slightly increased in magnitude; however, the phase angles are
almost the same as on the sinusoidal voltage waveform. The 7th harmonic current spread
on the pointy top voltage waveform shows a significant change in terms of magnitude in
comparison to sinusoidal or flat top voltage profiles. On the other hand, the 9th harmonic
shows a wider spread for different EVs, but the change in magnitude or phase is not very
high for different voltage waveforms.

3rd Harmonic 5th Harmonic

7th harmonic 9th harmonic

3rd Harmonic 5th Harmonic

7th harmonic 9th harmonic

Figure 6. Current harmonic emission of individual EVs.
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To observe the impact of the large scale EV integration on the current harmonic
emission in the low voltage distribution network, EV load model is used to simulate
50 EVs for 100 days. The EVs are assigned randomly from the list provided in Table 2.
The EV load model is used to simulate the travel activities to generate charging profiles
based on the distance travelled during each trip. For each EV, the outgoing and incoming
times of each trip during a day is estimated. The final destination is assumed to be the
home. Based on the distance travelled during each trip, the state of charge of the battery
is estimated. The decision of charging depends upon the state of SOC. While the EV is
at home and does not have sufficient SOC to make a new trip, the EV charging will take
place. The simulation is performed for weekdays only, therefore, the EV charging takes
place mostly during the evening time. Figure 7 shows the mean and 90th percentile values
of total RMS current for different voltage distortions. The bold lines indicate the mean
values while the dotted line shows the 90th percentile value of the RMS current. The RMS
values does not show a significant variation for different voltage waveforms and only
slight variation can be observed.
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Figure 7. RMS current of 50 electric vehicles at different voltage distortions (a) Full day (b) Evening peak.

The mean and 90th percentile values of 3rd harmonic current drawn over 100 days
for 50 EVs is shown in Figure 8a. No significant variation in the 3rd harmonic current can
be observed between sinusoidal and pointed top voltage waveforms, however, the values
on flat top voltage waveforms are significantly less for both mean and 90th percentile
values. The mean value increases to its maximum value of 6.9 A around 21:30. The mean
values on flat top voltage waveform at the same time is only 4.60 A which is 33.3% less.
The 5th harmonic values are more for flat top voltage waveform as shown in Figure 8b.
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On sinusoidal voltage waveform, the 5th harmonic current has lowest values during the
24 h. The values slightly increase on pointed top voltage waveform shown by black bold
line in Figure 8b. The mean and 90th percentile values of the 5th harmonics crosses 4.4 and
5.6 A, respectively, during the evening peak. On the sinusoidal and pointed top voltage
waveforms, the mean value increases to a maximum value of 1.9 and 2.8 A only.
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Figure 8. Estimated harmonic emission of 50 EVs over 100 days (a) 3rd harmonic (b) 5th harmonic (c) 7th harmonic (d)
9th harmonic.

The 7th harmonic emission on pointed top voltage waveform is very high in compari-
son to sinusoidal and flat top voltage waveforms as shown in Figure 8c. The mean value
exceeds 4 A for pointed top voltage waveform during the evening peak while the mean
values at sinusoidal and flat top voltage waveforms are around 1 A. The values for the 9th
harmonic current are more on the flat top voltage waveform with the mean value crossing
1 A during the evening time. For sinusoidal and pointed top voltage waveform, the mean
values of the 9th harmonic are quite close during the whole day with the maximum value
of 0.83 A. Figure 8d shows the mean and 90 percentile values of the 9th harmonic current
on different voltage distortions.

6. EV Charging Impact of Distribution Transformer

The impact of EV charging on the distribution network includes the increase in load
and voltage distortions. To assess this impact, the relation between the charging start time
and the evening peak should be taken into account. Evening peak load depends on the
consumer behaviour of using electricity mainly influenced by regional electricity pricing
mechanisms. The primary impact of additional EV load is the heating and overloading
of existing distribution transformers. The additional losses may occur because of the skin
and proximity effects in the windings and stray losses due to leakage flux. Consequently,
the hot spot temperature rise will reduce the operating life span of the transformer and
increase the probability of insulation failure. Additionally, the cable efficiency will also be
reduced because of the high losses resulting from skin and proximity effects [36].

To evaluate the impact of EV integration in the existing distribution network, a test case
has been presented in this section based on the real-time measurement of the distribution
grid and EV usage model. A distribution grid in Finland is measured for several days
in winter to record current harmonics at the 620 kVA distribution transformer connected
in Delta-Wye (Dy) with LV side grounded. In Figure 9, the black line shows the mean
value of the existing load at the transformer for approximately 80 houses without any EV
usage. The heating load is already shifted to 20:00 to reduce peak loads and take advantage
of cheaper electricity tariffs. The heating load scheduling is performed on the user end
through time-based switching.

Two different scenarios are simulated using the EV load model to estimate the addi-
tional load on the transformer. In the first case, 80% of uncontrolled EV charging load is
simulated for 100 days using Monte Carlo simulations. The current harmonics estimated
from the simulated EV load are aggregated with the measured current harmonic data
at the distribution transformer. The mean value of transformer load is calculated and is
shown by the red line in Figure 9. The uncontrolled charging has significantly increased
the transformer load by approximately 18% and 25% at 16:00 and 18:00, respectively.



Sustainability 2021, 13, 8551 13 of 17

The transformer load significantly increased after 20:00 because of the shifted heating load
in winters. The EV charging has caused additionally 15% and 7% transformer loading at
approximately 20:00 and 23:30, respectively. The peak loading of the transformer is nearly
89% around 23:30.
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Figure 9. Mean value of distribution transformer load at different times of the day.

In the second case, controlled EV charging is implemented and simulated using the
EV load model. In the second case, controlled EV charging is implemented and simulated
using the EV load model. Several controlled charging methodologies are available in
the literature that provides smart charging algorithms to maximize utility or consumers
benefits [37,38]. However, these schemes require additional infrastructures such as data
connections and smart meters. These algorithms may also cause inconvenience to the
customers and limited practical implementations [21]. We have used controlled charging
based on Time-of-Use (TOU) pricing and simulated its impact on the distribution grid using
the EV load model. The TOU based controlled charging allow networks to reduce peak
load by selecting appropriate peak and off-peak energy prices and required no additional
infrastructure [39,40]. It may provide better grid utilization, especially during summertime
when the heating load is not present; however, the customers may also take advantage of
low price electricity during off-peak hours for their heating load during winter times.

The impact of controlled EV charging is estimated using the EV usage model. The yel-
low line in Figure 9 shows the transformer loading for controlled charging scenarios.
All the EVs are now forced to charge from 20:00 on wards, causing additional strain on
the transformer. The transformer load has increased almost 53% at 20:00 and pushing the
transformer load to nearly 95%. Furthermore, the peak load is increased to 96% because
of the additional 16% EV load at 23:30. The controlled charging for EVs during winters is
causing poor load management in contrast to uncontrolled charging because of the shifting
of heating load during off-peak hours. The EVs cannot be scheduled between 04:00–08:00
to avoid heating load as the time span is not enough to recharge the batteries fully.

The uncontrolled charging provides better transformer utilisation for the distribution
grid under consideration. It means that the time-based tariffs may cause overloading of
the transformer as both EV and heating load will take advantage. However, when the
heating load is minimal in the summertime, the time-based tariff and controlled charging
will improve the transformer utilisation.

The hot-spot temperature of the distribution transformer is estimated using the proce-
dure described in IEEE standard C57.110 [41]. The values of current harmonics estimated
using the EV load model for 80% EV penetration along with the measured values of current
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harmonics at the distribution transformer are used to calculate the hot spot conductor
temperature of the 620 kVA oil-immersed transformer using the Equation (7).

θR = θR(rated) ×
[

I2
pu × (1 + Lh × Pe(rated)

1 + Pe(rated)

]0.8

(7)

Here θR and θR(rated) are the hottest spot conductor temperature rise under operating
and rated conditions in degree Celsius (◦C). Pe(rated) is the per unit eddy current loss in the
transformer under rated conditions. Lh is the loss factor due to harmonic currents in the
transformer winding and calculated by using Equation (8).

Lh =
∑hmax

h=1

[
Ih
I1

]2
× h0.8

∑hmax
h=1

[
Ih
I1

]2 (8)

Here h is the harmonic number and hmax is the highest harmonic order under consider-
ation. I and Ih are the RMS load current and RMS harmonic current, respectively. Figure 10
shows the temperature rise of the hottest spot conductor over ambient temperature for
three scenarios. In the first case, the calculation is made only for the mean values of the
current harmonic measurement data at the distribution transformer. The black line shows
the temperature in the range of 26–52 ◦C between 00:00 to 20:00 without any EV load.
The temperature rises to the maximum value of 77 ◦C during the time period of 22:00 and
24:00 because of the shifted heating load.
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Figure 10. Transformer hottest spot conductor temperature rise above ambient conditions.

In the second scenario, the temperature rise for the hottest spot conductor is calculated
when an additional uncontrolled EV charging load is applied. It has increased the tempera-
ture range to almost 60 ◦C between 00:00 to 20:00, while the maximum temperature is now
almost 93 ◦C at 22:30. It means that uncontrolled charging has increased the maximum
temperature rise of the transformer by nearly 16 ◦C. In the controlled EV charging scenario,
the maximum temperature of the transformer has increased to more than 100 ◦C, which
is 8 ◦C more when uncontrolled EV charging is employed. The consistent high hot spot
conductor temperature for more than 4 h a day will significantly reduce the transformer
life or cause insulation failure.

The results show that EV controlled charging based on TOU electricity tariff to shift
the EV load during off-peak hours will not improve the transformer utilisation for high EV
penetration in the distribution grids during winter times. A more complex load shifting
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procedure is required where heating load and EV charging could be adjusted to improve
the transformer utilisation and decrease the hot spot conductor temperature. However,
it will require additional infrastructure to support the implementation smart controlled
charging schemes. Furthermore, the impact of smart controlled charging algorithms on
the EV customers is also unknown at this point. The results also show the validation and
capability of our EV load model.

7. Conclusions

A method is proposed in this paper to estimate the current harmonic emission of
electric vehicles. The model is based on the EV usage model developed to generate the SOC
profiles of individual vehicles. Furthermore, probability distributions functions of various
parameters such as outgoing time, distance travelled, and incoming time for different types
of trips are calculated based on the data from a travel survey. Various electric vehicles are
measured over different voltage waveform to record their current harmonic magnitude
and phase angles. Moreover, a Monte Carlo simulation is used to estimate the harmonic
emission of fifty EV over one hundred days to estimate their aggregated harmonic emission.
The results show that EV harmonic emission also depends on the supply voltage harmonics,
which may be affected by various nonlinear loads present in the distribution grid.

The impact of EV integration on the distribution transformer is also evaluated. The cur-
rent harmonic emission at a distribution transformer, supplying power to approximately
80 households, is measured during winters. Monte-Carlo simulation is used to aggregate
the estimated 80% EV charging load to the existing load at the distribution transformer for
hundred days. The heating load in the measured distribution grid is shifted because of the
time-based electricity tariffs. The EV charging has increased the late-night peak load more
in contrast to the uncontrolled EV charging in winters because of the shifted heating load.
The hottest spot conductor temperature of the transformer has risen significantly during
EV charging. It indicates that TOU controlled charging may not provide the solution to
improve transformer utilisation in winters, and smart controlled charging algorithms may
be the only solution for the network providers to accommodate additional EV load.
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