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Abstract: The Data Driven Approaches to Crime and Traffic Safety approach identifies opportunities
where a single enforcement deployment can achieve multiple objectives: reduce collision and crime
rates. Previous research focused on modeling both events separately despite evidence suggesting a
high correlation. Additionally, there is a limited understanding of the impact of Mobile Automated
Enforcement (MAE) on crime or the impact of changing a deployment strategy on collision and
crime dates. For this reason, this study categorized MAE deployment into three different clusters.
A random-parameter multivariate Tobit model was developed under the Bayesian framework to
understand the impact of changing the deployment on collision and crime rates in a neighborhood.
Firstly, the results of the analysis quantified the high correlation between collision and crime rates
(0.86) which suggest that locations with high collision rates also coincide with locations with high
crime rates. The results also demonstrated the safety effectiveness (i.e., reduced crime and collision
rates) increased for the clusters that are associated with an increased enforcement duration at a
neighborhood level. Understanding how changing the deployment strategy at a macro-level affects
collision and crime rates provides enforcement agencies with the opportunity to maximize the
efficiency of their existing resources.

Keywords: Mobile Automated Enforcement; traffic safety; Tobit model; random parameter; multi-
variate; collision rates; crime rates; photo radar

1. Introduction

Enforcement agencies are pressured to create programs to increase safety by reducing
rates of collisions and crime but they are typically asked to complete these goals using
limited and strict resources and budgets. Early research has shown that the highest rate
of traffic citations per officer experienced the lowest rates of crime as well as a reduced
frequency and severity in traffic crashes [1]. The underlying premise is that the presence of
more traffic officers provided more opportunities for them to identify high-risk drivers as
well as discourage the presence of criminals in both targeted and surrounding areas. This
phenomenon led to the creation of a new data-driven approach that integrates location-
based traffic collision and crime data to optimize their deployment strategy and resources.
This new approach is referred to as the Data Driven Approaches to Crime and Traffic Safety
(DDACTS).

Any successful DDACTS program has three distinct elements: (1) targeting locations,
(2) perceived correlation between collisions and crime, and (3) creating a visualization or a
map. The first element includes a shift in the premise of where enforcement occurs. Instead
of focusing enforcement efforts by targeting high-risk individuals, the DDACTS focuses on
high risk locations. This shift addresses any concerns that exist as a result of preconceived
notions regarding how enforcement is conducted and rather emphasizes that the approach
is scientific and based on informative analytics [2].
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The second element recognizes that locations with a high frequency of crashes also
overlapped visually with locations with a high frequency of crime. Michalowski [3]
explained this relationship by suggesting that the premise for this is the aggressive and
violent tendencies of people that manifests itself in all aspects of their life. This relationship
is intuitive and logical despite that it has only been quantified recently in the literature [4,5].

The final element focuses on creating tools to help enforcement agencies visualize this
overlap between collisions and crime to analytically identify the high crash locations and
hotspots. These tools vary in complexity, ranging from a display of collision and crime
counts on a map to more statistically advanced techniques which involve accounting for
spatial autocorrelation. Together, these three elements form the framework for enforcement
agencies so they could incorporate the DDACTS model in the deployment of their policing
resources [6].

Evaluations of the DDACTS programs found significant reductions in events, colli-
sions, and crime [7]. However, there were limitations related to the data, methodology,
and statistical rigor that were applied [8]. The first limitation was related to the level of
aggregation; most of the analysis was conducted at a national or city-level. This type of ag-
gregation ignores trends in collisions and traffic volumes as well as any other confounding
variables that could impact the results. This means that a more appropriate unit of analysis
is required to better inform a strong deployment strategy. The second limitation is the type
of analysis that was conducted. Most of the research utilized simple before/after evalua-
tion which suffers from site-selection bias and the regression-to-the-mean effect [9,10]. A
more statistically rigorous methodology can address these limitations and can accurately
quantify the effectiveness of the DDACTS programs.

Another limitation of previous work was the focus on manned enforcement; none of
the DDACTS programs highlighted or isolated the impact of mobile automated enforce-
ment (MAE) specifically. Previous work has shown the impact that MAE has on improving
safety by namely reducing collisions and criminal incidents [5], however, there is a need to
further explore the impact of the deployment strategy itself on collisions and crime rates to
optimize the use of the enforcement resources. For this reason, the objective of this paper is
to determine the impact of MAE deployment strategy on both collision and crime rates
by investigating the ratio of how often to visit a site per year and the length of time spent
enforcing a site for each visit, at a neighborhood level.

2. Previous Work
2.1. Data Driven Approaches to Crime and Traffic Safety (DDACTS)

When researchers generated collision and crime hotspots, the results indicated that
many locations exhibited a high frequency of both events. The result suggested that
targeting those common hotspots could be an effective tool to focus the deployment of
enforcement resources. The most common approach to generate the hotspot locations (i.e.,
locations that experience both a high frequency of crime and collisions) using DDACTs
is the kernel density method. However, this approach is quite simplistic since it uses the
observed frequency of criminal incidents and collisions [4]. Additionally, this approach
cannot accurately identify a location as a hotspot since it does not account for regression-
to-the-mean bias and other confounding factors [11]. Takyi et al. [4] proposed addressing
these limitations by developing two sets of negative binomial models to separately predict
collisions and crime. Based on these results, the authors identified collision and crime
hotspots at a zonal level. These locations, referred to as the DDACTS locations, were then
prioritized for enforcement activities to reduce collisions and crime, concurrently.

Past evaluations of the DDACTS programs have demonstrated that this program
was effective at reducing collisions and criminal incidents [7]. In Baltimore, Maryland,
a reduction of 16.6% was found in burglaries, 33.5% in robberies, and 40.9% reduction
in vehicle thefts as a result of the enforcement agency’s DDACTS deployment strategy.
Similarly, LaFourche Parsh, Louisiana, reported a decrease in collisions (between 12.8%
and 14.7%) as well as a decrease in crime (9.4%), at locations where the DDACTS approach
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was applied [12]. St. Albans, Vermont, saw a reduction of 27–38% in crime and 19–25% in
collisions [13]. Metropolitan Nashville, Tennessee, also reported success with the DDACTS
program. They experienced their lowest crime rate in 1985 and the lowest fatality collisions
in five years [14].

The results of the evaluations that have been completed demonstrate the effectiveness
of the DDACTS approach. However, each jurisdiction followed a different enforcement
strategy. The operational plans differed in the number of officers that were assigned to
this program, as well as the duration of the enforcement period. Additionally, each police
force had different enforcement methods which varied across agencies (e.g., the St Albans
police force implemented a Neighborhood Watch program) and had different levels of
public awareness and educational campaigns to increase the visibility of this program.
Due to all these different elements, isolating the impact of one strategy and evaluating its
effectiveness is quite challenging and has not been possible.

2.2. Automated Enforcement

Speed is at the core of traffic injuries and fatalities [15]. Speed and the impact it has
on the severity of the outcome of a collision is well investigated and has been thoroughly
documented in the literature [16]. The Nilsson Power model, a commonly used approach to
predict the change in collisions resulting from a change in the speed of a vehicle, suggests
that a 1 km/h increase in the average speed of a vehicle is associated with an increase
of 4–5% increase in fatal collision occurrence [17]. To address this concern, enforcement
agencies developed different enforcement approaches to manage and reduce speeds on
the roads. These approaches vary from manned enforcement to automated enforcement to
a combination of both. Manned enforcement involves a police officer who uses a speed
measurement device to determine which vehicles are exceeding the speed limit. However,
this approach is resource-intensive, costly, and could pose a significant risk to the officer
(e.g., if enforcement is needed on high-speed roads) [18]. To address these challenges, MAE
programs were devised to be used in combination with manned enforcement to create a
complement of different enforcement tools.

MAE programs have been shown to improve safety and previous research demon-
strates their safety impacts. In Victoria, Australia, an evaluation of mobile speed cameras
revealed a reduction of 20% in daytime injury and fatal crashes, and 27.9% in collision
severity, statewide [19]. In British Columbia, Canada, an increase in the photo radar enforce-
ment presence reduced daytime unsafe speed-related collisions, daytime injuries by 11%,
daytime fatalities by 17%, and speed by 2.4 km/h [20]. In France, the use of photo radar
led to a significant reduction in fatal and non-fatal injuries [21]. While these evaluations
demonstrate the safety benefits associated with using MAE programs, aggregating the
results at a state or a national level does not account to changes in collision trends, traffic
volume, as well as other confounding factors that can negatively impact the quality of the
statistical results [22,23].

To address this high level of aggregation, MAE programs were also evaluated at a
road segment level. In South Wales, United Kingdom, an evaluation of the use of MAE
estimated a reduction of 51% in injury collisions for road segments 500 m downstream
and upstream of the location of the camera [24]. In Friesland, Netherlands, a similar
evaluation showed a 21% reduction in injury collisions at locations where the cameras
were located [25]. In Edmonton, Canada, an evaluation of the effectiveness of the MAE
program showed collision reductions that ranged between 14% and 20% [18]. The results
also indicated that a higher level of collision reduction was associated with sites with longer
deployment hours. Further investigation of the impact of the enforcement indicators on the
program’s outcomes showed that as the number of speed related collisions decreased, the
number of enforced sites and issued tickets increased [26]. Recent research also investigated
the effectiveness of MAE on roads with different speed limits [27]. A meta-analysis was
conducted to evaluate the effectiveness of MAE as well as point-to-point cameras and
revealed that the use of MAE resulted in a 20% reduction in crashes [28]. While all of these
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studies provide further evidence of the success of MAE programs, at such a micro-level,
inference regarding an overall deployment strategy is challenging to make. For this reason,
a more appropriate unit of analysis is needed.

Recent research identified that a more robust unit of analysis to address the concerns
associated with high-level aggregation (i.e., at a national/city level) as well as the micro-
level aggregation (i.e., intersection). Ibrahim and Sayed [5,29] investigated the impact of
MAE on collisions at a Traffic Analysis Zone (TAZ) level. The authors found that collision
reductions for each TAZ were associated with spending a longer time enforcing a site
for each visit in a deployment. The authors also found that an increase in the number of
tickets that were issued to drivers who exceeded the speed limit resulted in a decrease in
all collision severities.

Most of the research on MAE programs has been focused on studying their impact on
speed and collisions; one study did investigate their impact on crime [29]. In this study,
the authors quantified the correlation between collisions and crime. The results of their
analysis also revealed that an increased enforcement presence resulted in a reduction in
collisions and crime. While these results are very promising, further investigation is needed
to fully understand the impact of the deployment strategy not only on collisions but also
on crime. Since MAE is part of a complement of enforcement strategies, understanding the
impact that MAE has on crime would assist in the planning of their resources as it allows
agencies with an opportunity to achieve multiple objectives from a single deployment.

3. Methodology

While more research has been focused on modeling collision frequencies, recent
research has shown that Tobit regression models provide some advantages [30,31]. Instead
of using collision counts, this technique considers collision rates which neutralizes the
effect of the exposure variable and measures the risk of collision involvement [32–34] and
was first applied by Anastasopoulos et al. [29] in the field of traffic safety. Since then,
other studies applied the Tobit model to understanding the influencing factors of collision
rates [33,35].

However, traditional Tobit models ignore the unobserved heterogeneity that is present
across observations in the data. Ignoring this inherent variability could lead to incorrect
inferences and may lead to a bias in parameter estimates. To address this, researchers have
proposed developing random parameter Tobit models to analyze collision rates and to
overcome this limitation [30,35–41]. More recent studies have also attempted to account
for the correlation between collision severities by developing multivariate Tobit models.
Anastasopoulos [42] developed a random parameter multivariate Tobit model to account
for the unobserved heterogeneity of collision injury rates by severity. Other research
also developed a random parameter multivariate Tobit model to analyze the crash rate
by injury severity and found significant heterogeneous effects of estimates which varied
across observations [43,44]. Guo et al. [45] modeled the correlation and heterogeneity in
crash rates by different collision types by developing a random parameters multivariate
Tobit model.

Unlike analysis of collision frequencies, there were no studies conducted to analyze the
impact of automated enforcement on collision and crime rates. For this reason, a random
parameter multivariate Tobit model will be developed in this paper. The correlation
between collision rates and crime rates can be confirmed using this model and the impact
of changing the deployment parameter (e.g., increased time spent enforcing a site) can
be understood.

The random parameter multivariate Tobit model for fitting collision and crime rates is
given as:

Yk∗
i = βk

i0 + βk
i1Xk

i1 + βk
i2Xk

i2+, . . . ,+βk
ijX

k
ij + εk

i (1)

where Yk
i is the dependent variable for the kth event (k = 2, 1 for collision rate, and 2

for crime rate), Xk
i is the explanatory variable for observation i, and βk

i is the coefficient
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corresponding to the kth event. The random parameters
(
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ij

)
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4. Data Description

In this paper, the macro-level models were created based on 206 neighborhoods in
the city of Edmonton (COE). Each explanatory variable was aggregated based on the
neighborhood geographical boundaries that were provided by the COE.

4.1. Crime and Collision Data

The crime data were extracted from the COE Open Data Catalogue. As part of the
crime assessment conducted by Edmonton’s police force, seven indicators of crime are
captured and monitored by the neighborhood. Those include: the number of assaults,
number of break and enters, number of robberies, number of sexual assaults, number of
reported incidences of thefts from vehicle, number of reported incidents of vehicle thefts,
and number of homicides. These criminal indicators were grouped into two categories:
personal and property crimes. A personal crime is defined as a criminal incident that is
committed against an individual; conversely, a property crime is defined as an incident that
is related to a property. This study focused on personal crime. Since the exact location of
these criminal incidents was not provided due to privacy concerns, the aggregate number
was used for each neighborhood.

Collision data were extracted for each of the 206 neighborhoods based on the COE
database. A collision is defined by an event that involved at least one motor vehicle which
resulted in at least CAD 2000 worth of damage and which occurred on public road right of
way within the COE boundaries.

All data points were extracted for both collisions and crime for the same three-year
period: 2013 to 2015 inclusive. Table 1 summarizes the collision and crime data that were
used in this study.

Table 1. Summary of crime and collision data.

Variable Symbol MIN MEAN MAX STDEV

# Criminal Incidences (3 yrs) crime 8 305 1371 177

Total # Collisions (3 yrs) collisions 17 314 1629 220

4.2. Exposure Data

In order to account for traffic volumes and to calculate the collision rate, Vehicle-KM-
Traveled (VKT) data were needed. These data were obtained from the COE’s Emme/2
model output files. The EMME/2 is a travel forecasting and transportation planning model
which includes four different stages: trip generation, trip distribution, trip mode, and
finally, trip assignment [46]. The model outputs include a variety of different transporta-
tion planning indicators including the VKT data which can be aggregated by zone or
neighborhood. This VKT variable was used to model traffic exposure for the collision data.

Alternatively, the traffic volume cannot be used as an exposure variable for crime due
to the lack of relationship between increased traffic volume in a neighborhood and the rate
of criminal incidents. Previous research on the topic of development models to predict
different crime indicators used the population data as a means of exposure. Therefore,
for this paper, the results of the 2014 Municipal Census in the City of Edmonton were
used to calculate the crime rate. Since the population data were already aggregated by
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neighborhood, no further analysis was needed. Table 2 summarizes the exposure variables
for both collisions and crime.

Table 2. Summary of volume and population data.

Variable Symbol MIN MEAN MAX STDEV

Vehicle KM Traveled VKT 1152 6296 26,998 4196

Population pop 345 3263 15,038 1950

4.3. MAE Data

The final dataset that was used for this analysis was the MAE data shown in Table 3.
The COE uses photo radar devices that are installed in marked and unmarked vehicles
to conduct speed enforcement. A trained peace officer is in the vehicle at all times to
observe and make a note of violating vehicles. The officers use the devices to monitor and
record any violations by vehicles that exceed the speed limit of the road. The data used
in this paper are related to the COE’s deployment strategy and include two indicators:
hpersite, the number of hours spend enforcing a site for each visit, and vpersite, the number
of times a site was visited. These indicators characterize the enforcement strategy and
were aggregated by neighborhood to match the other datasets that were generated in this
analysis. The time period for the extracted data was taken from 2013–2015 inclusive. The
assignment of the enforcement data followed the same process as the collision data.

Table 3. Summary of MAE data.

Variable Symbol MIN MEAN MAX STDEV

Average # hours spent enforcing a site hpersite 13 44 495 71

Average # of visits for each
enforcement site Vpersite 5 30 174 25

The ratio of hours of enforcement per
site to the frequency of visits per site ratio 1 2.3 3.2 0.5

Since the two variables hpersite and vpersite are clearly highly correlated, they were
not used directly in the model. Instead, a new indicator was the calculated ratio which
was ratio of the hours of enforcement per site to the frequency of visits per site. In order
to account for the heterogeneity, the deployment parameter ratio was divided into three
different clusters. These clusters were generated using the FASTCLUS Procedure in SAS.
This approach performs a disjoint cluster analysis based on the distance that is computed
from one or more quantitative variable [47]. As a result, the data were separated into the
three different clusters, the first cluster is ratio between 1 and 1.9 h of enforcement per visit
per site, the second cluster is ratio between 1.9 and 2.7 h of enforcement per visit per site,
and the third and final cluster is ratio between 2.7 and 3.2 h of enforcement per visit per site.

5. Results and Discussion

To understand how varying the MAE deployment strategy impacts collision and crime
rates, a random parameters multivariate Tobit model was developed. Table 4 summarizes
the parameter estimates. The posterior summaries were computed using WinBUGS with
two chains with 100,000 iterations with a burn-in sample of 10,000. The results of the BGR
statistics and the ratios of the Monte Carlo errors compared to the standard deviation of
the estimates and the model parameter trace plots indicated convergence. As shown in the
table, the parameter estimates were all statistically significant at the 95% credible interval.
The coefficient of the ratio indicator is positive for cluster 1 and negative for clusters 2 and 3;
this suggests that longer enforcement duration per visit was associated with lower collision
rates. This indicates to agencies that the highest safety benefits can be yielded from a single
deployment when enforcement is conducted for a longer time period per shift per visit.
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Table 4. Parameter estimates and 95% confidence intervals.

Variable Estimate STDEV 95% Confidence Interval

Collisions

b0 [Cluster 1] 29.3 6.5 23.0 45.3
Intercept b0 [Cluster 2] 135.4 15.9 117.0 170.1

b0 [Cluster 3] 36.3 4.5 32.1 50.1

Ratio
b1 [Cluster 1] 18.4 3.2 14.2 26.2
b1 [Cluster 2] −43.5 4.8 −38.2 −54.1
b1 [Cluster 3] −26.2 2.6 −33.8 −23.5

Crime

b0 [Cluster 1] 15.8 4.0 6.6 20.5
Intercept b0 [Cluster 2] 85.0 18.7 40.9 102.7

b0 [Cluster 3] 20.5 6.6 7.1 28.8

Ratio
b1 [Cluster 1] 11.8 2.0 7.2 14.1
b1 [Cluster 2] −28.1 5.7 −14.8 −33.6
b1 [Cluster 3] −17.0 4.0 −22.2 −8.9

Correlation

0.86

DIC

The results are also similar for crime rates; where the coefficient of ratio is also negative
for clusters 2 and 3. This indicates that an increased presence of enforcement activity is
associated with a reduction in the crime rate. This also confirms the results of previous
research that MAE is also successful in reducing incidences of crime, specifically, at locations
where enforcement is conducted for longer durations. This reinforces the need to include
MAE as a part of the DDACTS approach and to expand the scope of the program to not
only focus on manned enforcement.

The random parameter multivariate Tobit model also quantified the correlation be-
tween collision and crime rates and is estimated at 0.86, which is a highly significant result.
This means that locations that are identified as high crash hotspots were also very likely to
be high crime hotspots. This confirms the premise of the DDACTS approach and provides
further evidence that modeling these two events independently, as they have historically
been in past research, results in imprecise road safety analysis and evaluation.

6. Conclusions

The DDACTS approach has been shown to improve crime and collisions across
jurisdictions due to the highly correlated nature of both events. However, jurisdictions
have applied the DDACTS approach very differently (e.g., number of officers designated to
a deployment, hours of enforcement during each time period, the type of enforcement being
conducted). This makes it very challenging to attribute the reductions in collisions or crime
to one specific tool in their deployment strategy. Additionally, it makes it difficult for road
safety agencies to understand the impact of a specific change in their enforcement strategy
on collisions and crime. For this reason, this paper aimed to understand the impact of MAE
on collision and crime rates and to better understand how different deployment parameters
affect both events. The results confirmed the premise of the DDACTS approach since both
collision and crime rates were highly correlated. The correlation of 0.86 indicates that
locations with a high frequency of collision rates were also very likely to have high crime
rates which suggests that continuing to model both events independently is inaccurate.
Additionally, the results showed that increasing MAE was associated with reduced collision
and crime rates, confirmed by results of clusters 2 and 3. The analysis demonstrates the
impact of the deployment strategy, specifically that spending a longer time enforcing a
site is needed to see benefits in both collision and crime rates. Since the findings of this
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study are limited to the City of Edmonton, future work would build upon the work in this
paper to develop models to understand the impact of MAE on collision and crime in other
jurisdictions. Additional related work could develop more models that investigate different
variables that could impact both collisions and crime rates. Future research could also
include understanding the diminishing impact of higher values of ratio on neighborhoods
to better optimize the use of enforcement resources.
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