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Abstract: Whereas many researchers still approach Terra Preta (TP) as a soil category, new evidence
suggests that TP refers to a directional grading of soil property changes (i.e., color, pH, nutrients,
etc.) within human-made soils, originating from human activities in pre-Columbian times. Currently,
most TP research focuses on the Brazilian part of the Amazon basin, but only little information is
available on TP soils in the Colombian Amazon. Here, we sampled four TP and surrounding soils
in the Colombian Amazon region at different soil depths and analyzed them for (i) general soil
properties such as color, pH and texture, (ii) soil organic carbon and black carbon (BC) contents, the
latter using benzene polycarboxylic acids as molecular marker, (iii) phosphorus availability based
on sequential fractionation, and (iv) microbial residue contents using amino sugars. Our data from
Colombia’s middle Caquetá River and Leticia confirmed that SOC, BC, and total P were present
in significantly higher concentrations in the TP areas than the surrounding soils, while pH values
and microbial residue contents were unchanged. The enrichment of P forms comprised both easily
extractable and stable P pools, which both dominated to a different degree, both in TP and adjacent
soils. The different degree of SOC, BC and P enrichment suggests different amounts of waste disposal
by the ancient populations at different TP sites, now warranting further research for reconstructing
ancient population sizes from TP chemical analyses.

Keywords: amazonian anthrosols; tropical soils; Terra Preta; soil formation; phosphorus; black carbon

1. Introduction

Within a total area of about 7 million square kilometers, only a small area of the
Amazon basin has been considered for the influence of past human occupation [1]. With
increasing evidence of human impacts on Amazonian ecosystems [2,3], proof of pre-
Columbian human occupation is becoming more relevant to better understand and learn
from ancient cultures’ more sustainable ecosystem management. In this regard, the im-
provement of low-nutrient, acidic soils in the Amazon has been a “trademark” of Amazon
ancient civilizations that could tackle different contemporary and future problems [4,5].

These fertile anthropogenic soils have been called Amazonian Dark Earths (ADE),
Archaeological Black Earths (ABE), or simply Terra Preta (TP), which translates to “Black
Earth” from Portuguese [6,7]. The TP soils show specific characteristics that distinguish
them from typical adjacent (ADJ) soils. The presence of abundant ceramic sherds, darker
color, and remains of animal and plant materials indicate waste disposal activities [8,9]
and, therefore, the main formation processes involved should be comparable for all TP
sites. However, TP sites across the Amazon are associated with different pre-Columbian
cultures [10–12], suggesting that the spatial distribution and specific habits of each of these
cultures have affected TP formation [13–15]. Therefore, to some extent, TP properties are
generally different between and within sites [16].
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Differences in TP properties can be found within countries and regions. In many
cases, high TP fertility has been attributed to high contents of phosphorus (P) and organic
matter, including charred remains, as well as to elevated pH values reducing aluminum
(Al) toxicity [17–19]. Still, the variation in these properties between sites has received less
attention. Most of the studies about TP formation processes have been carried out based
on the analysis of soil samples collected in the Brazilian part of the Amazon [15,20], yet
important TP sites are also found in Colombia [21–24], where the Amazon region covers
about 40% of the country’s territory [25]. In Colombia, special attention has been paid
to Anthrosols in the middle Caquetá River and, near Leticia, the capital of Colombia’s
Amazon department [21,23,26].

Inferences about the formation of TP soils in Colombia have been based upon the
study of archaeological remains (i.e., ceramic sherds, phytoliths), reconstruction of histor-
ical events through contemporary indigenous knowledge [27], and/or physicochemical
soil properties [23,28]. Eden and colleagues (1984) concluded that there was no evidence
to assume that the TP characteristics were originally the result of agricultural activity.
Subsequent studies in Colombia suggested that TP soils enabled the transformation of agri-
cultural systems [22], yet whether agriculture was needed in the pre-Columbian Amazon
basin is still debated [29]. For instance, the presence of TPs in the fertile floodplains of the
Brazilian Amazon, where soil improvement is not required, suggests that TP soils were
not originally created for agricultural purposes [30]. Hence, unintentional anthropogenic
formation of TPs is still a possibility.

Schmidt et al. [31] reported that TPs in Brazil occurred in a widespread pattern of
mounds found in and around settlements where indigenous populations disposed of waste.
The middens presented high P and soil organic carbon (SOC) contents and showed elevated
pH values. Although Colombian indigenous knowledge indicated that certainly also areas
with TP in Colombia were settlement spaces [32], it remains to be confirmed if discarded
charred material and organic waste were linked to the formation of Colombian TP soils.
Clearly, the accumulation of P is of paramount interest because it is abundant in TP soils but
generally deficient in the surrounding, highly weathered soils of the Amazon Basin [33,34].
Souza et al. [34] reported that the dominance of Calcium-bound P forms (CaP) found in
Brazil’s western Amazon region depended on the original soil texture where TP originated,
although other researchers pointed out that P in TP soils might not be present in the most
available P forms but in more stable pools [34,35]. In Colombia, TP soils with abundant
ceramics and dark coloration remain very acidic [26], which suggests that the distribution
of P into different fractions may vary from Brazilian TP. Eden et al. [21] reported lower
levels of available P in TP soils excavated at the riparian sites of the Caquetá basin in
Colombia, compared with the higher concentrations of available P forms found in Brazil
by [36].

Sequential P extractions may be used to differentiate between P pools of different
bioavailability, which can be related to specific sources such as biogenic apatite [35], to P
transformations [37] or even soil formation processes [15,20,34]. In contrast, information on
the origin of soil organic matter (SOM) can be obtained by the analyses of so-called biomark-
ers, i.e., of compounds that are specific to cell residues of its source organisms [38,39].
Biomarker analyses have thus become standard in TP research [40–43], proving the pres-
ence of feces and organic waste remains from steroidal compounds [44] as well as of charred
remains [45–47]. The latter evidence relied on a methodology that combusts char residues
with hot nitric acid to benzene polycarboxylic acids [48–50]. Compared to other methods,
this procedure has the extra advantage that the ratio of penta- to hexabenzene carboxylic
acid (B5CA:B6CA) also informs on the quality of the char residues, particularly on its
degree of condensation and thus on charring temperature [51,52]. Other studies reported
elevated amino sugars contents in TP soils [17,44,53]. These marker substances generally
point to fungal and bacterial necromass [54,55] as common for a high degree of microbial
SOM transformation [56]. Glucosamine might in principle also originate from the chitin of
arthropods, but unless specifically abundant, their abundance is usually much lower as
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compared to that of fungal chitin [39]. Biomarker analyses are still lacking for Colombian
TP soils and may thus help to understand inter-site variability as well as similarities or
differentiation from Brazilian TP soils.

This study was designed to contribute to a better understanding of the properties
and origin of TP soils in Colombia. Hence, we sampled TP sites and surrounding soils at
different ecological settings [21,23,28] at the Caquetá River (Araracuara (AR), Villa Azul
(VA) and Peña Roja (PR)) as well as near the municipality of Leticia (Takana (TA)) (Figure 1).
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Figure 1. TP sites studied in the Colombian Amazon region. Four TP sites and four surrounding
soils were sampled near the Caquetá River and Amazon River in Colombia. Made by the author with
QGIS using Natural Earth Data.

2. Materials and Methods
2.1. Sites and Sampling

Typically, TP sites have been found in “Terra firme”, a Portuguese term to denote
places not subjected to seasonal flooding [57,58]. In recent years, TP sites have also been
reported in fertile floodplains of the Brazilian Amazon [30] but so far not in the Colombian
part. Hence, all sites sampled for this study were found in Terra firme with negligible
slopes and near the rivers’ floodplains [27]. The Araracuara, Villa Azul and Peña Roja
sites were located close to the Caquetá River (white water, Figure 1; please refer to Table 1
for the coordinates). The texture of Peña Roja was loamy to sandy, while Villa Azul soils
presented a sandier texture and Araracuara was a clay soil. The region of the middle
Caquetá River is almost completely covered by mature rainforest, pertaining to the life
zone of Humid Tropical Forest (bH-T) of the Holdridge life-zone system with a mean
temperature of 25.7 ◦C and a mean yearly precipitation of about 3060 mm [59]. Many
of the most species-rich families of the region’s vegetation are tree families, with shrubs,
(emi) epiphytes and climbers present with relatively few species [60]. The TP sampled
near Leticia was located close to the “Quebrada Takana”, a white-water watershed. The
relative humidity in Leticia reaches 81–84%, and the mean annual temperatures oscillate
between 25 and 26 ◦C, with multiannual mean precipitation of 3400 mm [26]. The TP
sites are located close to indigenous settlements; for detailed information about the native
communities and their knowledge and use of these soils, please refer to [32].
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Table 1. Chemical and physical parameters of Terra Preta (TP) and adjacent (ADJ) soils in the Colombian Amazon.

Coordinates Munsell Color/
Chroma Texture (WRB) 1 Depth (cm) Dry Density

(ton m−3) pH(H20) SOC (g kg−1) Ntotal (g kg−1) Ptotal (mg kg−1) SUM BPCA 2

[g C Kg−1] B5CA: B6CA

TP Araracuara
00◦36′36′6′′ S
72◦23′26′9′′ W

10YR 3/2 SL 0–10 1.04 4.7 ± 0.3 19.1 3.0 1016.0 179.1 0.79
10YR 4/2 SL 10–20 1.06 4.67 ± 0.4 26.8 2.1 865.2 215.7 0.79
10YR 4/2 SL 20–40 1.11 4.52 ± 0.1 30.1 2.1 934.0 309.1 0.88
10YR 5/4 SCL 40–60 1.38 4.07 ± 0.2 21.4 0.9 1269.2 80.9 0.84

ADJ Araracuara
00◦36′27′′ S

72◦22′52′2′′ W

7.5YR 5/4 SCL 0–10 1.15 4.61 ± 0.3 16.9 2.3 221.5 96.0 0.87
7.5YR 4/4 SCL 10–20 1.16 4.42 ± 0.4 18.1 1.5 190.4 80.0 0.82
7.5YR 4/6 SCL 20–40 1.26 4.75 ± 0.4 17.8 0.9 172.2 51.4 0.79
7.5YR 6/6 CL 40–60 1.28 4.28 ± 0.3 14.5 0.6 174.4 21.3 0.75

TP Villa Azul
00◦34′31′5′′ S

072◦06′52′4′′ W

2.5Y 41 SL 0–10 1.62 4.95 ± 0.1 1.8 0.11 302.0 94.2 0.88
2.5Y 4/2 SL 10–20 1.47 4.52 ± 0.2 1.3 0.08 118.3 78.0 0.85
2.5Y 5/2 SL 20–40 1.53 4.64 ± 0.2 1.4 0.08 143.0 74.8 0.83
2.5Y 7/1 SL 40–60 1.47 4.67 ± 0.1 0.8 0.04 71.4 58.7 0.85

ADJ Villa Azul
00◦34′26.8′′ S

072◦06′48.5′′ W

5Y 4/1 SL 0–10 1.25 4.41 ± 02 0.8 0.05 36.7 46.4 0.88
5Y 6/1 SCL 10–20 1.46 4.42 ± 0.1 0.9 0.05 35.7 55.8 0.88
5Y 7/1 SCL 20–40 1.46 4.33 ± 0.3 0.7 0.04 30.9 25.5 0.82
5Y 8/1 SCL 40–60 1.45 3.98 ± 0.4 0.2 0.03 22.7 3.5 1.00

TP Peña Roja
00◦39′37′4′′ S

72◦05′00′00′′ W

10YR 3/1 LS 0–10 1.42 4.34 ± 0.1 1.4 0.07 1329.7 91.9 0.86
10YR 4/2 LS 10–20 1.41 4.11 ± 0.2 1.3 0.06 1256.0 97.8 0.84
10YR 5/4 LS 20–40 1.44 4.57 ± 0.2 0.6 0.03 919.0 54.4 0.82
10YR 7/4 LS 40–60 1.45 4.52 ± 0.3 0.4 0.02 1588.2 22.2 0.82

ADJ Peña Roja
00◦39′25′′ S

72◦05′00′6′′ W

10YR 5/4 LS 0–10 1.18 4.9 ± 0.2 0.8 0.05 53.0 31.5 0.79
10YR 6/3 LS 10–20 1.27 4.59 ± 0.3 1.0 0.07 67.1 27.5 0.74
10YR 6/3 SL 20–40 1.29 4.43 ± 0.1 0.9 0.05 57.8 28.1 0.93
10YR 7/8 SL 40–60 1.28 4.15 ± 0.4 0.5 0.02 54.6 14.6 0.67

TP Takana
04◦07′08′8′′ S

069◦55′15′7′′ W

7.5YR 4/4 SL 0–10 1.06 4.66 ± 0.2 1.6 0.14 441.9 213.2 0.89
7.5YR 5/4 SL 10–20 1.10 4.68 ± 0.2 1.5 0.11 470.1 362.0 0.92
7.5YR 5/6 SCL 20–40 1.22 4.2 ± 0.1 0.8 0.07 514.6 148.4 0.98
7.5YR 7/6 SCL 40–60 1.45 4.64 ± 0.4 0.5 0.07 301.0 60.3 0.98

ADJ Takana
04◦06′59′3′′ S

069◦55′16′7′′ W

7.5YR 4/3 SCL 0–10 0.94 4.24 ± 0.3 2.3 0.22 97.6 100.3 0.70
7.5YR 6/6 SCL 10–20 1.13 4.34 ± 0.2 1.8 0.19 82.9 82.8 0.67
7.5YR 7/3 SCL 20–40 1.16 4.39 ± 0.1 1.5 0.15 64.9 132.2 1.03
7.5YR 7/6 CL 40–60 1.20 4.14 ± 0.3 0.5 0.10 51.2 4.7 1.10

1 SL = Sandy Loam, SCL = Sandy Clay Loam, CL = Clay Loam, LM = Loamy Sand, 2 BPCA = benzenpolycarboxylic acids, B5CA = pentacarboxylic acid, B6CA = mellitic acid.
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We identified the TP sites by the abundance of ceramic sherds, charcoal particles, and
a thick A horizon with darker coloration according to the Munsell color chart compared to
the surrounding soils. Studies on ceramic composition have dated the Takana site to be
around 1170 cal yr BP [23], and older dates exist for the middle Caquetá region sites [28].
Before sampling, TP sites were identified by talking to the locals, followed by thoroughly
auguring the whole TP site and surrounding soils. Due to legal restrictions, we did not
open multiple profiles at each site, but consider each TP site with its ADJ soil as one
replicate out of the four sites investigated.

The thickness of the A horizon varied from 0 to 5 cm in most ADJ soils but extended
further down to 40 cm in the TP soils. The A horizons faded into B horizons, which were
also different in thickness (40–60 cm) and showed pockets of distinct grey, brown, and black
colors. The B horizons of the TP sites were almost identical in appearance to surrounding
Ferralsols and Acrisols, as found in other studies [41].

We sampled the ADJ soils within a radius of 500 m from the TP sites. The main criteria
to identify non-TP areas were:

1. The absence of ceramic sherds;
2. Thickness of the A horizon (not more than 10 cm);
3. Lighter color of the A horizon as is a standard practice in many TP studies [7,37,41].

The ADJ soils were located in the same topographical position as the TP sites. The
texture was similar between the anthropogenic and non-anthropogenic soils, suggesting
that both TP and associated reference soils developed from the same parent material [41,53].
The soils were sampled at four depths: 0–10 cm, 10–20 cm, 20–40 cm and 40–60 cm. About
500 g for each depth were collected from each soil group (TP and ADJ) for physicochemical
analyses. A total of 32 soil samples were obtained for physicochemical analyses, corre-
sponding to the 4 depths for each soil group (TP and ADJ) collected at the four locations.

2.2. Analytical Procedures

Soil samples from each site were air-dried and sieved to 2 mm, homogenized, and
finely ground for combustion analyses. Soil pH was determined in 1:2.5 soil:water sus-
pension using a glass electrode. Soil Organic Carbon (SOC) and total nitrogen (N) were
determined after dry combustion using a CNS elemental analyzer (vario MICRO cube;
Elementar, Hanau, Germany). Total elemental phosphorus (P), calcium (Ca), magnesium
(Mg), potassium (K), sodium (Na), Al, and iron (Fe) were determined after Aqua regia
digestion (mixture of concentrated nitric acid and concentrated hydrochloric acid) and
quantified using inductively coupled plasma optical emission spectrometry (ICP–OES;
Ultima 2, HORIBA Jobin Yvon, Longjumeau, France).

Phosphorus (P) fractions were determined by a sequential extraction following a mod-
ified Hedley extraction procedure [61]. The interpretation of P in each extract is based on an
understanding of the action of individual extractants, their sequence, and their relationship
to the chemical and biological properties of the soil [37]. Resin-P is reasonably well defined
as freely exchangeable and bioavailable inorganic phosphorus (Pi). The bicarbonate-extract
presumably removes labile Pi and organic phosphorus (Po) sorbed on soil minerals and a
small amount of microbial P. The sodium hydroxide-extractable P largely represents Al-
and Fe-associated Pi and Po that are strongly held to soil surfaces by chemisorption. Using
dilute HCl particularly isolates Ca-bound Pi, and there is rarely any Po in this extract. All
samples were thus analyzed as follows: A half gram of soil was weighed (in duplicates) into
a 50 mL centrifuge tube, then 30 mL of deionized water and two strips of anion-exchange
resin were added to the tubes. The tubes were shaken for 16 h on a horizontal shaker.
After the resin strips were removed, the tubes were centrifuged for 20 min at 0 ◦C at
2500× g, and supernatant water was discarded. The resin strips were placed in a clean
50 mL tube with 20 mL of 0.5 M HCl, and shaken for 16 h. then, 30 mL of 0.5 M NaHCO3
(pH 8.5) were added to each of the tubes containing the soil samples, vortexed, shaken for
16 h, and centrifuged as above. The supernatant was filtered (Quantitative Filter Paper
ashless, DP 5892125, Hahnemühle, Dassel, Germany). The extraction process was repeated
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using 30 mL of 0.1 M NaOH and 1 M HCl as above. Pi concentration in each extract was
determined colorimetrically on a spectrophotometer (Specord 205; Analytic Jena, Germany)
using the molybdenum blue method [62]. The total amount of P in each fraction was
quantified by inductively coupled plasma–optical emission spectrometry (ICP–OES) with
the same specifications as used for the other elements. Po content was then calculated as
the difference of total and inorganic P.

Black carbon (BC) was assessed in all samples using benzene polycarboxylic acids
(BPCAs) as molecular markers [48] and following the revised protocol of [49,63]. After
purification, the BPCAs were silylated and analyzed with a Hewlett Packard 6890 gas
chromatograph (Hewlett Packard GmbH, Waldbronn, Germany) equipped with a flame
ionization detector and a HP-5 capillary column (30 m, 0.32 mm i.d., 0.25 mm film thickness,
Macherey-Nagel, Düren, Germany; for oven program see [49]). Deviation from duplicate
analysis was <5% and recovery of the internal standard (citric acid) was always >79%.
As a measure of the chemical structure and condensation of BC particles, we analyzed
the ratio of BPCAs with 5 or 6 carboxyl groups (B5CA:B6CA). To convert BPCA to BC, a
conversion factor of 2.27 was used [48]. BC contents of each sample were then normalized
to the respective SOC contents.

Amino sugar analysis was prepared according to the protocol of Zhang and Amelung [64].
The method involves hydrolysis with 6 M HCl for 8 h at 105 ◦C. After cooling, the samples
were filtrated, concentrated with a rotary evaporator at 1.5 MPa and 40 ◦C, re-dissolved
in millipore water, adjusted to pH 6.6–6.8, and centrifuged (1500 g for 10 min). The clear
supernatant was freeze-dried, washed three times with 1.5 mL methanol, transferred
into reactivials, and then evaporated with a stream of pure nitrogen (>99.9 n/n%). After
transformation to aldononitrile derivatives, the amino sugar derivatives were separated
by gas chromatography–mass spectrometry (MSD: 5973, Agilent Technologies, Böblingen,
Germany) with a column OPTIMA®5 MS (Machery-Nagel, Düren, Germany). Helium was
used as a carrier gas with a flow rate set at 1.1 mL min−1 at 0.8 bar. The split ratio was 30:1.
Final detection was then performed using mass spectrometry after electron ionization (EI)
and selected ion monitoring (SIM) mode, looking at mass-to-charge ratios (m/z+) of 89, 99,
236, 237, 264, 265 and 356, 357. Myo-inositol was added to the samples after hydrolysis and
endosulfane was added to the derivatized reagent to assess the recovery of myo-inositol: it
averaged 45.5 ± 18.3%.

2.3. Calculations

Element stocks were calculated as the mass of the element:

Melement = conc × ρb × T × 10,000 m2 ha−1 (1)

where Melement is the element mass per unit area (kg ha−1), conc is the element concentra-
tion (kg ton−1), ρb is bulk density (ton m−3) and T is the thickness of the respective soil
layer (m). The conversion factor of 10,000 m2 ha−1 is used to scale stocks to the hectare.

All data were analyzed using Stata/SE 14.2 for Mac (64-bit Intel). After testing for
normal distribution using the Shapiro–Wilk test, we assessed the statistical reliability of the
relationship between different soil samples with multiple regressions using the soil types
(TP or ADJ), site locations in Colombia (Araracuara, Villa Azul, Peña Roja, Takana) and
the different depths to predict specific changes on physicochemical soil parameters. All
data of the regression model were tested for normality and homoscedasticity of residuals.
Influential values were predicted and cut off using Cook’s D overall measure of influence.
The same procedure as for the soil parameters was carried out for the linear regressions
to assess the reliability of the effect of the type of soil, location and depth on the different
element stocks. The marginal predictions of generalized mixed-effects linear model (GLM)
were used to plot significant differences and assess the confidence intervals (CI). Specifically,
we used mixed-effects GLM’s (GLMM) to test the effect of the type of soil (TP or ADJ, fixed
effect) and the site’s locations (4 sites, random effect) and the depths (4 depths, random
effect). In the structure of the GLM, the depths were nested within each site and each site
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nested within soil group (TP or ADJ). Consequently, the paired sampling of TP and ADJ
soils at each site was considered in the model. When the data of a specific physicochemical
parameter did not fulfill the normality assumption, a two-sample Wilcoxon rank-sum
(Mann–Whitney) test was used to assess the reliability of the effect of the type of soil (TP or
ADJ) on the GLM. To assess the reliability of the model comparing the effect of the location
and depth, a Kruskal–Wallis (equality of populations) rank test was used when normality
of the residuals was not given.

3. Results
3.1. Basic Chemical and Physical Soil Parameters

The Munsell color evaluation confirmed the darker coloration of TP compared to ADJ
soils (Table 1). The darker colors at a depth between 20 cm to 40 cm generally coincided
with the presence of ceramics, although some potsherds were also found on the surface of
the topsoil (Figure S1, Supplementary Material). Both TP and ADJ soils had a low pH value
with no significant differences between the two types (z = −1.716, p = 0.086), although
taking a threshold of pH 4.5 for Al toxicity, the ADJ soils were below, while TP soil samples
tended to be slightly above, the threshold (pH = 4.52).

Concentrations of SOC and total P were all significantly (p < 0.0001) higher in the TP
profiles than in the ADJ soils. GLM data on the effect of location and depth revealed sig-
nificant differences between TP and ADJ soil samples (df = 1; X2 = 11.13; p < 0.0009),
between the different sites (df = 3; X2 = 56.24; p < 0.0001) and with depth (df = 3;
X2 = 111.76; p < 0.0001). Total P concentration decreased according to locations in the
order Peña Roja > Araracuara > Takana > Villa Azul, with total P concentration ranging
from 1289 mg kg−1 in the Peña Roja TP soil profile to 31.8 mg kg−1 in the Villa Azul adja-
cent soil profile. Differences in total P concentration between TP and ADJ soils significantly
decreased in the order Araracuara > Takana> Peña Roja > Villa Azul.

No significant differences between the TP soil N concentrations and those of the
surrounding soils (z = −0.358; p = 0.72) were found. Yet, GLM results suggested significant
N concentration differences between sites (df = 3; X2 = 158.47; p < 0.0001) and significant
reduction with depth (df = 3; X2 = 95.85; p < 0.0001). As residuals were non-normally
distributed, an additional Kruskal–Wallis test confirmed inter-site differences (df = 3;
X2 = 13.97; p = 0.0029) and a correlation of depth with lower N concentration (df = 3;
X2 = 10.94; p = 0.012).

3.2. Element and Black Carbon Stocks

A linear model that considered the effect of the interaction between the type of
soil and the location and depth of the soil samples best fitted all element stock values
(p < 0.0001; R2 = 0.83–0.93). Total SOC stocks in 0 to 60 cm depth in the TP soil profiles
differed significantly from those in the ADJ soils (Figure 3a) (df = 1; X2 = 20.03; p < 0.0001).
Significant differences were recorded between BC concentrations of TP and ADJ soil
profiles (p < 0.0001) as well as between different depths (p < 0.05), thus supporting the
visual differences in BC concentrations for the various soil profiles (Figure 2).



Sustainability 2021, 13, 7088 8 of 16
Sustainability 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 
Figure 2. Soil morphology and black carbon (BC) contents in Terra Preta and adjacent (ADJ) soils at 
the four study sites ((a–d); see Table 1 for details on soil properties). Due to incorporation of the 
images into the graph, appearance of colors in the photo may differ from Munsell colors recorded 
in the field. 

There was, however, no consistent difference in B5CA:B6CA ratios among TP and 
ADJ soil sites. As a mean across all sites, differences between the soils were significant (z 
= −3.08; p = 0.002), with about three times larger BC stocks in TP profiles (5021.2 ± 610.7 kg 
ha−1 for the 95% confidence interval) than in the ADJ soils, as a mean of the model predic-
tions (1690.11 ± 590.6 kg ha−1) (Figure 3b). 

The P stocks in the two different soil types showed the most considerable and signif-
icant differences (z = −4.28; p < 0.0001) between all investigated parameters, with mean P 
stocks around seven times larger in TP profiles (1103.43 ± 93.73 kg ha−1) than in ADJ soils 
(150.69 ± 87.4 kg ha−1), and this difference was highly significant (Figure 3c). 

Figure 2. Soil morphology and black carbon (BC) contents in Terra Preta and adjacent (ADJ) soils at the four study sites
((a–d); see Table 1 for details on soil properties). Due to incorporation of the images into the graph, appearance of colors in
the photo may differ from Munsell colors recorded in the field.

There was, however, no consistent difference in B5CA:B6CA ratios among TP and ADJ
soil sites. As a mean across all sites, differences between the soils were significant (z = −3.08;
p = 0.002), with about three times larger BC stocks in TP profiles (5021.2 ± 610.7 kg ha−1

for the 95% confidence interval) than in the ADJ soils, as a mean of the model predictions
(1690.11 ± 590.6 kg ha−1) (Figure 3b).

The P stocks in the two different soil types showed the most considerable and signifi-
cant differences (z = −4.28; p < 0.0001) between all investigated parameters, with mean P
stocks around seven times larger in TP profiles (1103.43 ± 93.73 kg ha−1) than in ADJ soils
(150.69 ± 87.4 kg ha−1), and this difference was highly significant (Figure 3c).
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(c) phosphorus (P) in the Terra Preta (TP) and adjacent (ADJ) soils under study.

3.3. P Fractions

Only fractions of the total nutrient contents are available to plants; therefore, we
performed a sequential P fractionation [61]. The interaction between the type, location, and
the depth of the soils sampled explained 86% of the variance observed in P fraction contents.
Elevated amounts of total P in TP soils thus corresponded to higher P concentrations in each
of the fractions, though to a different degree. Plant-available forms of Free Exchangeable Pi
(FE-Pi) and Adsorbed Pi (Ad-Pi) were significantly higher by a factor of 15 in TP compared
with ADJ soils (FE-Pi: z = −4.25, p < 0.0001; Ad-Pi: z = −3.78, p < 0.0002). Organic P
(bicarbonate-Po + hydroxide-Po) contents were elevated by a factor of seven in relation
to the ADJ soils (z = −4.23, p < 0.0001). TP soils also showed a shift of P proportions
linked to a greater fraction of stable P pools, such as P extractable with diluted HCl (Ca-P)
and concentrated acid, and acid-digested P (Occluded P). High inter-site differences (as
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indicated by error bars in Figure 4) and very little P content were detected in ADJ soils
(Figure 4).
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Figure 4. Phosphorus fractions in Terra Preta (TP) and adjacent (ADJ) soils. Freely exchangeable
inorganic P (Pi) = resin-Pi, adsorbed Pi = bicarbonate (0.5 M NaHCO3)-Pi +hydroxide (0.1 M NaOH)-
Pi, organic P (Po) = bicarbonate Po + hydroxide-Po, calcium-bound P = dilute acid (1 M HCl)-P,
and occluded P = concentrated-acid (97% HCl) and acid-digested (1:3 v/v concentrated HNO3:
concentrated HCl mixture) P for the TP and ADJ soils. The error bars represent the 95% confidence
intervals for P stocks of adjacent and TP soils across all four sites.

3.4. Amino Sugars

The mean recovery of the first internal standard (myo-inositol) analyses was only 50%
and thus below that commonly found for other samples when performing these analyses in
our lab (the typical recovery usually exceeds 70%, see, e.g., [64,65]). Hence, the high content
of oxides apparently led to higher losses of the internal standard and, thus, likely also of
amino sugars during analyses. Similar problems had also occurred earlier (unpublished
data from MSc thesis) for Brazilian TP soils [66]. As with a low recovery of 50% we do not
feel confident to exclude that amino sugar losses were compound-specific, we thus refrain
from evaluating amino sugar patterns. The concentrations of amino sugars, however,
were not related to analytical recovery and could thus serve at least as an indicator of
necromass accrual. Also, the magnitude of amino sugar contents was in similar magnitude
(0.19–7.83% of amino sugar N contribution to TN) as formerly reported by Glaser (1999)
and reported in [67], who identified 30% of TN in TP soils, of which 4–7% was amino
sugar N. Intriguingly, but similar to total N, amino sugar N contents were not significantly
different among TP and ADJ soils (Figure S2, Supplementary Materials; z = 1.13; p = 0.26).

4. Discussion
4.1. Morphological Variation and pH Values in TP Profiles

The differences in colors observed between the four Colombian TP and ADJ soil
profiles confirm both earlier reports in the TP literature [20,68] and a basic variability
among TP sites. The topsoil’s dark colors are no guarantee for the identification of TP [13];
however, the presence of potsherds in the TP soil matrix points to their anthropogenic
origin. Nevertheless, categorizing TP from its color nuances is difficult because TP indicates
the epicenter of long-term waste discard areas that fades away into lighter colorations, as
found in Terras Mulatas towards the edge of the discard areas [16]. The whole area is then
surrounded by the ADJ soils. At the ADJ site at Aracuara, the colors were darker and SOC
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contents were higher than in other ADJ soils (Table 1), suggesting that the Aracuara ADJ
soil could have been part of the settlement though not of the main discard area (considering
the absence of artifacts), but more research is needed to categorize them as Amazonian
Brown Earths (ABE or Terra Mulata). Hence, the qualitative characteristics of Munsell scales
make it difficult to translate color schemes into physicochemical soil properties, which
we measured.

We recognize the limitations of our data such as the limited number of sampling sites.
However, as the four sites were separated by several kilometers distance, we assume that
these sites represent independent replications and depth was included as a random effect
in the mixed effects modeling [69]. However, the enrichment of specific soil properties
in TP samples was a clear pattern in our data and results. The increase of specific soil
properties in TP has also been reported in other studies related to specific human activities.
For example, Schmidt and colleagues [31] show that the original soil underwent particular
modifications according to various activity areas (Table S1).

Our results suggested that there seems to be a strong effect from the parent material
represented by the TP sites’ location. This effect can also be observed in [31], where the
soils from adjacent forest areas show much higher concentrations of OC (35 g kg−1) and
P (1077 mg kg−1) compared to the adjacent soils sampled in Colombia, which presented
much lower average TOC (11 g kg−1) and P (88 mg kg−1) concentrations. Therefore, a
portion of the high nutrient concentrations in the Schmidt et al. study [31] might have its
source in the richness of surrounding soils compared to the parent materials where TP soils
in Colombia formed. TOC and P concentrations similar to those of Colombian TP sites can
be found in the Cipoal do Araticum site in the lower Trombetas River, Brazil (see [31]).

Some of the highest concentrations of P in Colombian TP, for example, were identi-
fied in the 20–40 cm depth interval. The interval differences, between our methodology
(10–20 cm intervals) compared to the 5–10 cm intervals, might be causing a dilution effect.
Unfortunately, Schmidt and colleagues [31] did not calculate nutrient stocks to exclude
dilution as a plausible cause of the differences. Stocks are very useful in agronomy but
frequently not calculated in archaeological surveys due to the great variability in the size
of TP sites that can range from less than a hectare up to several square kilometers [44].

Frequently, TP soils have a pH value in the range of 5.2 to 6.4, suggesting lower
levels of exchangeable Al and higher productivity of crops [70]. Yet, there are also cases
of TP sites with moderate [20] and even strong acidity down to pH 4.2 [26], or with
unaltered pH value [16]. Our TP profiles are such examples of strong acidity at most
depths (Table 1). As pH values range around the critical Al toxicity threshold (pH = 4.5),
it is questionable whether our four TP sites in the Colombian Amazon were intentionally
created for agricultural purposes.

4.2. Organic Matter, Black Carbon and Phosphorus Stocks in TP Profiles

Despite the similar pH values to ADJ soils in all soil profiles, we found that SOC and
nutrient contents were significantly enriched in the TP soils, corroborating earlier findings
from elsewhere in the Amazon basin [20,46,70,71]. As our statistical analyses clearly
demonstrated, discrimination among different TP profiles primarily relied on the contents
of total P, SOC, and BC, as also reported for other parts of the region [16]. Yet, the average
increase in SOC content was less than 30%, thus questioning—at least for Colombia—
claims by Glaser and Birk [44] that three-times-higher SOM levels are commonly found
in TP relative to surrounding soils, though incidentally we found such differences in BC
stocks (Figure 3). Clearly, enrichment of BC appears to be a more sensitive indicator for
identifying TP soils than bulk SOC [46].

In three of four cases, the BC contents in the TP profiles peaked at lower depth, thus
pointing likely to maxima of past waste enrichments. Yet, even for these BC maxima, the
contents varied up to a factor of three within the different TP soils. Across different profile
depths, variations were partly even higher (Figure 2), without clear differentiation in BC
quality. Differences in the size of ancient local populations may have led to the different
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degrees of waste discards, meaning that each TP profile possibly constitutes a unique
fingerprint of ancient local settlement rather than contributing to globally valid properties
of these Anthrosols.

Waste discard frequently goes along with an enrichment of P forms. Yet, only few
studies addressed P fractions in TP soils, and to the best of our knowledge, so far no research
has focused on P forms of TP soils outside of the Brazilian Amazon. Sato et al. [37] found
pronounced enrichment of CaP forms (2141 mg kg−1 and 6994 mg kg−1) in two of their four
studied Anthrosols, while other TP soils showed very low calcium-bound P concentrations
(21 mg kg−1 and 2 mg kg−1). However, easily extractable P forms (bicarbonate and Na-
hydroxide-extractable P) were always higher than in ADJ soils (see [37]; p. 199), which
was also the case in our TP samples from the Colombian Amazon. Colombian TP soils
also confirmed the enrichment of Ca-bound P stocks (Figure 4), which, for Brazilian TP
sites, had been assumed to be of biogenic origin [34,35,68]. Other P fractions dominating
our TP soils correspond to rather stable P pools, such as occluded P (Figure 4). This does
not necessarily mean that P had been added as such, but rather that, due to ongoing P
transformations in these fertile soils, stable P was formed (Figure 4; [37]).

Formation of stable P forms may involve abiotic aging, like slow diffusion of inorganic
P into the interior of oxidic aggregates [72] as well as slow transformations of organically
bound P [73], which altogether may result in changes of P distribution among soil col-
loids [74]. The latter process correlated with changes in pH values, which we did not
observe in our study. Transformations of SOM, in turn, usually go along with changes in
amino sugar concentrations as markers for microbial residues, which were not significantly
enriched in the TP soils. Hence, it seems reasonable to assume that the formation of stable P
forms in TP sites likely involved to a considerable extent abiotic process, such as occlusion
of oxidic structures by aggregate reformation and (solid-state) diffusion processes [75].

Studies on the long-term persistence of SOM in TP suggest that interaction of P, BC
and Ca might play a more important role than BC alone in the protection of SOM [76].
Indeed, studies on the recalcitrance of SOM suggest that association of organic matter with
soil minerals is likely to be the predominant mechanism of SOM stabilization [77], resulting
in a confounding effect between the high concentrations of P and Ca usually observed in
TP and the still-debated chemical recalcitrance of BC alone.

5. Conclusions

Terra Preta soils with unique SOC, BC, and P enrichment were found in two regions of
Colombia. However, the degree of element enrichment varied across the sites, both in TP
and in the surrounding soils. Hence, no generalization on TP soil properties can be made
for the studied TP sites in the Colombian Amazon. Instead, it seems that higher accrual of
P and BC in TP soils also correlates with high P and BC contents in the surrounding soils,
declining in the order Araracuara > Takana > Villa Azul (Peña Roja being an exception),
indicating that larger pre-Columbian populations particularly settled in areas with better
soils. Still, even if populations were settling near or around better soils, to better understand
the dynamics of TP formation, studies on waste decay and formation of middens should
be implemented.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su13137088/s1, Figure S1: Potsherds found in one of the sites (PR), Figure S2: Change in
amino sugar concentrations with depth, Table S1: Comparison of average TP soil analyses results
between activity areas in the Upper Xingu (Central Amazonia) (Modified from [31]).
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