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Abstract: In order to reduce the energy consumption of furnaces and save costs in the product
delivery time, the focus of this paper is to discuss the uncertainty of demand in the rolling horizon and
to globally optimize the sustainability of the production in the aluminum furnace hot rolling section in
environmental and economic dimensions. First, the triples α/β/γ are used to describe the production
scheduling in the aluminum furnace hot rolling section as the scheduling of flexible flow shop,
satisfied to constraints of demand uncertainty, operation logic, operation time, capacity and demand,
objectives of minimizing the residence time of the ingot in the furnace and minimizing the makespan.
Second, on the basis of describing the uncertainty of demand in rolling horizon with the scenario
tree, a multi-objective mixed integer linear programming (MILP) optimization model for sustainable
production in the aluminum furnace hot rolling section is formulated. Finally, an aluminum alloy
manufacturer is taken as an example to illustrate the proposed model. The computational results
show that when the objective weight combination takes the value of α= 0.7, β= 0.3, the sustainability
indicators of the environmental and economic dimensions can be optimized to the maximum extent
possible at the same time. Increasingly, managerial suggestions associated with the trade-off between
environmental and economic dimensions are presented. Scheduling in the rolling horizon can
optimize the production process of the aluminum furnace hot rolling section globally, indicating that
it is more conducive to the sustainable development of the environment and economic dimensions
than scheduling in a single decision time period.

Keywords: sustainability; uncertain demand; scenario tree; production scheduling; MILP

1. Introduction

As an important part of sustainable development, reasonable manufacturing oper-
ations scheduling is conducive to reducing energy consumption and saving production
costs. It is a topic that has attracted more and more attention from practitioners to academia
in recent years [1]. According to reports, and based on the data provided by the China
National Bureau of Statistics [2], since 2000, the total energy consumption has been increas-
ing steadily and reached 4,719,251,500 tons of standard coal in 2018, including the total
industrial energy consumption of 311,151 million tons of standard coal, which accounts
for 66% of the energy consumption in all industries. Meanwhile, the literature [3] pro-
posed that 90% of energy consumption and 84% of CO2 emission in industrial production
are attributed to manufacturing activities. Therefore, optimizing industrial production
scheduling plays an important role in sustainable development.

Hot rolling is a high energy-consuming process in industrial production (i.e., steel,
aluminum and copper), which is closely related to product quality. More and more scholars
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are beginning to pay attention to the huge potential of the rolling process in energy saving
and the reduction of greenhouse gas emissions [4]. The sustainable scheduling of the
production in hot rolling has attracted significant research attention in both research and
practice [5–7]. The amount of aluminum alloy used by industry is second only to steel,
and its economic aspects in the production process due to high energy consumption and
costs have also driven broad attention to this research field [8,9]. The heating procedure
is followed by the hot rolling procedure in the aluminum hot rolling process. The energy
consumption of furnaces accounts for about 60–70% of the total energy consumption of
the entire hot rolling production process. As the main energy-consuming equipment, a
furnace consumes a lot of energy. In addition, the aluminum furnace hot rolling section
includes both heating and hot rolling processes and multiple kinds of equipment. Low
utilization of equipment may lead to an increase in the total processing time, and enterprises
cannot deliver products within the stipulated time. To sum up, in order to reduce the
energy consumption of furnaces, save costs in the product delivery time and promote the
sustainable development of the environmental and economic dimensions, the optimization
of the production process in the aluminum furnace heat rolling section has become the
current challenge and opportunity faced.

The sustainability of the production in the aluminum furnace hot rolling section is
often hindered in two ways. On the one hand, according to the views of the literature [10],
since there is no buffer zone between the furnace and the hot rolling mill, the ingots that
have finished heating have to be kept in the furnace until the hot rolling mill is available,
or the hot rolling mill has to be idle until the heating of the ingots is finished. Unreasonable
scheduling of the production in the aluminum furnace hot rolling section is likely to
cause such issues as waste of energy in the furnace and low utilization rate of equipment.
On the other hand, due to the influence of seasonal changes and market fluctuations
and other factors, the demand for products also faces uncertainties [11,12], which will
cause dynamic changes in the production environment, resulting in the original optimal
sustainable scheduling plan becoming non-optimal or even infeasible. In addition, from
the perspective of long-term, multiple-decision time periods (rolling horizon), it is not
possible to achieve global optimization of sustainable development by only considering
the current demand, which is also a view agreed with in the literature [13,14]. Therefore, in
order to alleviate the above-mentioned limitations in sustainable development, the need for
the sustainable scheduling of the production in the aluminum furnace hot rolling section
with uncertain demand is pressing.

In recent years, although the production scheduling in hot rolling has been a hot
topic in academic and practical circles, the production scheduling in the aluminum furnace
hot rolling section based uncertain environments is still in its infancy. The results come
from the following aspects. Firstly, to tackle the scheduling problem in the furnace hot
rolling section, most research concentrates on the iron and steel industry [10,15–27], and the
aluminum industry is hardly considered in the literature [28]. Even if the aluminum and
steel industries have similar production processes, which also have different characteristics,
the two types of production cannot be treated as the same. Secondly, a few scholars such
as Tang and Yang [19] and Parsunkin et al. [20] studied the production scheduling in
the uncertain environments of the furnace hot rolling section, but they had only made
discussions on the uncertain factors (excluding demand) in a single decision time period.
Therefore, how to consider the uncertainty of demand in the rolling horizon and realize the
global optimization regarding the production in the furnace hot rolling section, still remains
to be an interesting and promising topic. Thirdly, researchers focus on such methods as
robust optimization [29,30], machine learning [31–35], deep learning [36–38] and fuzzy
planning [39] to describe uncertain factors in the production scheduling of hot rolling.
However, due to the intrinsic characteristics of the methods themselves, they are not
suitable for describing the uncertainty of demand in rolling horizon. The literature [40,41]
delineated that a scenario tree is an effective way to describe the uncertain factors in the
rolling horizon, and it has been widely used in other process system engineering [42,43].
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Fourthly, the popular multi-objective optimization scheduling for the production in the
hot rolling includes sustainable indicators such as environmental, economic and social
dimensions [44–54], but only a few scholars have given thought to the sustainability of
the production regarding the furnace hot rolling section in both the environmental and
economic dimensions [10,18], which is not applicable to this paper, and further research is
needed regarding how to determine the multi-objective [55–57] optimization scheduling
model of environmental and economic dimensions according to the characteristics of
specific problems.

In this context, this paper focuses on the uncertainty of demand in rolling horizon
and is committed to the global optimization of the sustainability of the production in the
aluminum furnace hot rolling section in the environmental and economic dimensions. First,
the scenario tree is used to accurately describe the uncertainty of demand in the rolling
horizon, and then a multi-objective MILP optimization model for the production in the
aluminum furnace hot rolling section is established with demand in various scenarios as
the known input parameter, taking into consideration of the sustainability indicators of the
environmental and economic dimensions, to achieve the ultimate objectives of reducing
the furnace energy consumption and save costs of product delivery time.

The contributions of this paper manifest the following aspects. Firstly, differing from
the previous production scheduling of furnace hot rolling section, which focused on the
iron and steel industry in a deterministic production environment with optimizing the
furnace hot rolling section process in a single decision time period. This paper focuses
on the uncertainty of demand in the rolling horizon in the aluminum industry, optimizes
the production in the furnace hot rolling section globally and is devoted to solving a
novel problem of sustainable scheduling in the aluminum furnace hot rolling section
with uncertain demand. Secondly, the scenario tree method is employed to describe
the uncertainty of demand in rolling horizon. To the best of our knowledge, this is
the first time that the scenario tree method has been applied to describe the production
in the furnace hot rolling section, which can appropriately and accurately predict the
value and probability of demand under different production scenarios. Thirdly, a multi-
objective MILP optimization model for sustainable production in the aluminum furnace
hot rolling section is established by using the continuous time representation method, with
the sustainability of the environmental dimension measured by minimizing the residence
time of the ingot in the furnace and the sustainability of the economic dimension measured
by minimizing the makespan.

The rest of this paper is organized as follows: The following section describes the
related works on this topic. Section 3 uses a triple α/β/γ to present the problem descrip-
tion in detail. In Section 4, on the basis of describing the uncertain demand in rolling
horizon with the scenario tree, a multi-objective MILP optimization model for sustainable
scheduling of the production in the aluminum furnace hot rolling section is formulated.
Section 5 uses a case study from an aluminum alloy manufacturer to illustrate the proposed
model. Finally, the implication of the findings and future directions are concluded.

2. Literature Review

In recent years, the production optimization in the aluminum industry has attracted
some researchers’ attention, and some research has been done in the production scheduling
of aluminum casting [58,59] and aluminum electrolytic cell [60,61]. However, the research
regarding the production scheduling in aluminum hot rolling is still in its infancy, and
bounded literature can be found [8,9,28,36,51,52]. The aluminum industry is an important
component of the metallurgical industry. In contrast, the production scheduling of hot
rolling in the metallurgical industry and that of aluminum hot rolling has a high correlation,
which is favored by many scholars. Therefore, in this paper, based the literature on the
production scheduling in hot rolling concerning the metallurgical industry in the past 10
years, the research progress is sorted into three aspects, including the production scheduling
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in the furnace hot rolling section, uncertainty description and multi-objective optimization
scheduling. Then the implications for research are found.

Firstly, a significant issue of this research is the production scheduling in the furnace
hot rolling section. Heating and hot rolling are important processes in the metallurgical
industry, and extensive research attention has been devoted to the production scheduling
in the furnace hot rolling section. Tang and Wang [15] discussed a multistage production
scheduling problem from the integrated hot rolling production in the iron and steel in-
dustry and formulated this problem as a mixed integer linear programming model. Xu
et al. [16] presented a generic model formulation for multi-stage batch schedule coordina-
tion problems in order to reduce the storage time of the slabs. Chakravarty et al. [17] and
Jiang et al. [18] devoted to reducing the fuel consumption in the production of furnace hot
rolling process in iron and steel industry. Tang and Yang [19] studied the uncertainty of
steel slab temperature control of the reheating furnace process and employed the support
vector machine to establish a nonlinear predictive model based on the real production
data. Parsunkin et al. [20] forecasted the time of charging billets into a furnace to tackle the
problem of energy-saving optimal control of continuous cast hot rolling process in the iron
and steel industry. Xia et al. [21] addressed the production scheduling problem of furnace
hot rolling section in the iron and steel industry with minimizing temperature deviation of
slab, energy consumption and oxidation loss. Li and Tian [22] and Li et al. [23] formulated
the production scheduling problem of the furnace hot rolling section in the iron and steel
industry as a mixed integer linear programming model. Tan et al. [24] established nonlinear
mathematical models for a continuous casting furnace hot rolling production scheduling
problem in the iron and steel industry with the objectives of minimizing energy waste
and energy requirement. Peng et al. [25] considered deducing the heating energy and the
rolling energy during modeling in the iron and steel industry. Wang et al. [26] formulated
an integrated scheduling problem for steelmaking continuous casting hot rolling processes
as an integrated two-stage mathematical programming model. Ding et al. [27] presented
a multi-objective optimization method for furnace temperature setting so as to obtain a
reasonable heating process temperature of a slab in the furnace. De Ladurantaye et al. [28]
aimed at minimizing the idle time on the mill and penalties for soft constraint violations
related to production quality and studied the production scheduling of furnace hot rolling
section in the aluminum industry.

Secondly, uncertainty description is another important stream in this paper. It is
found that uncertain factors can affect the feasibility and optimization of decision-making
schemes, and how to describe the uncertain factors has become a hot topic in the metallurgi-
cal industry [62]. At present, researchers mainly use methods such as robust optimization,
machine learning (ML), deep learning and fuzzy planning to describe the uncertain factors
such as processing time and rolling force. For the robust optimization method, Kong
et al. [29] and Zhang et al. [30] established a scheduling model for steel continuous casting
hot rolling production and a scheduling model for steel hot rolling production, respectively,
considering the uncertain processing time of the product in the hot rolling process. For ma-
chine learning methods, Lohmar et al. [31] and Zhang et al. [32] used nonlinear regression
methods to determine the parameters of the model and obtained analytical expressions for
steel hot rolling force prediction. Liu et al. [33] and Chen et al. [34] performed numerical
simulations with the mathematical models created to predict the separation force of the
rolls and grain size respectively, which provided valuable guidance for the optimization of
steel rolling process. Cao et al. [35] formulated a model for work roll wear prediction, a hot
roll profile model, and a three-dimensional finite element model of the roll system and strip
steel with MATLAB and ABAQUS software. For deep learning methods, Hu et al. [36] and
Bagheripoor and Bisadi [37] created rolling force prediction models with adaptive neural
networks and artificial neural networks, respectively, based on the classification systems in
the aluminum and steel industries. Wang et al. [38] formulated a model for the prediction
of the bending force of hot-rolled strip steel using an artificial neural network optimized by
the genetic algorithm. For the fuzzy planning method, Wang et al. [39] made a description
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of fuzzy logic considering the uncertainty of the arrival time of the workpiece, the heating
value of the gas and the processing time and the delivery date in steel hot rolling.

Thirdly, this paper reviews the literature on multi-objective optimization scheduling.
It can be found that the managers of manufacturing enterprises have begun to pay attention
to indicators in environmental, economic and social dimensions [63], and multi-objective
optimization scheduling was a very popular stream in the metallurgical industry. Pan
et al. [44] and Chen et al. [45] decomposed steel hot rolling scheduling into two sub-
problems and formulated a mixed-integer linear programming model and a mixed-integer
nonlinear programming model, respectively, for the two sub-problems. Jia et al. [46,47]
described the steel hot rolling batch scheduling as multi-objective vehicle routing and
adopted a solution model using a hierarchical optimization algorithm based on decom-
position and a multi-objective optimization algorithm based on Pareto advantages. Liu
et al. [48] formulated a multi-objective traveling salesman problem model for steel hot
rolling production scheduling with the objective of the minimum rolling unit plan, process
specification and minimum power consumption per ton of steel. Qi et al. [49] formulated a
mathematical model for the optimization of steel finishing rolling procedure with relatively
equal rolling power and better slab flatness as the objective function. Li et al. [50] proposed
a multi-objective optimization model for draft scheduling of steel hot strip mill aiming
at minimizing rolling power, rolling force ratio distribution and good strip shape. Jing
et al. [51] and Che et al. [52] showed a rolling schedule model based on the slippage factor to
equal power margin and prevent the slip phenomenon. Tan et al. [53] studied the schedul-
ing of steel hot rolling based on time-of-use electricity pricing, in which the objective is to
minimize electricity costs while considering penalties caused by jumps between adjacent
slabs. Zhang et al. [54] formulated a mixed-integer nonlinear programming model aiming
at minimizing the number of rolling turns and the average thickness change of adjacent
slats and proposed a hybrid variable neighborhood search algorithm for a solution.

In summary, Table 1 summarizes the related literature to the production scheduling
in the furnace hot rolling section from various perspectives. The column of “Process”
represents the technical processes, including (1) furnace; (2) hot rolling; (3) furnace hot
rolling; (4) multi-stage process including the furnace hot rolling section. The column
of “Period” indicates the decision time periods considered in the model, including (1) a
single decision time period; (2) the rolling horizon. The column of “Obj.” indicates a
single or multiple decision objective(s) that the model contains. The column of “Main
obj.” represents the objective function of the model, which can be (1) environment (such as
energy consumption, etc.); (2) economy (such as cost, etc.); (3) society (such as delivery time,
etc.); (4) Miscellaneous (such as roll wear, etc.). The column of “Model” indicates the type
of mathematical model, including (1) non-linear; (2) linear; (3) integer; (4) mixed-integer;
(5) mixed-integer non-linear.

The following conclusions can be summarized:
(1) To the best of our knowledge, the existing studies focus on the production schedul-

ing of furnace hot rolling section in the iron and steel industry [10,15–27]. A few scholars
such as De Ladurantaye et al. [28] discussed the production scheduling of furnace hot
rolling section in the aluminum industry, but this research field has received rather limited
attention in the scientific literature. Similar to the iron and steel industry, the production
process of the furnace hot rolling section in the aluminum industry also includes heating
with the furnace, hot rolling and hot continuous rolling production links, however, there
are differences between the two processes in the processing path, the rules of the slabs
entering and exiting the furnace and the type of furnace used, and the above types of
production cannot be treated as the same. Therefore, it is necessary to make a separate
study according to the production process and characteristics in the aluminum furnace hot
rolling section.
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Table 1. Literature Review of the Production Scheduling in the Furnace Hot Rolling Section.

Reference Year
Problem Uncertainty Method Mathematical Model

Industry Process Period Uncertain
Factors Method Obj. Main

Obj. Model

Tang and Wang [10] 2010 Steel 3 1 - - Multi 1, 2 3
Tang and Wang [15] 2011 Steel 4 1 - - Single 2 4

Xu et al. [16] 2012 Steel 4 1 - - Single 4 4
Chakravarty et al. [17] 2013 Steel 3 1 - - Single 1 2

Jiang et al. [18] 2013 Steel 3 1 - - Multi 1, 2 5
Tang and Yang [19] 2014 Steel 1 1 Temperature ML Single 1 1
Parsunkin et al. [20] 2015 Steel 3 1 Time ML Single 1 1

Xia et al. [21] 2016 Steel 3 2 - - Multi 1, 4 1
Li and Tian [22] 2018 Steel 3 1 - - Multi 1, 4 4

Li et al. [23] 2019 Steel 3 1 - - Single 2 4
Tan et al. [24] 2019 Steel 4 1 - - Multi 1, 1 1, 4

Peng et al. [25] 2020 Steel 3 1 - - Multi 1, 1 1
Wang et al. [26] 2020 Steel 4 1 - - Single 1 2, 3, 4
Ding et al. [27] 2021 Steel 1 1 - - Single 1 1

De Ladurantaye et al. [28] 2007 Alu 3 1 - - Multi 2, 4 5
This paper - Alu 3 2 Demand Scenario tree Multi 1, 2 4

(2) The production scheduling in the furnace hot rolling section based uncertain
environments is still in its infancy. Tang and Yang [19] and Parsunkin et al. [20] used
machine learning to predict the uncertainty of the slab temperature and processing time,
focused on optimizing the furnace hot rolling process in a single decision time period. In
contrast, how to consider the uncertainty of demand in rolling horizon and realize the
global optimization in the furnace hot rolling section is the focus of this paper.

(3) At present, researchers mainly use methods such as robust optimization [29,30],
machine learning [31–35], deep learning [36–38] and fuzzy planning [39] to describe the
uncertain factors in hot rolling production. Unfortunately, the existing methods are not
suitable for describing the uncertainty of demand in the production of the aluminum
furnace hot rolling section. Robust optimization is suitable for situations where demand
is unpredictable, but in practice, historical demand data may be used for prediction.
Machine learning and deep learning can predict a value of demand and are suitable for
finding a sustainable production scheduling plan in a single decision time period, but it is
difficult to achieve the objectives in the rolling horizon. Fuzzy planning selects the fuzzy
interval of demand, and the description may be inaccurate. In recent years, the scenario
tree [40,41] received more attention from process system engineering researchers [42,43] can
accurately predict the uncertainty in rolling horizon and obtain the values and probabilities
in different production scenarios, which is suitable to describe demand in the production
of the aluminum furnace hot rolling section.

(4) The multi-objective optimization scheduling in hot rolling as a hot subject is
being debated at present [44–54], but only Tang and Wang [10] and Jiang et al. [18] have
considered the sustainability of production regarding the furnace hot rolling section in
both the environmental and economic dimensions. This paper is unique in a way that it
creates a multi-objective [55–57] MILP optimization scheduling model for the sustainable
production of the aluminum furnace hot rolling section, with the environmental dimension
measured by minimizing the residence time of the ingot in the furnace, and the economic
dimension measured by minimizing the makespan.

3. Problem Description

This paper uses a triple α/β/γ to describe the sustainable scheduling of the production
in the aluminum furnace hot rolling section with uncertain demand. The α field describes
the machine environment, explaining the production process and characteristics of the
aluminum furnace hot rolling section. The β field describes the processing characteristics
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and constraints, including the characteristics of demand uncertainty, operation logic,
operation time, capacity and demand constraints. The γ field describes the scheduling
objectives of minimizing the residence time of the ingot in the furnace and minimizing
the makespan.

Machine environment. The production in the aluminum furnace hot rolling section
is closely related to product quality. Heating and hot rolling are key procedures in the
aluminum production process. They are two serial stations; each station has one or more
furnaces and hot rolling units. It can be attributed to the scheduling of the flexible flow shop.
The production process of the aluminum furnace hot rolling section is shown in Figure 1.
It takes a semi-continuous process to cast ingots as raw materials. Firstly, the ingots to
be processed are batched and then distributed to pusher furnaces for heating. After the
soaking process is completed, the ingots are heated and the ingots in the furnace are cooled
to the initial rolling temperature for heat preservation. Finally, the ingots are distributed
to the hot rolling unit for processing. Compared with the iron and steel industry, the
heating and hot rolling processes of the aluminum industry show the following different
characteristics: firstly, for the production process path, semi-continuous casting-heating-hot
rolling is used in the aluminum industry, while in the iron and steel industry, there are
four processes between continuous casting and hot rolling, among which three processes
are heated and one is not. Then, in terms of the rules of the slabs entering and exiting the
furnace, the billet distribution to a furnace in the aluminum industry does not need to be in
the same rolling order, while in the iron and steel industry, billet distribution to the furnace
in the rolling order is required, and the discharging sequence of furnace is first in first out.
Finally, for the type of furnace, the aluminum industry uses the pusher furnace, while the
iron and steel industries employ a walking beam furnace.

Figure 1. Production process.

Processing features and constraints. Due to the influence of seasonal changes and
market fluctuations, the changing demand for aluminum products in various decision time
periods, presents the following uncertain characteristics: the manager receives new orders
or order modifications at least a few days before the expiration date. Therefore, the demand
for the product is certain from current decision time period to the first scheduling cycle (that
is decision time period 1). With the increase of the decision time period, the uncertainty of
demand becomes larger and larger. In addition, the production in the aluminum furnace
hot rolling section also contains the following constraints: operation logic (for example, the
ingots processed in the furnace must be sent to the hot rolling mill for further processing);
operating time (such as the production completion time of the ingots in the furnace is
greater than or equal to the start time of production plus the processing time); capacity
constraints (such as the total weight of the ingots processed in the furnace is less than
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or equal to the maximum capacity of the furnace); demand constraints (such as the total
number of ingots processed in the furnace must be greater than or equal to the demand).

Scheduling objectives. This paper considers the sustainability indicators of the envi-
ronmental and economic dimensions regarding the production scheduling in the aluminum
furnace hot rolling section. On the one hand, the sustainability of the environmental di-
mension is measured by minimizing the residence time of the ingot in the furnace. The
ideas and insights from Tang and Wang [10], Xu et al. [16], Tan et al. [24] are leveraged and
extended to define the formulation of environmental sustainability. More specifically, the
energy consumption of furnaces accounts for about 60–70% of the total energy consump-
tion of the entire hot rolling production process, hence, reducing the energy consumption
of the furnace can reduce environmental pollution. The residence time of the ingot in
the furnace is closely related to the energy consumption of the furnace, which is equal
to the time when the ingot leaves the furnace minus the time when the ingot enters the
furnace. Under the premise that the ingot reaches the rolling temperature, the longer the
residence time is, the more energy is consumed. On the other hand, the sustainability of the
economic dimension is measured by minimizing the makespan. Pinedo and Hadavi [64]
portrayed that a minimum makespan usually implies a good utilization of the machine(s),
and efficient production can shorten the total processing time. According to the insights of
Akbar and Irohara [63], product delivery time defines the sustainability of the economic
dimension, which represents the service level of the company [65]. It is worth noting
that the above two objectives are time-dependent, and the same dimension makes it easy
to calculate.

In summary, the production scheduling in the aluminum furnace hot rolling section
is a complex operation considering multi-period, multi-process, multi-workpieces, multi-
constraints and multi-objectives and that aims at minimizing the residence time of the
ingot in the furnace and minimizing the makespan. On the premise of satisfying the
constraints, the following decisions need to be made. Firstly, taking the demand in rolling
horizon as the guide, consider different production scenarios and decide which ingots
should be arranged in which decision time period. Secondly, consider when and which
ingots are arranged to form a batch and are assigned to which furnace. Thirdly, consider
when and which ingots are assigned to which hot rolling mill. In this paper, a multi-
objective MILP optimization model for the sustainable scheduling of the production in the
aluminum furnace hot rolling section is established by combining the machine environment,
processing characteristics and constraints and scheduling objectives to obtain a globally
optimized sustainable production scheduling plan.

4. A Multi-Objective Optimization Model Formulation

Aiming at the sustainable scheduling of the production in the aluminum furnace hot
rolling section with uncertain demand, and on the basis of the uncertainty of demand in
the rolling horizon described with a scenario tree, a multi-objective MILP optimization
model for sustainable scheduling of the production in the aluminum furnace hot rolling
section is formulated in this paper.

4.1. Demand in Rolling Horizon Described by the Scenario Tree

For the production process in the aluminum furnace hot rolling section, the demand in
the rolling horizon of type c ingots is uncertain. The scenario trees describing the demand
of type c ingots are shown in Figure 2. Based on Figure 2, this section illustrates how to use
scenario trees to describe demands in rolling horizon in the following three parts: what is
the scenario tree, how to describe demands in the rolling horizon and how to generate the
scenario tree.
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Figure 2. Schematic diagram of the demand for the type c described by the scenario tree. (a) shows the unique parent node,
(b) shows a two-stage scenario tree, (c) shows a three-stage scenario tree, (d) shows a multi-stage scenario tree.

The scenario tree. The structure of the scenario tree is based on a unique parent node,
branching to form multiple child nodes. The child node is then set to the parent node and
branch to form multiple successor child nodes, until the end of the decision time period.
How we obtained the scenario tree presented in Figure 2a–d is described as follows. Each
scenario tree contains several future scenarios, and each path formed by the parent node-
child node connection represents each scenario (blue line in Figure 2). Each scenario has
specific values and probabilities, which indicate the value of the demand and the probability
of its occurrence. For a certain decision time period, the demand has several values and
corresponding probability, which can be regarded as the discrete probability distribution
of the demand. By traversing every scenario in the scenario tree, the uncertain demand can
be transformed into the value and probability of several deterministic scenarios. Then, the
uncertainty of demands can be described.

The scenario trees describing demands in rolling horizon. The decision time period
1 is from the current time to the first scheduling cycle, and t ∈ T = {1}, s ∈ S = {1},
St = {1(1)}, the demand for the type c ingots is a certain value D1,1,c and the probability
of the occurrence of the scenario is P1,1 = 1, as presented in Figure 2a. The decision time
period 2 is from the current time to the second scheduling cycle, and t ∈ T = {1, 2},
s ∈ S = {1, 2, . . . , s2}, St = {1(1), 2(1, . . . , s2)}, the demand for the type c ingots is
D2,s,c and the probability of the occurrence of the scenario is P2,s, as shown in Figure 2b.
Figure 2b represents a two-stage scenario tree, which considers the values and probabilities
of the demands in two decision time periods. The decision time period 3 is from the
current time to the third scheduling cycle, and t ∈ T = {1, 2, 3}, s ∈ S = {1, 2, . . . , s3},
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St = {1(1), 2(1, . . . , s2), 3(1, . . . , s3)}, the demand for the type c ingot is D3,s,c and the
probability of the occurrence of the scenario is P3,s, as shown in Figure 2c. Figure 2c
represents a three-stage scenario tree, which considers the values and probabilities of the
demands in three decision time periods. The results can be deduced in the same manner
until the end of the decision time period.

Scenario tree generation method. To require the probability of the occurrence of each
scenario and the demand for the type c ingots, in this paper, the distribution matching
method proposed in the literature [41], is used to generate the scenario tree. For the
distribution matching method, first the statistical properties of the historical demand data
are calculated, such as the mean, variance, skewness, kurtosis and cumulative distribution
function. Then, matching the statistical properties of the historical data with those of the
scenario trees, the two-stage scenario tree is generated by minimizing the error between
them to predict the possible scenarios in a certain decision time period whose values and
probabilities are obtained to generate the scenario tree. However, due to space limitation,
more details are only provided in the literature [41]. The steps of which are as follows.

Step 1: for t ∈ T = {1}, the demand for type c ingots is a certain value D1,1,c, as shown
in Figure 2a.

Step 2: for t ∈ T = {1, 2}, set the node of t = 1 as the parent node and incorporate
it into the historical data set (yellow node in Figure 2b), and the distribution matching
method is used to generate a two-stage scenario tree to obtain the demand D2,s,c and
probability P2,s of each scenario at t = 2, as shown in Figure 2b.

Step 3: for t ∈ T = {1, 2, 3}, go through each node of t = 2, set it as the parent
node and incorporate it in the historical data set (yellow node in Figure 2c). Generate a
two-stage scenario tree with the distribution matching method, so that the demand D3,s,c
and probability P3,s of each scenario at t = 3 is obtained, as shown in Figure 2c.

Step 4: Repeat Step 3 until the decision time period is over, as shown in Figure 2d.

4.2. MILP Model for the Production in the Aluminum Furnace Hot Rolling Section

The objective function and constraints of the model for the scheduling of the produc-
tion in the aluminum furnace hot rolling section are linear equations, including continuous
variables such as the start time of the ingot production in the equipment, the production
completion time and the discrete variables including whether the ingot is assigned to the
equipment for processing and whether the equipment is idle. A MILP model is formulated.

Model assumptions. When the residence time of the ingot in the furnace reaches the
rated processing time, it can be considered as reaching the rolling temperature. The ingot
can only be kept in the furnace before rolling. The ingot will leave the hot rolling mill
immediately after processing without delay. The furnace is the main energy-consuming
equipment in the production process, so more consideration is given to the energy con-
sumption of the furnace.

Mathematical model. A multi-objective MILP optimization model for sustainable
production in the aluminum furnace hot rolling section is formulated.

The objective function of environmental sustainability is the sum regarding the res-
idence time of the ingot in the furnace in each scenario multiplied by the probability of
that scenario. The objective function of economic sustainability is the sum concerning the
makespan in each scenario multiplied by the probability of that scenario, which denotes
the minimum expectation of the sustainable indicators, as shown in Formulas (1) and (2):

Min ∑
t∈T,s∈St

Pt,s

[
∑

i∈I,j1∈J1,n1∈N1
(TF1t,s,i,j1,n1 − TS1t,s,i,j1,n1)

]
(1)

Min ∑
t∈T,s∈St

Pt,s MSt,s (2)
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Each ingot must be assigned to a furnace (hot rolling mill) for processing and can only
be assigned to one event point of each furnace (hot rolling mill), as shown in Formulas (3)
and (4):

∑
t∈T,j1∈J1,n1∈N1

W1t,s,i,j1,n1= 1∀s ∈ S, i ∈ I (3)

∑
t∈T,j2∈J2,n2∈N2

W2t,s,i,j2,n2= 1∀s ∈ S, i ∈ I (4)

After each ingot is processed in the furnace, it must be processed in the hot rolling
mill. The formula is shown in (5):

∑
j1∈J1,n1∈N1

W1t,s,i,j1,n1 = ∑
j2∈J2,n2∈N2

W2t,s,i,j2,n2∀t ∈ T, s ∈ St, i ∈ I (5)

Multiple ingots can be assigned to each event point of each furnace for processing,
and the formula is shown in (6). The maximum of ingot can be assigned to each event
point of each hot rolling mill is one, and the formula is shown in (7):

∑
i∈I

W1t,s,i,j1,n1 + V1t,s,j1,n1 ≥ 1∀t ∈ T, s ∈ St, j1 ∈ J1, n1 ∈ N1 (6)

∑
i∈I

W2t,s,i,j2,n2 + V2t,s,j2,n2 = 1∀t ∈ T, s ∈ St, j2 ∈ J2, n2 ∈ N2 (7)

The event points with no assignment of ingot are arranged at the end of the furnace
(hot rolling mill), as shown in Formulas (8) and (9):

V1t,s,j1,n1−1 ≤ V1t,s,j1,n1∀t ∈ T, s ∈ St, j1 ∈ J1, n1 ∈ N1, n1 > 1 (8)

V2t,s,j2,n2−1 ≤ V2t,s,j2,n2∀t ∈ T, s ∈ St, j2 ∈ J2, n2 ∈ N2, n2 > 1 (9)

The ingots of the same batch have the same starting time in the same furnace, and the
formulas are shown in (10) and (11):

TS1t,s,i,j1,n1 ≥ TS1t,s,i′,j1,n1 − SC(2−W1t,s,i,j1,n1 −W1t,s,i′,j1,n1)
∀t ∈ T, s ∈ St, i, i′ ∈ I, i 6= i′, j1 ∈ J1, n1 ∈ N1

(10)

TS1t,s,i,j1,n1 ≤ TS1t,s,i′,j1,n1 + SC(2−W1t,s,i,j1,n1 −W1t,s,i′,j1,n1)
∀t ∈ T, s ∈ St, i, i′ ∈ I, i 6= i′, j1 ∈ J1, n1 ∈ N1

(11)

The production completion time of the ingot in the furnace is greater than or equal
to the start time of production plus the processing time and is less than or equal to the
start time of production plus the maximum residence time. The formulas are shown
in (12) and (13). The production completion time of the ingot in the hot rolling mill is equal
to the start time of production plus the processing time, and the formula is shown in (14):

TF1t,s,i,j1,n1 ≥ TS1t,s,i,j1,n1 + TP1cW1t,s,i,j1,n1∀t ∈ T, s ∈ St, i ∈ Ic, j1 ∈ J1, n1 ∈ N1, c ∈ C (12)

TF1t,s,i,j1,n1 ≤ TS1t,s,i,j1,n1 + TMW1t,s,i,j1,n1∀t ∈ T, s ∈ St, i ∈ I, j1 ∈ J1, n1 ∈ N1 (13)

TF2t,s,i,j2,n2 = TS2t,s,i,j2,n2 + TP2cW2t,s,i,j2,n2
∀t ∈ T, s ∈ St, i ∈ Ic, j2 ∈ J2, n2 ∈ N2, c ∈ C

(14)

The start time of production for the ingot in the hot rolling mill is equal to the
production completion time of the ingot in the furnace plus the procedure conversion
time. The formula is shown in (15) and (16):

TS2t,s,i,j2,n2 ≥ TF1t,s,i,j1,n1 + TC− SC(2−W1t,s,i,j1,n1 −W2t,s,i,j2,n2)
∀t ∈ T, s ∈ St, i ∈ I, j1 ∈ J1, j2 ∈ J2, n1 ∈ N1, n2 ∈ N2

(15)
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TS2t,s,i,j2,n2 ≤ TF1t,s,i,j1,n1 + TC + SC(2−W1t,s,i,j1,n1 −W2t,s,i,j2,n2)
∀t ∈ T, s ∈ St, i ∈ I, j1 ∈ J1, j2 ∈ J2, n1 ∈ N1, n2 ∈ N2

(16)

In the furnace (hot rolling mill), the start time of production for the ingot assigned to
the next event point is greater than or equal to the production completion time of the ingot
assigned to the current event point, as shown in Formulas (17) and (18):

TS1t,s,i′,j1,n1 ≥ TF1t,s,i,j1,n1−1 − SC(2−W1t,s,i′,j1,n1 −W1t,s,i,j1,n1−1)
∀t ∈ T, s ∈ St, i, i′ ∈ I, i 6= i′, j1 ∈ J1, n1 ∈ N1, n1 > 1

(17)

TS2t,s,i′,j2,n2 ≤ TF2t,s,i,j2,n2−1 + SC(2−W2t,s,i′,j2,n2 −W2t,s,i,j2,n2−1)
∀t ∈ T, s ∈ St, i, i′ ∈ I, i 6= i′, j2 ∈ J2, n2 ∈ N2, n2 > 1

(18)

The start time of production and production completion time for the ingot in the
furnace (hot rolling mill) are less than or equal to the makespan, and the formulas are
shown in (19)–(22):

TS1t,s,i,j1,n1 ≤ MSt,s∀t ∈ T, s ∈ St, i ∈ I, j1 ∈ J1, n1 ∈ N1 (19)

TF1t,s,i,j1,n1 ≤ MSt,s∀t ∈ T, s ∈ St, i ∈ I, j1 ∈ J1, n1 ∈ N1 (20)

TS2t,s,i,j2,n2 ≤ MSt,s∀t ∈ T, s ∈ St, i ∈ I, j2 ∈ J2, n2 ∈ N2 (21)

TF2t,s,i,j2,n2 ≤ MSt,s∀t ∈ T, s ∈ St, i ∈ I, j2 ∈ J2, n2 ∈ N2 (22)

The total weight of the ingots processed by the furnace (hot rolling mill) is less than
or equal to the maximum capacity of the furnace (hot rolling mill), and the formula is
shown in (23) and (24). The total number of ingots assigned to the furnace for processing is
less than or equal to the maximum number of ingots per batch that can be heated by one
furnace. The formula is shown in (25):

∑
i∈Ic

W1t,s,i,j1,n1Hc ≤ M1∀t ∈ T, s ∈ St, j1 ∈ J1, n1 ∈ N1, c ∈ C (23)

∑
i∈Ic

W2t,s,i,j2,n2Hc ≤ M2∀t ∈ T, s ∈ St, j2 ∈ J2, n2 ∈ N2, c ∈ C (24)

∑
i∈I

W1t,s,i,j1,n1 ≤ B(1−V1t,s,j1,n1)∀t ∈ T, s ∈ St, j1 ∈ J1, n1 ∈ N1 (25)

The total number of ingots processed in the furnace (hot rolling mill) must be greater
than or equal to the demand, and the formulas are shown in (26) and (27):

∑
t′≤t,i∈Ic ,j1∈J1,n1∈N1

W1t′,s,i,j1,n1 ≥ ∑
t′≤t

Dt′,s,c∀t ∈ T, s ∈ St, c ∈ C (26)

∑
t′≤t,i∈Ic ,j2∈J2,n2∈N2

W2t′,s,i,j2,n2 ≥ ∑
t′≤t

Dt′,s,c∀t ∈ T, s ∈ St, c ∈ C (27)

5. Computational Studies

In order to verify the feasibility and effectiveness of the multi-objective optimization
model, based on the description of the case data, this paper expounds the experimental
results from the following three aspects: multi-objective optimization model solution,
comparison of computational results in rolling horizon or a single decision time period,
and analysis of the solution efficiency. The computer is configured with INTEL Core
i5-5200U CPU @ 2.72GHz, 4G memory and GAMS software (XPRESS solver) version 23.7.3
under Windows 10 operating system.
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5.1. Description of the Case Data

This paper takes an aluminum alloy manufacturer as an example. There are two
push-type furnaces, the heating time of the ingot in the furnace, which is related to the
alloy type and ingot specification is between 420 and 900 min, and the maximum residence
time is 2880 min. The maximum loading capacity of the furnace is 450 tons, with no more
than 30 ingots inside. There is a “1 + 4” hot rolling production line, and the maximum
weight of ingot that can be borne is 30 tons. The average rolling speed of a hot rough
rolling mill is 96,000 mm/min, and 27 passes are needed. The average rolling speed of four
hot finishing mills is 194,000 mm/min, and one pass is required. The production capacity
is 40/10,000 t·a-1. The average adjustment time of the ingot from the furnace to the hot
rolling mill is 6 min. The ingot specification is selected mainly based on the product size,
specifications in the user’s order, the capacity of the equipment and the technological level
of the manufacturer. Six types of ingots are listed in Table 2 as examples, and the items
shown in the table include the weight of the ingot, the processing time of the ingot in the
furnace and the processing time of the ingot in the hot rolling mill. Compared with other
ingots, ingot type 1 has a greater change in product demand. The scenario tree is used to
describe the uncertainty of demand in rolling horizon, the demand D3,s,c and probability
P3,s at t = 3 are obtained, as shown in Figure 3. In addition to the above parameters, other
parameters may be arbitrarily valued. Table 3 shows the parameter settings of 10 groups of
different data scales for subsequent computational research.

Table 2. Examples of Various Types of Ingots.

Ingot Type Alloy Type Ingot Specification (mm) Density (kg/m3) Hc(t) TP1c (min) TP2c (min)

c1 1100 480 × 1260 × 5000 2710 8 438 2
c2 1145 600 × 2040 × 5000 2700 16 490 2
c3 3003 600 × 2060 × 5000 2730 17 495 2
c4 3104 465 × 1320 × 5000 2720 8 432 2
c5 3104 610 × 1600 × 4150 2720 11 494 2
c6 5083 600 × 1800 × 5000 2660 14 503 2

Figure 3. Demand for ingot type 1.
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Table 3. Parameter Settings Under Different Data Scales.

NO. t s i n1 n2 St Ic Dt,s,c SC (min)

1 1 1 30 1 30 1 (1) c1 (17); c2 (10); c3 (3) c2 (10); c3 (3); c4 (0); c5 (0); c6 (0) 14,400
2 1 1 36 1 36 1 (1) c1 (17); c2 (10); c3 (9) c2 (10); c3 (9); c4 (0); c5 (0); c6 (0) 14,400
3 2 4 42 1 42 1 (1); 2 (1–4) c1 (42) c2 (0); c3 (0); c4 (0); c5 (0); c6 (0) 14,400
4 2 4 48 1 48 1 (1); 2 (1–4) c1 (42); c2 (6) c2 (3); c3 (0); c4 (0); c5 (0); c6 (0) 14,400
5 2 4 54 1 54 1 (1); 2 (1–4) c1 (42); c2 (6); c3 (6) c2 (3); c3 (3); c4 (0); c5 (0); c6 (0) 14,400
6 2 4 60 1 60 1 (1); 2 (1–4) c1 (42); c2 (6); c3 (6); c4 (6) c2 (3); c3 (3); c4 (3); c5 (0); c6 (0) 14,400
7 2 4 66 1 66 1 (1); 2 (1–4) c1 (42); c2 (6); c3 (6); c4 (6); c5 (6) c2 (3); c3 (3); c4 (3); c5 (3); c6 (0) 14,400
8 2 4 72 1 72 1 (1); 2 (1–4) c1 (42); c2 (6); c3 (6); c4 (6); c5 (6); c6 (6) c2 (3); c3 (3); c4 (3); c5 (3); c6 (3) 14,400
9 2 4 78 1 78 1 (1); 2 (1–4) c1 (42); c2 (6); c3 (6); c4 (6); c5 (12); c6 (6) c2 (3); c3 (3); c4 (3); c5 (6); c6 (3) 28,800
10 2 4 84 1 84 1 (1); 2 (1–4) c1 (42); c2 (6); c3 (6); c4 (6); c5 (12); c6 (12) c2 (3); c3 (3); c4 (3); c5 (6); c6 (6) 28,800

5.2. Multi-Objective Optimization Model Solution

As mentioned above, the production scheduling in the aluminum furnace hot rolling
section is expressed as a multi-objective optimization model. In general, handling strategies
designed to cope with multiple objectives are very critical, and the common methods include
the weighted sum, epsilon-constraints and other relevant methods [66,67]. In addition,
Pareto-optimal scheduling [64] is another important stream in multi-objective optimization.

5.2.1. Analysis of the Weights Assigned to Different Objectives

This paper sets the objective weight α of the objective function f 1 in Formula (1)
and the objective weight β of the objective function f 2 in Formula (2). A linear weighting
method is used to integrate the objective functions in Formulas (1) and (2) into one objective
function, that is, f = α f 1 + β f 2, α + β = 1. In order to find proper objective weights,
the objective function values of 10 groups of experiments were calculated with various
objective weights, as shown in Table 4.

Table 4. Objective Function Values with Various Weights.

α
Obj.

(min)
NO. Ave.

(min)1 2 3 4 5 6 7 8 9 10

0
f1 15,549 18,860 20,118 24,624 28,860 33,000 36,828 40,104 44,966 48,888 31,180
f2 549 562 528 540 560 572 606 630 639 655 584

0.1
f1 15,310 18,528 19,854 23,770 27,642 30,660 34,918 38,456 43,036 47,874 30,005
f2 554 562 528 566 599 592 624 647 661 677 601

0.2
f1 15,181 18,588 19,950 23,406 27,380 30,000 35,151 39,540 42,816 47,697 29,971
f2 554 568 528 548 576 594 623 647 656 669 596

0.3
f1 15,349 18,566 20,022 23,458 27,122 31,710 35,314 39,102 42,598 47,713 30,095
f2 552 569 528 562 592 621 631 645 652 667 602

0.4
f1 15,270 18,598 20,028 23,526 27,516 29,682 34,880 39,810 42,989 47,874 30,017
f2 552 566 528 586 608 610 630 647 649 677 605

0.5
f1 15,270 18,566 19,910 24,144 27,651 32,910 35,980 38,926 42,598 46,219 30,217
f2 552 565 528 580 607 616 633 633 652 659 603

0.6
f1 15,327 18,496 20,060 23,626 26,916 30,108 35,112 40,004 43,476 47,211 30,034
f2 552 587 528 560 580 576 624 653 665 675 600

0.7
f1 15,327 18,505 19,998 23,222 26,872 30,540 34,174 38,669 42,798 46,704 29,681
f2 552 566 528 542 564 594 608 643 654 666 592

0.8
f1 15,327 18,511 19,986 23,598 27,407 30,738 35922 39,325 43,966 46,843 30,162
f2 552 567 528 552 587 593 630 641 656 675 598

0.9
f1 15,308 18,660 19,988 23,682 27,906 30,520 34,584 38,958 41,932 47,697 29,924
f2 552 568 528 566 588 584 619 645 652 669 597

1
f1 14,847 18,487 19,654 23,106 26,672 29,600 32,388 33,880 35,844 46,019 28,050
f2 561 590 972 1088 1110 1122 1134 1162 1174 1186 1010
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The following conclusions can be drawn from Table 4: First, with any combination of
objective weights, when the decision time period t is the same, the value of the objective
function f 1 (or f 2) continues to rise with the increase of the data scale. This is because the
increase in the total number of ingots makes the total residence time of the ingot in the
furnace (or the total makespan) longer. Second, the data scale of experiment 3 is larger
than that of experiments 1 and 2. Why is the value of the objective function f 2 smaller?
The reason is that experiment 3 only processed ingot type c1, whose processing time in the
furnace was 438 min, while experiments 1 and 2 processed ingot types c1, c2 and c3, whose
processing times in the furnace were 438 min, 490 min and 495 min, respectively. The
processing time of experiment 1 and 2 in the furnace is longer than that of experiment 3, so
the makespan of experiment 1 and 2 is longer than that of experiment 3. Third, with any
combination of objective weights, for α = 0, β = 1, the value of the objective function f 1 is
the largest and the value of the objective function f 2 is the smallest. For α= 1, β = 0, the
result is just the opposite, indicating that in the solution process, one objective is optimized
to the greatest extent, while the other objective is not optimized at all.

In order to show the trend of the objective function value changing with the weight
more clearly, in Figure 4, the horizontal coordinate represents the weight of the objective
function f 1, that is, the value of the objective weights α, correspondingly, β = 1− α. The left
vertical coordinate represents the residence time of the ingot in the furnace (environmental
dimension index), the right vertical coordinate represents the makespan (economic dimen-
sion index), the blue solid line represents the average value of the objective function f 1 of
the 10 experiments, and the orange solid line represents the mean value of the objective
function f 2 of 10 experiments.

Figure 4. The trend of the objective function value changing with the weight.

The following conclusions can be drawn from Figure 4. Firstly, optimizing one
indicator in the environmental or economic dimension will make the other indicator
rise rapidly, and it is more conducive to sustainable comprehensive development when
considering environmental and economic dimensions at the same time. Secondly, the
change of the economic dimension indicators with the weights shows a trend of straight
line. The change in the average value of the 10 experiments is very small. In contrast,
the environmental dimension indicators are more sensitive and have a wider range of
fluctuations. Hence, we can pay more attention to the environmental dimension indicator.
Thirdly, for α = 0.7, β = 0.3, the values of the environmental and economic dimension
indicators are 29,681 min and 592 min, respectively, which are both the minimum within
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α ∈ [0.1, 0.9]. It is able to optimize both the environmental and economic dimension
indicators to the greatest extent, indicating that the objective weight combination of α = 0.7,
β = 0.3 is optimal.

5.2.2. Analysis of the Pareto-Optimal Scheduling

The linear weighting method used in this paper only finds a “corner” point, to de-
termine a line of a set of efficient solutions (in the Pareto-optimal sense) between the two
objectives, a medium-scale instance is presented in this paper. Set t = 2, s = 4, i = 50,
n1 = 1, n2 = 50, St = 1(1); 2(1− 4), Ic = c1(42); c2(6); c3(2), Dt,s,c2 = 3, Dt,s,c3 = 1,
SC = 14, 400 min, the Pareto frontier regarding the residence time of the ingot in the
furnace and the makespan are obtained, as shown in Figure 5.

Figure 5. The Pareto frontier regarding the sustainability of environmental and economic dimensions.

The following can be observed in Figure 5. Firstly, as the makespan increases, the
residence time of the ingot in the furnace first shows a downward trend and then remains
stable. Secondly, when the makespan ∈ [550, 600] min and the makespan ∈ [600, 700] min
the makespan increased by 50 min and 100 min, respectively, whereas the residence time of
the ingot in the furnace decreased by 966 min and 56 min. Overall, the appropriate relax-
ation of the makespan can impose a significant decrease on the residence time of the ingot in
the furnace, so considering the trade-off between environmental and economic dimensions
in the light of practical demands is necessary. Thirdly, when the makespan ∈ [700, 850] min,
makespan ∈ [850, 1000] min,makespan ∈ [1000, 1050] min and makespan ∈ [1050, 1100]
min, the makespan increased by 150 min, 150 min, 50 min and 50 min, respectively, whereas
the residence time of the ingot in the furnace decreased by 44 min, 0 min, 20 min and 0 min.
Therefore, even though the requirements for the makespan are relaxed, the residence time
of the ingot in the furnace only has a slight reduction. At this point, the optimization of the
makespan should be highlighted. Fourthly, the residence time of the ingot in the furnace
remains stable when the makespan ∈ [850, 1000] min. However, why did the residence
time of the ingot in the furnace decrease by 20 min when the makespan ∈ [1000, 1050]
min? When the makespan is increased to about 1050 min, the production scheduling is
changed from a single decision time period to a two-decision time period, which results in
a slight decrease of the residence time of the ingot in the furnace. Similar examples can be
found in Figure 6.
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Figure 6. Scheduling schemes in rolling horizon or a single decision time period. (a) shows the scheduling schemes in
rolling horizon, (b) shows the scheduling schemes in a single decision time period.

5.3. Comparison of Computational Results in Rolling Horizon or a Single Decision Time Period

A single decision time period divides the time evenly and only considers the con-
straints and objectives in each decision time period. The rolling horizon puts the decision
time periods together and considers the constraints and objectives in all decision time
periods globally. In order to explore the superiority of the scheduling scheme in the rolling
horizon, 10 experiments with the objective weights of α = 0.7, β = 0.3 were conducted in
this paper, and the computational results in the rolling horizon or a single decision time
period obtained are shown in Table 5.

Table 5. Computational results in Rolling Horizon or a Single Decision Time Period.

Periods
Obj.

(min)
NO. Ave.

(min)1 2 3 4 5 6 7 8 9 10

Rolling
horizon

f1 15,327 18,505 19,998 23,222 26,872 30,540 34,174 38,669 42,798 46,704 29,681
f2 552 566 528 542 564 594 608 643 654 666 592
f 10,895 13,123 14,157 16,418 18,980 21,556 24,104 27,261 30,155 32,893 20,954

Single
f1 15,327 18,505 19,828 23,204 26,852 30,523 34,136 38,667 42,783 46,688 29,651
f2 552 566 965 1066 1071 1098 1124 1159 1167 1182 995
f 10,895 13,123 14,169 16,563 19,118 21,696 24,232 27,415 30,298 33,036 21,054
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In addition, a simple example can straightforwardly illustrate the superiority of the
scheduling scheme in the rolling horizon. Let t = 2, s = 4, i = 8, n1 = 1, n2 = 8,
St = 1(1); 2(1− 4), Ic = c1(8), D1,s,c1 = 5, D2,s,c1 = 3, SC = 14, 400 min, B = 4 and
α = 0.7, β = 0.3, and the scheduling plan in rolling horizon or a single decision time
period can be obtained. In Figure 6, the horizontal coordinate represents time, the vertical
coordinate represents the equipment, the numbers just below the line segment represents
the ingot labels, the lower left of the line segment represents the start time of production
and the lower right of the line segment represents the completion time of production.

The following conclusions can be seen. First, in experiments 3–10 in Table 5, the
comparison between the rolling horizon and a single decision time period show that the
objective function value of the former ( f 1) is slightly larger than that of the latter, while
the objective function value of the latter ( f 2) is much larger than that of the former. The
value of the objective function of the former ( f ) obtained is better than that of the latter,
and the mean value of the objective function ( f ) is reduced by 100 min, which verified that
the scheduling in rolling horizon can globally optimize the production in the aluminum
furnace hot rolling section while satisfying the constraint conditions and is more conducive
to the sustainable development of the environmental and economic dimensions. Second,
Figure 6a,b show the scheduling schemes in rolling horizon or a single decision time period,
respectively. This example can illustrate in detail that scheduling in the rolling horizon is
better than scheduling in a single decision time period. Compared with Figure 6b, it can be
seen from Figure 6a that, assuming the capacity constraint conditions of the furnace are
satisfied, when the ingots 1, 7 and 8 that should have been processed in the decision time
period 2 are processed in the decision time period 1, the total makespan is reduced from
904 min to 460 min, and the total residence time of the ingot in the furnace is increased from
3523 min to 3528 min. In general, the overall indicators of environmental and economic
dimensions can be effectively optimized.

5.4. Analysis of the Solution Efficiency

It is well known that the model scale and the solution time are closely linked. To
better analyze the solution efficiency of the production scheduling model of the aluminum
furnace hot rolling section, 10 experiments with the objective weights of α = 0.7, β = 0.3
were conducted in this paper. The total number of discrete variables, continuous variables,
equations and the solution time for each experiment are shown in Table 6.

Table 6. Experimental Results of Different Data Scales.

NO. 1 2 3 4 5 6 7 8 9 10 Ave.

Discrete
variables 992 1406 15,004 19,450 24,472 30,070 36,777 43,575 50,949 58,899 28,159

Continuous
variables 2916 4146 33,492 43,458 54,720 67,278 82,325 97,583 114,137 131,987 63,204

Equations 35,508 58,806 474,260 688,282 958,308 1,290,818 1,780,899 2,274,514 2,851,078 3,517,426 1,392,990
Solution time(s) 8 34 45 960 987 1080 1116 1178 1271 1515 819

The following conclusions can be inferred based on the results in Table 6. Firstly,
with regard to the average number of the experiments solved by GAMS (Xpress solver),
there are 28,159 for discrete variables, 63,204 for continuous variables and 1,392,990 for
equations on average. The large-scale model indicates the complexity of the scheduling
model. Secondly, with the increase of data scale, the total number of discrete variables,
continuous variables, equations and the solution time increases. Thirdly, when the values
of decision time period and the scenario are 1, the average solution time is 21 s, where
there is a high responding time. When the values of the decision time period and the
scenario are two and four, respectively, the average solution time is 1019 s. Compared with
manual scheduling, the response time solved in this paper is acceptable. When the values
of decision time period and the scenario are 3 and 12, respectively, the solution time is
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more than 24 h. When the value of decision time period is greater than 3 and the value of
the scenario is more than 12, the solution time may be longer. It can be seen that with the
increasing number of decision time periods and scenarios, the solution becomes more and
more difficult. Fourthly, it is sufficient and reasonable to consider 3 decision time periods
and 12 scenarios in the practical application and to not recommend further increase the
data scale for solving. The reasons are shown as follows. The demand is predicted based
on historical data, when the decision time period is less, the predicted value of the demand
is more accurate. As the decision time period continuously increases, the predicted value
accuracy will be lower and lower, which accords with the law of data analysis. Therefore, if
the number of decision time periods and scenarios is too large, even though the scheduling
scheme is solved, it is not of great reference to managers.

6. Conclusions

This paper mainly studies the sustainable scheduling of the production in the alu-
minum furnace hot rolling section with uncertain demand. The scenario tree is used to
describe the uncertainty of demand in the rolling horizon. A sustainable scheduling model
for the production in the aluminum furnace hot rolling section in environmental and
economic dimensions is formulated. Therefore, the energy consumption of furnaces and
the time cost of product delivery can be reduced.

On the one hand, in view of the uncertainty of the demand in the production process of
the aluminum furnace hot rolling section, the scenario tree method is used for description.
To the best of our knowledge, this is the first time that the scenario tree method is applied
to the production scheduling in the furnace hot rolling section. In actual application, the
method used can not only accurately predict the demand in rolling horizon, but also
globally optimize the production process in the aluminum furnace hot rolling section,
indicating that it is more conducive to the sustainable development in environment and
economic dimensions than scheduling in a single decision time period.

On the other hand, according to the production process and characteristics of the
aluminum furnace hot rolling section, to minimize the residence time of the ingot in the
furnace and minimize the makespan, a multi-objective MILP optimization model for the
sustainable scheduling of the production in the aluminum furnace hot rolling section is
formulated. The model not only expands the multi-objective optimization model library in
this field theoretically, but can also provide managers with a sustainable scheduling plan
that is optimized in both environmental and economic dimensions in practical applications.
Increasingly, managerial suggestions associated with the trade-off between environmental
and economic dimensions are presented.

Future research is necessary to focus on the following: When making decisions on
scheduling plans, managers must not only judge the rationality of the plan, but also
consider the response time of the solution model in order to choose a high-quality and
high-efficiency scheduling plan. A high-quality scheduling scheme can be obtained in
this paper currently, however, with the increase in the data scale and in the total number
of variables and equations, the model solving time will be longer or even unable to
be solved. Therefore, more attention will be focused on improving the optimization
algorithm and improving the solving efficiency of the production scheduling model in
the aluminum furnace hot rolling section in future research. Fortunately, the intelligent
optimization algorithm [15,21,22,26,27] proposed by similar research works have provided
excellent references.
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Glossary
Indices and main Sets

T Set of decision time periods, that is, the decision time period in rolling horizon,
indexed by t and t ∈ T =

{
1, 2, . . . , t

}
.

S Set of scenarios, the scenarios indicate that the demand may appear in each
decision time period, indexed by s and s ∈ S = {1, 2, . . . , s}.

I Set of ingots, indexed by i and i ∈ I =
{

1, 2, . . . , i
}

.
J1 Set of furnaces, indexed by j1 and j1 ∈ J1 =

{
1, 2, . . . , j1

}
.

J2 Set of hot rolling mill, indexed by j2 and j2 ∈ J2 =
{

1, 2, . . . , j2
}

.
N1 Set of event points in the furnace, that divides time points on the time axis of the

furnace-based continuous time representation of unit-specific events [68],
indexed by n1 and n1 ∈ N1 =

{
1, 2, . . . , n1

}
.

N2 Set of event points in the hot rolling mill that divides time points on the time axis of
hot rolling-mill-based continuous time representation of unit-specific events [68],
indexed by n2 and n2 ∈ N2 =

{
1, 2, . . . , n2

}
.

C Set of ingot types, indexed by c and c ∈ C = {1, 2, . . . , c}.
St Scenario sets of decision time period t.
Ic Set of ingots belonging to the ingot of type c.

Parameters
Pt,s Probability of the occurrence of scenario s in decision time period t.
TP1c Processing time of the type c ingot in the furnace.
TM Maximum residence time of the ingot in the furnace.
TP2c Processing time of the type c ingot in the hot rolling mill.
TC The time of the ingot transferred from the furnace to the hot rolling mill.
Hc Weight of the type c ingot.
M1 Maximum capacity of the furnace.
M2 Maximum capacity of the hot rolling mill.
B The maximum number of ingots per batch that can be heated in a furnace
Dt,s,c Demand for the type c ingot in scenario s in decision time period t.
SC Scheduling cycle period.

Variables
W1t,s,i,j1,n1 1 if ingot i is assigned to event point n1 in furnace j1 for processing in scenario s

in decision time period t, 0 otherwise.
W2t,s,i,j2,n2 1 if ingot i is assigned to event point n2 in hot rolling mill j2 for processing

in scenario s in decision time period t, 0 otherwise.
V1t,s,j1,n1 1 if event point n1 in furnace j1 in scenario s in decision time period t is idle,

0 otherwise.
V2t,s,j2,n2 1 if event point n2 in hot rolling mill j2 in scenario s in decision time period t is idle,

0 otherwise.
TS1t,s,i,j1,n1 The start time of the ingot i at event point n1 in furnace j1 based on scenario s

in decision time period t.
TF1t,s,i,j1,n1 The completion time of ingot i at event point n1 in furnace j1 based on scenario s

in decision time period t.
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TS2t,s,i,j2,n2 The start time of ingot i at event point n2 in hot rolling mill j2 based on scenario s
in decision time period t.

TF2t,s,i,j2,n2 The completion time of ingot i at event point n2 in the hot rolling mill j2 based on
scenario s in decision time period t.

MSt,s The makespan based on scenario s in decision time period t.

References
1. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art review. J. Manuf.

Syst. 2015, 37, 126–140. [CrossRef]
2. China National Bureau of Statistics, Search Title: Annual Data-Energy-Consumption of Total Energy by Sector. Available online:

https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 5 April 2021).
3. Schipper, M. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing; Energy Information Administration: Washington, DC,

USA, 2005.
4. Zhao, R.J.; Fu, J.X.; Wu, Y.X.; Yang, Y.J.; Zhu, Y.Y.; Zhang, M. Representative technologies for hot charging and direct rolling in

global steel industry. ISIJ Int. 2015, 55, 1816–1821. [CrossRef]
5. Li, K.; Yang, S.L.; Ren, M.L. Single-machine scheduling problem with resource dependent release dates to minimise total

resource-consumption. Int. J. Syst. Sci. 2011, 42, 1811–1820. [CrossRef]
6. Li, K.; Shi, Y.; Yang, S.L.; Cheng, B.Y. Parallel machine scheduling problem to minimize the makespan with resource dependent

processing times. Appl. Soft Comput. 2011, 11, 5551–5557. [CrossRef]
7. Yang, Y.; Zhang, B. Scheduling hot slabs in parallel hot rolling production lines by column generation. ISIJ Int. 2014, 54, 2837–2843.

[CrossRef]
8. Nishi, T.; Konishi, M.; Ago, M. A distributed decision making system for integrated optimization of production scheduling and

distribution for aluminum production line. Comput. Chem. Eng. 2007, 31, 1205–1221. [CrossRef]
9. Wang, H.X.; Li, J.B.; Liu, H.J.; Wang, C.S. Research on aluminum plate reversible hot-rolling mathematical model and schedule.

Appl. Mech. Mater. 2012, 157, 719–726. [CrossRef]
10. Tang, L.X.; Wang, X.P. A two-phase heuristic for the production scheduling of heavy plates in steel industry. IEEE Trans. Contr.

Syst. Technol. 2010, 18, 104–117. [CrossRef]
11. Ye, Y.; Li, J.; Li, Z.K.; Tang, Q.H.; Xiao, X.; Floudas, C.A. Robust optimization and stochastic programming approaches for

medium-term production scheduling of a large-scale steelmaking continuous casting process under demand uncertainty. Comput.
Chem. Eng. 2014, 66, 165–185. [CrossRef]

12. Zhou, D.Y.; Zhou, K.; Zhu, L.Y.; Zhao, J.; Xu, Z.H.; Shao, Z.J.; Chen, X. Optimal scheduling of multiple sets of air separation units
with frequent load-change operation. Sep. Purif. Technol. 2017, 172, 178–191. [CrossRef]

13. Hu, Z.; Hu, G. A multi-stage stochastic programming for lot-sizing and scheduling under demand uncertainty. Comput. Ind. Eng.
2018, 119, 157–166. [CrossRef]

14. Ding, T.; Hu, Y.; Bie, Z. Multi-stage stochastic programming with nonanticipativity constraints for expansion of combined power
and natural gas systems. IEEE Trans. Power Syst. 2018, 33, 317–328. [CrossRef]

15. Tang, L.X.; Wang, X.P. A scatter search algorithm for a multistage production scheduling problem with blocking and semi-
continuous batching machine. IEEE Trans. Contr. Syst. Technol. 2011, 19, 976–989. [CrossRef]

16. Xu, C.J.; Sand, G.; Harjunkoski, I.; Engell, S. A new heuristic for plant-wide schedule coordination problems: The intersection
coordination heuristic. Comput. Chem. Eng. 2012, 42, 152–167. [CrossRef]

17. Chakravarty, K.; Das, S.; Singh, K. Identification and improvement in operating practices of reheating furnace to reduce fuel
consumption in hot strip mill. Ironmak. Steelmak. 2013, 40, 74–80. [CrossRef]

18. Jiang, Z.Y.; Zhang, X.X.; Jin, P.; Tian, F.S.; Yang, Y.J. Energy-saving potential and process optimization of iron and steel manufac-
turing system. Int. J. Energ. Res. 2013, 37, 2009–2018. [CrossRef]

19. Tang, Z.; Yang, Y. Two-stage particle swarm optimization-based nonlinear model predictive control method for reheating furnace
process. ISIJ Int. 2014, 54, 1836–1842. [CrossRef]

20. Parsunkin, B.N.; Andreev, S.M.; Logunova, O.S.; Akhmetov, T.U. Energy-saving optimal control over heating of continuous cast
billets. Int. J. Adv. Manuf. Tech. 2015, 79, 1797–1803. [CrossRef]

21. Xia, Q.; Wang, X.P.; Tang, L.X. Operation optimization of slab reheating process based on differential evolution. ISIJ Int. 2016, 56,
2006–2015. [CrossRef]

22. Li, K.; Tian, H.X. Integrated scheduling of reheating furnace and hot rolling based on improved multi-objective differential
evolution. Complexity 2018, 1–19. [CrossRef]

23. Li, F.; Zhang, Y.Y.; Wei, H.; Lai, X.F. Integrated problem of soaking pit heating and hot rolling scheduling in steel plants. Comput.
Oper. Res. 2019, 108, 238–246. [CrossRef]

24. Tan, Y.Y.; Zhou, M.C.; Wang, Y.Y.; Guo, X.W.; Qi, L. A hybrid MIP-CP approach to multistage scheduling problem in continuous
casting and hot-rolling processes. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1860–1869. [CrossRef]

25. Peng, W.; Ma, J.Y.; Chen, X.R.; Ji, Y.F.; Sun, J.; Ding, J.G.; Zhang, D.H. Optimization of the schedule for the whole process in hot
strip manufacturing. Metals 2020, 10, 717. [CrossRef]

http://doi.org/10.1016/j.jmsy.2015.08.002
https://data.stats.gov.cn/easyquery.htm?cn=C01
http://doi.org/10.2355/isijinternational.ISIJINT-2015-175
http://doi.org/10.1080/00207721003653716
http://doi.org/10.1016/j.asoc.2011.05.005
http://doi.org/10.2355/isijinternational.54.2837
http://doi.org/10.1016/j.compchemeng.2006.10.006
http://doi.org/10.4028/www.scientific.net/AMM.157-158.719
http://doi.org/10.1109/TCST.2009.2014960
http://doi.org/10.1016/j.compchemeng.2014.02.028
http://doi.org/10.1016/j.seppur.2016.08.009
http://doi.org/10.1016/j.cie.2018.03.033
http://doi.org/10.1109/TPWRS.2017.2701881
http://doi.org/10.1109/TCST.2010.2060201
http://doi.org/10.1016/j.compchemeng.2011.12.014
http://doi.org/10.1179/1743281212Y.0000000028
http://doi.org/10.1002/er.3103
http://doi.org/10.2355/isijinternational.54.1836
http://doi.org/10.1007/s00170-015-6934-4
http://doi.org/10.2355/isijinternational.ISIJINT-2016-211
http://doi.org/10.1155/2018/1919438
http://doi.org/10.1016/j.cor.2019.04.016
http://doi.org/10.1109/TASE.2019.2894093
http://doi.org/10.3390/met10060717


Sustainability 2021, 13, 7708 22 of 23

26. Wang, S.; Shi, Y.R.; Liu, S.X. Integrated scheduling for steelmaking continuous casting-hot rolling processes considering hot chain
logistics. Math. Probl. Eng. 2020, 11, 1–10. [CrossRef]

27. Ding, J.G.; Kong, L.P.; Guo, J.H.; Song, M.X.; Jiao, Z.J. Multi-objective optimization of slab heating process in walking beam
reheating furnace based on particle swarm optimization algorithm. Steel. Res. Int. 2021, 92. [CrossRef]

28. De Ladurantaye, D.; Gendreau, M.; Potvin, J.Y. Scheduling a hot rolling mill. J. Oper. Res. Soc. 2007, 58, 288–300. [CrossRef]
29. Kong, M.; Pei, J.; Xu, J.; Liu, X.B.; Yu, X.Y.; Pardalos, P.M. A robust optimization approach for integrated steel production and

batch delivery scheduling with uncertain rolling times and deterioration effect. Int. J. Prod. Res. 2020, 58, 5132–5154. [CrossRef]
30. Zhang, R.; Song, S.J.; Wu, C. Robust scheduling of hot rolling production by local search enhanced ant colony optimization

algorithm. IEEE Trans. Ind. Inform. 2020, 16, 2809–2819. [CrossRef]
31. Lohmar, J.; Bambach, M.; Hirt, G.; Kiefer, T.; Kotliba, D. The precise prediction of rolling forces in heavy plate rolling based on

inverse modeling techniques. Steel Res. Int. 2014, 85, 1525–1532. [CrossRef]
32. Zhang, D.H.; Liu, Y.M.; Sun, J.; Zhao, D.W. A novel analytical approach to predict rolling force in hot strip finish rolling based on

cosine velocity field and equal area criterion. Int. J. Adv. Manuf. Tech. 2016, 84, 843–850. [CrossRef]
33. Liu, Y.M.; Sun, J.; Wang, Q.L.; Zhang, D.H.; Zhao, D.W. Mathematical model for cold rolling based on energy method. Meccanica

2017, 52, 2069–2080. [CrossRef]
34. Chen, X.; Cai, Q.W.; Xie, B.S.; Yun, Y.; Zhou, Z.Y. Simulation of microstructure evolution in ultra-heavy plates rolling process

based on abaqus secondary development. Steel Res. Int. 2018, 89. [CrossRef]
35. Cao, J.G.; Xiong, H.T.; Huang, X.H.; Zhao, Q.F.; Li, Y.N.; Liu, S.Q. Work roll shifting strategy of uneven “cat ear” wear control for

profile and flatness of electrical steel in schedule free rolling. Steel Res. Int. 2020, 91. [CrossRef]
36. Hu, Z.Y.; Yang, J.M.; Zhao, Z.W.; Sun, H.; Che, H.J. Multi-objective optimization of rolling schedules on aluminum hot tandem

rolling. Int. J. Adv. Manuf. Tech. 2016, 85, 85–97. [CrossRef]
37. Bagheripoor, M.; Bisadi, H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip

rolling process. Appl. Math. Model. 2013, 37, 4593–4607. [CrossRef]
38. Wang, Z.H.; Gong, D.Y.; Li, X.; Li, G.T.; Zhang, D.H. Prediction of bending force in the hot strip rolling process using artificial

neural network and genetic algorithm (ANN-GA). Int. J. Adv. Manuf. Tech. 2017, 93, 3325–3338. [CrossRef]
39. Wang, J.K.; Qiao, F.; Zhao, F.; Sutherland, J.W. Batch scheduling for minimal energy consumption and tardiness under uncertain-

ties: A heat treatment application. CIRP Ann.-Manuf. Techn. 2016, 65, 17–20. [CrossRef]
40. Xu, D.B.; Chen, Z.P.; Yang, L. Scenario tree generation approaches using K-means and LP moment matching methods. J. Comput.

Appl. Math. 2012, 236, 4561–4579. [CrossRef]
41. Calfa, B.A.; Agarwal, A.; Grossmann, I.E.; Wassick, J.M. Data-driven multi-stage scenario tree generation via statistical property

and distribution matching. Comput. Chem. Eng. 2014, 68, 7–23. [CrossRef]
42. Kim, H.; Cheon, H.; Ahn, Y.H.; Choi, D.G. Uncertainty quantification and scenario generation of future solar photovoltaic price

for use in energy system models. Energy 2019, 168, 370–379. [CrossRef]
43. Seguin, S.; Audet, C.; Cote, P. Scenario-tree modeling for stochastic short-term hydropower operations planning. J. Water Res.

Plan. Man. 2017, 143. [CrossRef]
44. Pan, Q.K.; Gao, L.; Wang, L. A multi-objective hot-rolling scheduling problem in the compact strip production. Appl. Math. Model.

2019, 73, 327–348. [CrossRef]
45. Chen, Q.D.; Pan, Q.K.; Zhang, B.; Ding, J.L.; Li, J.Q. Effective hot rolling batch scheduling algorithms in compact strip production.

IEEE Trans. Autom. Sci. Eng. 2019, 16, 1933–1951. [CrossRef]
46. Jia, S.J.; Zhu, J.; Yang, G.K.; Yi, J.; Du, B. A decomposition-based hierarchical optimization algorithm for hot rolling batch

scheduling problem. Int. J. Adv. Manuf. Tech. 2012, 61, 487–501. [CrossRef]
47. Jia, S.J.; Yi, J.; Yang, G.K.; Du, B.; Zhu, J. A multi-objective optimisation algorithm for the hot rolling batch scheduling problem.

Int. J. Prod. Res. 2013, 51, 667–681. [CrossRef]
48. Liu, L.L.; Wan, X.; Gao, Z.G.; Li, X.L.; Feng, B.W. Research on modelling and optimization of hot rolling scheduling. J. Amb. Intel.

Hum. Comp. 2019, 10, 1201–1216. [CrossRef]
49. Qi, X.D.; Wang, T.; Xiao, H. Optimization of pass schedule in hot strip rolling. J. Iron Steel Res. Int. 2012, 19, 25–28. [CrossRef]
50. Li, W.G.; Liu, X.H.; Guo, Z.H. Multi-objective optimization for draft scheduling of hot strip mill. J. Cent. South Univ. 2012, 19,

3069–3078. [CrossRef]
51. Jing, M.Y.; Xu, S.; Che, H.J.; Zhao, Z.W. Optimization of Rolling Schedules Based on Improved Artificial Fish Swarm Algorithm

for Aluminum Strip Hot Rolling Mills. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013.
52. Che, H.J.; Hu, Z.Y.; Yang, J.M. Multi-objective optimization of rolling schedules for aluminum hot tandem rolling based on

improved NSGA-II. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; IEEE:
Piscataway, NJ, USA, 2015. [CrossRef]

53. Tan, M.; Yang, H.L.; Duan, B.; Su, Y.X.; He, F. Optimizing production scheduling of steel plate hot rolling for economic load
dispatch under time-of-use electricity pricing. Math. Probl. Eng. 2017. [CrossRef]

54. Zhang, B.; Pan, Q.K.; Gao, L.; Zhang, X.L.; Chen, Q.D. A hybrid variable neighborhood search algorithm for the hot rolling batch
scheduling problem in compact strip production. Comput. Ind. Eng. 2018, 116, 22–36. [CrossRef]

55. Cao, C.J.; Li, C.D.; Yang, Q.; Zhang, F. Multi-objective optimization model of emergency organization allocation for sustainable
disaster supply chain. Sustainability 2017, 9, 2103. [CrossRef]

http://doi.org/10.1155/2020/6902934
http://doi.org/10.1002/srin.202000382
http://doi.org/10.1057/palgrave.jors.2602137
http://doi.org/10.1080/00207543.2019.1693659
http://doi.org/10.1109/TII.2019.2944247
http://doi.org/10.1002/srin.201300431
http://doi.org/10.1007/s00170-015-7692-z
http://doi.org/10.1007/s11012-016-0569-x
http://doi.org/10.1002/srin.201800409
http://doi.org/10.1002/srin.201900662
http://doi.org/10.1007/s00170-015-7909-1
http://doi.org/10.1016/j.apm.2012.09.070
http://doi.org/10.1007/s00170-017-0711-5
http://doi.org/10.1016/j.cirp.2016.04.115
http://doi.org/10.1016/j.cam.2012.05.020
http://doi.org/10.1016/j.compchemeng.2014.04.012
http://doi.org/10.1016/j.energy.2018.11.075
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000854
http://doi.org/10.1016/j.apm.2019.04.006
http://doi.org/10.1109/TASE.2019.2914925
http://doi.org/10.1007/s00170-011-3749-9
http://doi.org/10.1080/00207543.2011.654138
http://doi.org/10.1007/s12652-018-0944-7
http://doi.org/10.1016/S1006-706X(12)60135-6
http://doi.org/10.1007/s11771-012-1380-z
http://doi.org/10.1109/ChiCC.2015.7261008
http://doi.org/10.1155/2017/1048081
http://doi.org/10.1016/j.cie.2017.12.013
http://doi.org/10.3390/su9112103


Sustainability 2021, 13, 7708 23 of 23

56. Cao, C.J.; Li, C.D.; Yang, Q.; Yang, L.; Ting, Q. A novel multi-objective programming model of relief distribution for sustainable
disaster supply chain in large-scale natural disasters. J. Clean. Prod. 2018, 174, 1422–1435. [CrossRef]

57. Cao, C.J.; Liu, Y.; Tang, O.; Gao, X.H. A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in
sustainable humanitarian supply chains. Int. J. Prod. Econ. 2021, 1, 108081. [CrossRef]

58. Peng, P.; Chen, E.H. The production scheduling problem of aluminum casting based on theory of constraints. Adv. Mater. Res.
2012, 403–408, 3666–3670. [CrossRef]

59. Larbi, R.; Abrar, K.; Nadjib, B. Scheduling aluminum billet casting lines: A case study. J. Ind. Intell. Inform. 2016, 4. [CrossRef]
60. Yang, X.D.; Liu, Y.F.; Yuan, J.Y.; Zhou, D.F.; Ma, E.J.; Guan, L.Y.; Hao, S. Control Method for Plan Scheduling Process of Electrolytic

Aluminum Factory; CN: 201210492099. 2014. Available online: https://www.lens.org/lens/patent/015-382-340-141-346/
frontpage (accessed on 10 June 2021).

61. Cao, B.; Wang, M.G.; Yang, C.H.; Wang, Z.Q. Aluminum Electrolytic Process Energy Management System Based on Large
Data Analysis; CN: 201510060355. 2016. Available online: https://www.lens.org/lens/patent/174-913-944-756-275/frontpage
(accessed on 10 June 2021).

62. Iglesias-Escudero, M.; Villanueva-Balsera, J.; Ortega-Fernandez, F.; Rodriguez-Montequin, V. Planning and scheduling with
uncertainty in the steel sector: A review. Appl. Sci. 2019, 9, 2692. [CrossRef]

63. Akbar, M.; Irohara, T. Scheduling for sustainable manufacturing: A review. J. Clean. Prod. 2018, 205, 866–883. [CrossRef]
64. Pinedo, M.; Hadavi, K. Scheduling: Theory, Algorithms, and Systems; Springer: Berlin/Heidelberg, Germany, 1994; Available online:

https://link.springer.com/book/10.1007/978-3-319-26580-3 (accessed on 10 June 2021).
65. Cui, W.; Lu, B. A bi-objective approach to minimize makespan and energy consumption in flow shops with peak demand

constraint. Sustainability 2020, 12, 4110. [CrossRef]
66. Sheu, J.B. An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transport. Res.

E-Log. 2007, 43, 687–709. [CrossRef]
67. Gutjahr, W.J.; Nolz, P.C. Multicriteria optimization in humanitarian aid. Eur. J. Oper. Res. 2016, 252, 351–366. [CrossRef]
68. Mockus, L.; Reklaitis, G.V. Continuous time representation approach to batch and continuous process scheduling. 1. MINLP

formulation. Ind. Eng. Chem. Res. 1998, 38, 197–203. [CrossRef]

http://doi.org/10.1016/j.jclepro.2017.11.037
http://doi.org/10.1016/j.ijpe.2021.108081
http://doi.org/10.4028/www.scientific.net/AMR.403-408.3666
http://doi.org/10.18178/jiii.4.4.257-262
https://www.lens.org/lens/patent/015-382-340-141-346/frontpage
https://www.lens.org/lens/patent/015-382-340-141-346/frontpage
https://www.lens.org/lens/patent/174-913-944-756-275/frontpage
http://doi.org/10.3390/app9132692
http://doi.org/10.1016/j.jclepro.2018.09.100
https://link.springer.com/book/10.1007/978-3-319-26580-3
http://doi.org/10.3390/su12104110
http://doi.org/10.1016/j.tre.2006.04.004
http://doi.org/10.1016/j.ejor.2015.12.035
http://doi.org/10.1021/ie970311r

	Introduction 
	Literature Review 
	Problem Description 
	A Multi-Objective Optimization Model Formulation 
	Demand in Rolling Horizon Described by the Scenario Tree 
	MILP Model for the Production in the Aluminum Furnace Hot Rolling Section 

	Computational Studies 
	Description of the Case Data 
	Multi-Objective Optimization Model Solution 
	Analysis of the Weights Assigned to Different Objectives 
	Analysis of the Pareto-Optimal Scheduling 

	Comparison of Computational Results in Rolling Horizon or a Single Decision Time Period 
	Analysis of the Solution Efficiency 

	Conclusions 
	References

