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Abstract: In this paper, the author designs an e-commerce transport system, which covers the
locations of producers’ facilities, distribution warehouses, and the business customers and deliveries
among them. The study aims to identify the best locations for warehouses to increase efficiency in
multi-stage transport systems. To reach this goal, the author revises distance metrics and suggests a
methodological framework useful for warehouse location selection and practical applications. The
empirical research is delivered by selecting a warehouse location using the maximal coverage model
and mandatory closeness distance condition. After analyzing four warehouses’ alternatives, results
are presented by applying various distance metrics. The results show that the selection of the location
of the main warehouse depends on the level of returns that are defined by using the Mersenne Twister
algorithm, and the distance calculation metrics representing differences in ranking. By the end of the
study, the recommendation is given to apply the presented methodological approach for decision-
makers seeking to improve service distances where decisions are made using path-based service
distance criteria. The increase of efficiency is important from a policy development perspective, as
findings of the study could help to reduce transport delivery costs for customers.

Keywords: transport system; multi-stage; delivery; pick-up; e-commerce

1. Introduction

The demand for e-commerce services is growing under the pandemic situation [1].
Many authors [2–6] have investigated e-commerce and analyzed the various stage transport
systems, such as single-stage and multi-stage. A single-stage transport system presents the
direct delivery strategy, under which freight is executed with a single vehicle from pick-up
to destination without reloading at an intermediate warehouse. Whereas, a multi-stage
transport system includes reloading at the intermediate warehouse and the fulfilment of
operations such as storage, picking, consolidation, packing, and/or transshipment. A multi-
stage transport system involves one or more production facilities, storage or transshipment
areas called warehouses, and the points for the final destination. The several types of
multi-stage e-commerce transport systems are defined:

• Multi-stage transport system with storage which focuses on a warehousing strategy;
• Multi-stage transport system with transshipment which focuses on an immediate

freight transfer strategy. Under the transshipment strategy, there is no option to
stock products; the strategy requires vehicle changing when freight is unloaded at the
warehouse from the incoming vehicle and loaded into the outgoing vehicle without
changing the freight’s nature [7].

Previous studies investigating e-commerce indicate the case of return transport that is
quite specific to this activity. The level of reverse flows for e-commerce activity in Europe is
between 7 and 18% [8]. They are due to miscounting, misloads, damages during deliveries,
improper paperwork, and delivery delays [9]. Systematically, producers accept previously
sold products or parts from the point of use for possible repair, rework, or disposal.
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Discussing the multi-stage e-commerce transport system, authors analyzed transport flows
forward to the customers [7] or backward from the customers [5] but did not combine both
cases into a single study as presented by authors [10] in vehicle routing studies.

Since there are many important attributes [11–13] for the transport system design, the
author aims to revise and validate transport efficiency and increase routing possibilities
by searching the locations of warehouses serving e-commerce activity and minimizing
delivery distance. The selection of the serving warehouse location has a direct impact on the
efficiency of the e-commerce transport system [7]. Authors applying classical warehouse
selection methods used mathematical p-median [14], p-center [15], p-dispersion [16], set-
covering [17], fix charge [18], and maximal covering [19] models, which are used for
designing transport systems. During the application of classical warehouse selection
methods, the number of warehouses could be selected to serve e-commerce activity. This
results in an e-commerce transport system with a single warehouse and an e-commerce
transport system with multiple warehouses.

In this study, the author combines knowledge demonstrated in vehicle routing litera-
ture, classical warehouse selection thematic, and papers investigating e-commerce activity.
It is important to mention that the vehicle routing literature analyses pick-up and deliv-
ery problems and distance calculation aspects; the classical serving warehouse selection
models prioritize coverage of geographical territory; and papers investigating e-commerce
activity focus on forward and reverse flows from a client service point. So, the study
aims to increase the efficiency of the transport system which depends on the warehouse
location. For the design of an efficient transport system, the author applied a maximal
coverage model, path-based distance metrics, and the Mersenne Twister algorithm, helping
to identify pick-ups.

The purpose of this case study is to define which warehouse to select for products dis-
tribution, assuming that all locations are fully covered from the single (central) warehouse
and efficiency is reached in the e-commerce transport system.

The research problem relates to the sustainable management of freight deliveries.
This is evident in the analysis of the complexity of this phenomenon, in the light of the
requirements of the Sustainable Development Goals for freight transportation published
by the United Nations in the 2030 Agenda for Sustainable Development.

The study consists of different parts, firstly, a literature review on designing the multi-
stage transport system is described. Then, a presentation of a methodology for serving
e-commerce activity is provided. Empirical research is then delivered using the maximal
coverage model revising geographical coverage of locations. The researcher investigates
delivery and return cases and ranks the warehouses by using different distance metrics
based on the research results. Finally, conclusion and discussion points are provided at the
end of this paper.

2. Theoretical Background
2.1. The Design of a Multi-Stage Transport System

The design of a multi-stage transport system follows the approach of analytical mod-
elling. The authors analyzing the transport system apply analytical methods such as linear
programming (LP), non-linear programming (NLP), multi-objective linear programming
(MOLP), fuzzy mathematical programming (FMP), stochastic programming (SP), heuristic
algorithms (HEU), and hybrid ones (HYB). For designing a transport system, McDonald
et al. presented an integer LP model for solving the problem in a multi-stage case [20].
Park proposed a model applicable to the transport system design that uses mixed-integer
LP across multiple points [21]. Goetschalckx provided a mixed LP method, including
the revision of seasonal demand in designing a transport system [22]. Lababidi (2004)
proposed the NLP model to optimize the chemical business’s transport system [23]. Au-
thors Chern [24] and Selim [25] developed MOLP for approaching central planning [24,25].
Aliev suggested FMP for setting up a transport system [26]. Roghanian presented an SP
framework applicable to planning a transport system [27]. The same author, Park (2005),
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proposed a two-phase HEU to design transport systems [21]. The first step determined the
initial design plan, optimized in the second step by modifying the main components (some
are presented in Table 1). Finally, Lee et al. proposed a hybrid method that integrated LP
and simulation for capacity revision of the multi-stage transport system [28].

Table 1. The key points which are important for the review of the multi-stage transport system.

Components Lead-Time Transport Time Transport Costs Revenue

Authors
[28,29] [30,31] [32–34] [35–37]
[38,39] [40,41] [25,26] [42,43]

The studies identified in Table 1 presented the model with a different planning hori-
zon [29–31]. Timpe concludes that the literature providing insights on the design of a
multi-stage transport system lacks investigation [32]. One possible solution is the revision
of elements that affect the development of such a system.

As mentioned above, multi-stage transport systems are characterized by one or more
intermediate stages in which various operations can be performed. The role of these
intermediate facilities is to perform the distribution process, reduce costs, provide higher
quality services, or offer additional services to producers or customers.

The key criteria presented in Table 1 are also important for e-commerce activity. The
importance is highlighted in published papers by authors such as [44–48]. Cargo transporta-
tion activity is quite costly. Therefore, the authors analyzing freight deliveries proposed the
combination of pick-up from producers with delivery to customers to reduce transportation
costs. They proved that the combination of both flows reduces transportation costs. According
to their studies, integrated pick-up and delivery (PDP) refer to vehicles performing a set of
routes that have fulfilled many transport requests. Each PDP route is characterized by a set of
pick-up points, delivery points, and freight load size. Lahyani (2015) integrated additional
constraints to PDP [49]. However, pick-up and delivery are usually treated as two separate
problems performed by separate transport modes. Bergmann (2019) investigated the effect of
integrated pick-up and delivery on the single transport route [50]. The authors specified that
last-mile delivery accounted for one-third of transportation costs and proposed combining
pick-up from producers with delivery to customers [50]. Several methods for planning PDP
have been proposed in the vehicle routing literature.

The PDP method is used to estimate the route distance and decide how many trucks
to allocate. Shen et al. proposed a system-based approach to generate a one-day truck
schedule that provides estimated customer deliveries with multiple time intervals [51].
Linnainmaa et al. provided a three-phase approach [52]. The first phase is used to calculate
the distance between supply and demand points to distribute volume. In the second phase,
weekly truck and driver schedules are offered using mathematical programming methods
and heuristics. The third phase is used for optimization and daily route modifications.
Weintraub et al. proposed a modelling-based methodology for generation of the truck
schedule [20]. Other authors [53,54] also proposed modelling-based methods for creating
daily truck route schedules.

Different heuristic rules have been developed in searching for a solution to make
operations more efficient, including improving the rules of assigning trucks. Audy et al.
proposed a small-scale PDP solution [55]. The method has three phases. The first stage is
used to create many possible routes. In the second phase, trucks are assigned to the routes.
In the last phase, a machine-based planning model is used for route improvement.

The multi-stage delivery approach requires clustering. In some studies, demand points
are allocated to a cluster and the delivery tour is planned within that cluster. There are two
methods. (I) cluster-first-route-second: in the first phase, demand points are assigned into
pre-defined clusters, and the routes are planned within constructed groups. The algorithm
starts with the closest supply facility demand point, and then sequentially, other demand
points are assigned to the vehicle concerning supply point location. Afterwards, the final
delivery routes are formulated for each cluster. (II) route-first-cluster-second: the first
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phase, a gigantic tour, which includes all demand points, is constructed, and later, the trip
is subdivided into full load (FTL) routes.

Based on the above, the study provided in this paper focuses on the first phase
approach proposed by Linnainmaa et al. [52], which is closely linked with designing
the multi-stage transport system and following Bergmann’s [50] suggestion to combine
delivery to customers with pick-ups from producers. However, backway cargo movements
are not covered in studies [50,52] but an examination of such is required for the specific
case of e-commerce.

The number of stages under Figure 1 depends on the number of freight reloads to
different vehicles. In an e-commerce case, the deliveries from producers are picked up
and delivered to the central warehouse, where they are picked according to business
customers orders.
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In this study, the author also combines pick-up from customers and identifies which
serving warehouse helps attain the lowest total distance level for combining the above
mentioned flows. Herein, the forward and backwards transport costs are characterized by the
piecewise linear costs function. Such a function was first proposed by Balakrishnan et al. [56].

2.2. The Selection of Serving Warehouse in the Multi-Stage Transportation System

Researchers developed many warehouse selection models important for designing a
multi-stage transport system. These models are oriented to the identification of warehouses
that provide the best service. Later, demand is allocated to the identified warehouse. In the
classical case, a single warehouse belongs to the sole decision-maker. However, in practice,
multiple in-distance located warehouses belong to one decision-maker.

The warehouse is an entity for inventory allocation performing logistics activities
(storage, picking, packing, sorting, and distribution and/or collection of physical goods).
There are various options for the selection of the serving warehouse [26].

The term “selection” refers to the choice among several or multiple warehouse location
alternatives. The selection convergence method could be used in such phases:

• From all alternative warehouses, which do not cover geographic territory;
• From the list, left after the previous elimination, in which other alternative warehouses

are eliminated, mainly those which total service distance is the highest.

Numerous methods have been developed for warehouse selection analysis. One type
of method used in this research problem is the multiple criteria evaluation method, present
since 1980. This type of method is applied to figure out which location alternative receives the
highest score. Among widely-known methods of this type, there are PROMETHEE II, TOPSIS,
ELECTRE, and AHP. They are used for cases with noncomparable warehouse alternatives.
More advanced methods do not require a pair-wise comparison when matching options are
added or deleted. Various criteria are considered for warehouse selection decisions, such as
the closeness to the supply and delivery market, infrastructure development for multiple
types of transportation, the costs and availability of labour, human education, business climate,
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etc. Some of these models search for region preferences. Such models include comparison of
economic, technical, social, and environmental aspects of pre-selected regions [57].

Spatial yield models usually require specific characteristics for the selection of site
location in open field cases. Distance-dependent yield models include distance-dependent,
single-product, and distance-independent models. In general, models consist of the op-
timization algorithm, where the distance variable is selected for optimization [58]. Two
types of distances are used by authors studying freight delivery: total travel distance and
average travel distance. By minimizing total travel distance, average travel distance is also
reduced. For an appropriate application, GIS data is incorporated as well.

The development of optimisation models started in 1963. Even though these models
were developed at an early stage, they are complicated in terms of selecting the best
alternative. Arch-based distance or a related measure (e.g., travelling costs or volume
delivery time) is the primary variable in such models. There are eight basic warehouse
selection models: maximal covering, maxisum, set covering, p-dispersion, p-center, p-
median, fixed charge, and hub. These models include the system of demand locations
which are served from new and existing warehouses.

In maximal covering models, a maximum distance is used to cover the public or
private interest. These models search for the location which guarantees coverage in a
given area. Any retail chain might want to locate its outlets to maximize the number
of potential clients present within maximum walking distance [59,60]. In the maxisum
case, the objective is to maximize the demand-weighted total Euclidean distance. This
requires assigning a demand point to the farthest supply point, except the constraint, which
ensures that case demand points could be assigned to the nearest warehouse [61,62]. Set
covering models are used for the objective of locating the lowest number of distribution
facilities to cover demand. To solve the problem, these models incorporate the set of
demand nodes and the set of candidate warehouse selections [63,64]. P-dispersion models
analyze only the Euclidean distance between new facilities. These models are set up for
the objective to maximize the minimal distance between selected pairs of facilities, where
the problem is the reduction of demand cannibalization among outlets [65–67]. P-center
models search for solutions that minimize the maximum distance when demand is linked
with the pre-determined number of facilities [68].

Authors applying classical warehouse selection methods followed Euclidean distance
logic and often did not consider the path-based distance [4], for example, p-median [14], p-
center [15], p-dispersion [16], set-covering [17], fix charge [18], and maximal covering [19].

Furthermore, classical p-median models select warehouse locations to reduce the
demand-weighted total Euclidean distance between demand points and the assigned
distribution facilities. In the demand-weighted case, the distances between demand points
and potential facilities are multiplied from the weight associated with the demand level.
The objective is to minimize the maximum demand-weighted distance, where each outlet
is assigned to a single warehouse [65–67]. All assigned facilities are un-capacitated, and
the number of facilities, which are planned for assignment, is known in advance; and each
demand point has only one assigned facility [68–71].

In the case of random demand, an un-capacitated warehouse model is used which
makes demand at each customer probabilistic. One of the assumptions of the capacitated
warehouse model is that demand is known and fixed. The capacitated warehouse model
with capacity restrictions could satisfy current business needs. However, for the satisfaction
of future business expansion and demand fluctuations, the application of an un-capacitated
warehouse model is more convenient.

Finally, hub location models are used to minimize total transportation costs. Herein,
they cover interaction costs associated with node-to-node flows. The function to access
the hub system is quadratic, and assignment to the nearest hub is not always an optimal
solution [72,73]. The literature review shows that research must address the subsets of
relevant factors for transport system design (Table 2).
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Table 2. The comparison of classical warehouse selection methods.

Model The Objective of
the Model

Unique Focus in the
Transport System

Requirements Specifying
the Number of Warehouses

Findings Following the
Coverage of Demand Points in

Defined Response Time

Results Following the Coverage
in Defined Service Distance

Maximum service distance models

Maximal covering model Maximization of the coverage of
demand points Accessibility and efficiency Yes No Yes

Set covering model

Identification of the minimum
number of warehouses and

preferences among
physical locations

Availability No Yes Yes

P-dispersion model Maximization of the coverage in
case of network extension Accessibility No No Yes

P-centre
Assignment of the closest

warehouse to serve demand
point by minimizing the distance

Accessibility Yes No Yes

Average service distance models

Classic p-median model
Minimization of the overall
weighted distance between

demand points and warehouses
Accessibility Yes No No

Fixed charge location model
Assignment of demand points to

the serving warehouse by
incorporating cost constrains

Efficiency Yes No Yes

Basic p-hub location model Minimization of total costs,
which are distance-dependent Efficiency Yes Yes Yes

Maxisum

Maximization of the overall
weighted distance between

demand points and
serving facility

Accessibility Yes No Yes
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There are two models which incorporate costs metrics: fixed charge location model
and basic p-hub location model. The first model involves costs per demand specified in
the transport unit (pallet) and per distance unit (kilometre). The second model involves
costs for accessing the hub system and transportation between hubs, including discounts
for high volume transportation cases [74,75]. The classic p-median model focuses on the
minimization of lead-time [76]. Different warehouse selection models have a unique impact
on the transport system (Table 2). Three models, such as the maximal covering model, fixed
charge location model, and basic p-hub location model, are oriented to efficiency increase.

In some cases, it is necessary to select warehouses for the number of production
sites by minimizing the network’s total operating costs. In such cases, the volume flows
are pre-defined among production and warehouse facilities according to the maxisum
model. During modelling, optimal capacities are defined for those facilities where nec-
essary, and quantities for different products are specified as essential for designing the
transport system.

Other methods are different in their logical approach. The p-center method searches
for geographic mid-point and does not include the selection among warehouse alternatives.
The maximal covering model uses the geographical coverage condition. If the geographical
territory is a circle, the model searches for the mid-point of the circle. However, in practice,
this is not an optimal solution when a path-based distance metric is used.

The revision of costs is also essential for a functioning multi-stage transport system
that combines delivery and return flows. For this problem, the warehouse selection models
serve as an umbrella. The costs change over time and represent the transport system’s
performance in a single time period. The changes must be re-examined to identify the
warehouse serving demand point in the most cost-efficient way.

In the next section, different combinations of delivery and return policies are presented.
The service distances for each policy type are examined through the modelling, and then
guidelines are provided on how to make the e-commerce transport system more efficient.

3. The Methodology for Serving e-Commerce Activity

To research the multi-stage transport system serving e-commerce activity, the author
developed a multi-layer methodology and presented it in Table 3. The methodology
includes three layers: the multi-stage transport system layer, delivery service to e-commerce
activity layer, and warehouse selection layer, where ranking is implemented for serving
warehouse selection.

The methodology of the case study consists of four steps:

1. The retrieval of addresses and coordinates of all locations and the calculation of
service distances following two distance metrics;

2. The application of the maximal coverage model incorporating mandatory closeness
service distance. The model incorporating the analytical linear programming (LP)
method is used for the revision of the locational system configuration and the number
of warehouses covering the geographical territory identification;

3. The review of the impact of returns on the overall service distances important for
e-commerce activity through the modelling. For identification of which location
requires pick-up, the author uses a pseudorandom number generator (PRNG) applied
by the Mersenne Twister algorithm;

4. The ranking of alternative warehouses following the sum of service distances evalua-
tion results that are important for the efficiency increase in the multi-stage transport
system. Following the ranking rule logic, the enterprise should choose a warehouse
to which total distance is the lowest at the priority row.
Following the first methodology step, Google maps and robotic process automation
(RPA) applications were used. At first, the author retrieved addresses of all locations.
Later, based on the address information, latitude and longitude coordinates of geo-
graphic locations were found with the programmed UiPath RPA bot by searching
the addresses on Google maps. The RPA solution also retrieved the latitude and
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longitude coordinates for each address and combined them with the list of geographic
locations and path-based distance identification. After the RPA process, errors are
revised and manually corrected to have proper service distance calculation results.

Table 3. The structure of methodology for serving e-commerce activity.

The Structure of
the Methodology

The Evaluation of
Functionality

The Application
of Methods

Usability of Results
and Their Validation

The Assessment of
Compliance with

Sustainable
Development

I layer (Multi-stage
transport system)

It consists of producers,
warehouses, and

business customers
with pick-up (return)
and delivery services.

The design of a
multi-stage transport
system includes the

revision of the
locational configuration

to reach the best
possible performance

of the system.

Combined pick-up
(return) and delivery

services involving
multiple locations.

Achievements in the
development of the

transport system
required going forward
to reach the savings of

natural resources.
II layer (Delivery

service to
e-commerce activity)

The revision of the
combined delivery and

pick-up (return) to
increase the motivation
of business customers.

Comparative analysis
of key service delivery

components
stimulating

e-commerce activity.

The reduction of
delivery service price

for the business
customers.

III layer
(Warehouse selection)

The warehouse
selection to improve

demand coverage and
minimize maximum
service distance in

fulfilment of delivery
and pick-up

(return) transportation.

The evaluation of
service distance

required to reach the
warehouse facility and

the selection among
warehouse alternatives.

The formulation of
suggestion, allowing a

maximal coverage
model incorporating

mandatory closeness to
service distance.

The selection of
alternatives which

enables the
requirements of

sustainable
development.

Authors that applied classical warehouse selection methods followed the Euclidean
distance logic [14–19]. Two types of service distance metrics were used in this study:

• The straight-line or arch-based distance metric between two points is called Euclidean
distance;

• The path distance metric connecting two locations is called path-based distance.

For the calculation of service distances, latitude (Lat) and longitude (Lon) values of two
location points are included as specified in Equation (1) and summarised in the distance
matrix (Table 4) [77]:

Table 4. The matrix of distances between locations of producers, warehouses, and business customers.

Locations j1 (Lat1, Lon1) j2 (Lat2, Lon2) . . . j4 (Lat4, Lon4)

i1 (Lat1, Lon1) 0 . . .

. . .

in (Latn, Lonn) . . . 0

Equation (1) is applied for Euclidean distance calculation:

dij = ACOS(COS(RADIANS(90− Lat_i)) ∗ COS(RADIANS(90− Lat_j)) + SIN(RADIANS(90− Lat_i))
∗SIN(RADIANS(90− Lat_j)) ∗ COS(RADIANS(Lon_j− Lon_i))) ∗ 6371

(1)

herein: d—the Euclidean distance in kilometers.
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The sum of the shortest Euclidean distances Lj to all locations I is computed in
Equation (2):

Lj =
I

∑
i=1

dij (2)

The path linking the locations of producers, warehouses and business customers is
based on single-mode distance and performed by single land freight mode and identified
using Google maps and the RPA tool. For the warehouse selection, the shortest path-based
service distance approach could be used as specified in Equation (2). The sum of the
shortest path-based distances L′j to all locations is computed in Equation (3):

L′j =
I

∑
i=1

d′ij (3)

herein: d′ij—the path-based distance from the analyzed warehouse j to location i, where
I—the set of locations.

Following the second step, the maximal coverage model is selected. According to the
classical warehouse selection methods, presented in Table 2, five models focus on reaching
multiple points: maximal covering model, p-dispersion model, p-center, classic p-median
model, and maxisum model. However, only three of them have requirements for specifying
the number of warehouses and the coverage in defined service distance. Among these
methods is the maximal covering model, p-center, and maxisum methods. The methods are
different in their logical approach. The p-center method searches for geographic mid-point
and does not include the selection among warehouse alternatives. The maxisum method
includes the sales volume for each customer per period and the calculation of weights
among the customers. Therefore, after searching for a defined solution, the Maximal
covering model was identified as the most suitable as well as the model which guarantees
an efficiency increase in the transport system.

The maximal coverage model is applied to identify the area’s geographical coverage
of locations. If the geographical territory is a circular area the best place for the central
warehouse is in the middle of the circle (identified as a pair of Lat and Lon coordinates). If
the geographical territory is not a circular area, the geographic midpoint is calculated by
finding the cross point of all straight lines between all the locations in the list.

The classical warehouse selection methods using Euclidean distance logic search for
the geographic midpoint. All these methods have shown the application of Euclidean
distance. However, there are situations in which the length in the path-based case is
different from a straight-line and path-based distance length is influenced by terrain
characteristics. As the problem is quite complex, it is not easy to find a common cross point
for all roads connecting multiple locations and representing the shortest service distances.
In such a case, it is easier to have predefined alternatives for central warehouse locations,
and among them, select the location to which the sum of path-based services distances is
the lowest.

The previous studies using the maximal coverage model applied various coverage
calculation methods: sigmoid partial coverage, weighted linear partial coverage, linear
partial coverage, and classical coverage. The application of this method is sometimes
complicated as mathematical programming packages cannot solve large-sized problems.
Heuristic approaches used for the selection of warehouse alternatives can solve large-
sized problems, but do not guarantee an optimal solution can be reached. To solve the
problem, the author investigated the classical full-coverage approach and for the revision
of coverage used several distance measuring methods (Euclidean distance and path-based
distance measures). Following the central warehouse selection case, the author combined
delivery and return distances into the analysis of the efficiency increase in the e-commerce
transport system.
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For the study, the author selected the maximal coverage model incorporating manda-
tory closeness distance. The model determined the coverage level by warehouse alternative
for each pick-up and delivery point (i.e., location). Equation (4) maximizes the coverage
level within the maximum service distance T:

Max ∑
i∈I

∑
j∈Mi

Cijxj (4)

where Cij =


1 i f dij <= T,
f (dij) i f S < dij < T, (0 < f

(
dij
)
< 1),

0 otherwise
herein: Cij—the level of coverage provided by warehouse j to location i; I, i—the set of
locations and the index of individual location; J, j—the set of warehouses and the index
of specific warehouse location; Mi—the set of potential warehouses; dij—the shortest
distance from location i to warehouse j, S—acceptable service distance, T—maximum
service distance, when warehouse facility j is away from location i, as T > S; and xj—binary
variable, 1 if warehouse j is selected, otherwise 0.

Equation (5) shows that a location i is covered only when one or more warehouses are
located within an acceptable service distance S:

∑
j∈Ni

xj ≥ yi, i ∈ I (5)

where xj = (0, 1), j ∈ J , yi = (0, 1), i ∈ I .
herein: yi—binary variable, 1 if location i is not covered by warehouse j in S distance,
otherwise 0, Ni—the set of potential warehouses that could reach location i within the
acceptable service distance S (Ni is lower than Mi).

According to Equation (6), there is at least one warehouse j in distance T:

∑
j∈Mi

xj ≥ 1, i ∈ I (6)

where Ni =
{

j ∈ J
∣∣dij ≤ S

}
, Mi =

{
j ∈ J

∣∣dij ≤ T
}

.
Following the third step, the author analyzed the return flows. The studies showed

that return flow is quite common for e-commerce activity. However, it is not easy to identify
locations in which the delivery will be damaged, late, miscounted, or misloaded. This
changes the logic that for efficiency increase it is necessary to find a geographic midpoint.
Therefore, the author applied the Mersenne Twister algorithm to identify random locations,
which are candidates for the return.

When both distances (forward and reverse) are included for Euclidean and path-based
distances, the modifications of Equations (7) and (8) are applied:

Ljr =
I

∑
i=1

dij +
I

∑
i=1

dijr (7)

L′jr =
I

∑
i=1

d′ij +
I

∑
i=1

d′ijr (8)

herein: dijr specifies Euclidean distance for return cases from producer or customer i, to
the analyzed warehouse j; d′ijr—path-based distance for return cases from producer or
customer i, to the analyzed warehouse j; and r represents return cases.

Following the fourth step, the ranking of warehouses is applied after the total distance
is known. The higher the value of Lj, L′j, Ljr, L′jr the lower the rank. According to
rank results, which are specified as L1 < L2 < L3 < L4, the enterprise should choose
warehouse one, as its total distance is the lowest and appears in the first place. Ranking
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for warehouse selection is applicable for the results following Equations (2) and (3) and
Equations (7) and (8).

The ranking allows minimization of total service distance value and helps e-commerce
companies create and deliver value to business partners.

4. Empirical Research
4.1. Case Study and Review of Service Distance

The case study focused on delivery for a business selling office supplies, gifts, printed
materials, and stationery products. The company started business in the domestic market
and later expanded the business into other neighbor markets in the Baltic states and
acquired 800 business customers. Recently, the company was sold and the new business
owner is planning reorganization.

The purpose of the case study is to define which warehouse to select for products
distribution after reorganization, assuming that all locations are fully covered from the
single (central) warehouse and the efficiency is reached in the e-commerce transport system.

For this case study, four alternative warehouses were analyzed. The coordinates of
these warehouses are as follows:

• Warehouse1 (Lat 54, 61 and Lon 25, 08),
• Warehouse2 (Lat 56, 88 and Lon 24, 15),
• Warehouse3 (Lat 56, 80 and Lon 23, 94),
• Warehouse4 (Lat 59, 33 and Lon 24, 82).

After the reorganization, the distribution of products will be organized through a
single warehouse by a third-party logistics company. Among the alternative warehouses,
the criteria for the selection of a single warehouse are efficiency and accessibility. The main
assumption for the case study is that the efficiency increase is accepted only when all deliv-
ery points are covered from the single warehouse. For problem-solving in the e-commerce
transport system, the author applied one of the classical warehouse selection methods.

The empirical study included multiple locations: 219 producers, four warehouse can-
didates, and 800 business customers, located in the Baltic states, and focused on sustainable
e-commerce activity development. The locations of producers, warehouses, and business
customers are fixed for transport system design purposes.

The empirical research contains four steps, which are specified in Section 3:

1. The retrieval of the coordinates of all locations and calculation of the distances for the
case study;

2. The application of the maximal coverage model and the number of warehouses
covering the geographical territory identification;

3. The review of the impact of returns on the accumulated distances;
4. The application of ranking of alternative warehouses following the accumulated

distances.

Below is the presentation of the results of the empirical study.

4.2. Results of the Analysis

The maximum coverage model helps to decide on the number of warehouses and
specifies which warehouse alternatives are appropriate for an area’s geographical coverage.
In the case study, four warehouse alternatives were evaluated to define maximum and
mandatory service distances (Tables 5 and 6) and average service distance metrics (pre-
sented in Table 5, under 1.1–1.2 and 2.1–2.2). Herein, the maximal coverage metrics ensure
that no supply and demand points go beyond the geographic area’s maximum service
distance level.
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Table 5. The maximum service distance T in kilometres.

Components Warehouse1 (WH1) Warehouse2
(WH2)

Warehouse3
(WH3)

Warehouse4
(WH4)

1. Euclidean distance (max, Tj) 568 km 366 km 381 km 594 km

1.1 to producers (mean) 107 km 212 km 207 km 446 km

1.2 to business customers (mean) 214 km 177 km 176 km 361 km

2. Path-based distance (max, Ti
j ) 735 km 444 km 472 km 699 km

2.1 to producers (mean) 129 km 245 km 250 km 520 km

2.2 to business customers (mean) 256 km 209 km 214 km 429 km

Table 6. Mandatory closeness distance.

Mandatory Closeness
Distance (S) Not Covered Objects Covered by WH1 Covered by WH2 Covered by WH3 Covered by WH4

1. Euclidean distance (Sj)

300 km 0% 3% 4% 93% 1%

250 km 0% 16% 20% 60% 4%

200 km 5% 55% 29% 11% 0%

2. Path-based distance (S′j)

300 km 0% 18% 34% 48% 0%

250 km 6% 52% 28% 14% 0%

200 km 11% 56% 29% 3% 0%

The lowest maximum service distance is seen among Warehouse2 and Warehouse3.
The different distance calculation methods report the differences in results. According to
the calculations, it is evident that the path-based service distance is almost 20% longer
than the Euclidean one and that the selected calculation method influences the warehouse
selection results.

Following the geographical territory, the first three warehouses (WH1, WH2 and WH3)
cover further located pick-up and delivery locations. However, the location of Warehouse4
is not attractive as it does not cover the farthest geographical locations. Euclidean distance
for WH4 should be in the radius of 606 km and path-based distance should be 720 km to
cover these locations.

Table 5 also shows that warehouses (WH2 and WH3) are located more than 300 km
away. However, the author sought to identify if the two warehouses cover all pick-up and
delivery locations. For such a condition evaluation, the author used a mandatory closeness
distance metric. The author checked how many serving warehouses could meet the criteria
S < T and identified these results in Table 6.

The mandatory distance check results showed that the condition to have two ware-
houses covering 100 per cent of the geographic territory is not met. The results presented in
Table 6 also showed that three warehouses must be selected to cover mandatory closeness
path-based distance in the 300 km range, and four warehouses must be selected to cover
mandatory closeness Euclidean distance in a 250 and 300 km radius. Other options are not
considered as there are more than 5% uncovered objects. The most suitable warehouse
is selected according to Equations (5) and (6). Based on mandatory closeness distance
results, it is evident that Warehouse3 (WH3) meets the best mandatory closeness Euclidean
distance in the 300 km case by 93% and Warehouse1 (WH1) meets the best in mandatory
closeness path distance in the 200 km case at 56%. However, if the enterprise wants to
select a single warehouse, the acceptable service distance criteria must be increased until
the S = T condition is reached.

In the final stage, ranking among warehouse alternatives is applied. The greater the
value of Lj, the lower the placement dedicated to warehouse j. According to rank results,
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the warehouse should be allocated to all pick-up and delivery locations (specified as the
set of I), which appeared in the first place. These ranks are given in Table 7 under the
second column.

Table 7. Warehouse ranking results.

The Sum of Service Distances (L) Rank min (L) WH1 WH2 WH3 WH4

1. The sum of Euclidean distances (Lj) WH3 194,429 km 188,218 km 186,443 km 386,422 km

2. The sum of path-based distances (L′j) WH2 231,967 km 220,083 km 225,891 km 454,173 km

Comparison with rank: the difference of the
sum of Euclidean service distances, % WH3 4% 1% 0% 52%

Comparison with rank: the difference of the
sum of path-based service distances, % WH2 5% 0% 3% 52%

The sum of distances is compared with the rank which is having the lowest total
distance value. The comparison results showed that the accumulated distance for WH4 is
the highest and this alternative during ranking appears in the last place.

The ranking results (Table 7) showed that the priority for path-based distance is given
to WH2 and for Euclidean-based distance to WH3.

Further on, the return effect on distances was investigated. The author, during analysis,
calculated how the number of returns influences the increase in service distance.

After business customers provide return orders, the company organizes freight pick-
up services. After delivering freights to the business customers, vehicles travel to nearby
producers to pick-up the products; however, trucks must fulfill additional trips in extra
loads, which means higher km and costs.

The study delivers interesting results which show that the higher impact of path-
based service distance on return is the highest among distance metrics. The results of these
calculations are presented graphically in Figure 2.
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Figure 2. The impact of returns on the increase in distance. Source: own research.

The graph shows the exponential increase in overall service distances: the higher the
return level, the higher the accumulated service distances. The highest impact is evident
on path-based distance and is dependent on return level; therefore, the higher the level of
returns, the higher the impact on specified service distance.
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The ranking of warehouses is repeated. The presentation of the effect of returns on
warehouse selection priorities is stated in Table 8. The results of the study show that the
number of returns influences the warehouse ranking results. The WH3 is the pre-dominant
warehouse for Euclidean distance cases and WH2-for path-based distance cases.

Table 8. Impact of returns on warehouse ranking.

Return Level 1% 2% 3% 4% 5%

1. Euclidean distance case WH3 WH3 WH2 WH2 WH2

2. Path-based distance case WH2 WH2 WH2 WH2 WH2

Return Level 6% 7% 8% 9% 10%

1. Euclidean distance case WH3 WH3 WH2 WH2 WH3

2. Path-based distance case WH2 WH2 WH2 WH3 WH2

Return Level 11% 12% 13% 14% 15%

1. Euclidean distance case WH3 WH2 WH2 WH3 WH2

2. Path-based distance case WH2 WH3 WH2 WH2 WH2

Return level 16% 19% 23% 24% 29%

1. Euclidean distance case WH3 WH3 WH3 WH2 WH2

2. Path-based distance case WH2 WH2 WH3 WH2 WH2

The ranking of warehouses shows that it is strongly recommended to plan the returns
level. The case study presents that the selection of a warehouse is dependent on the
application of return policy, and based on this, the ranking results could be different. The
proposed methodology based on return scenarios could help select the most appropriate
single warehouse for the e-commerce transport system.

The results help to improve efficiency in the multi-stage e-commerce transport sys-
tem, which correspond to sustainable development needs by selecting the appropriate
warehouse; thus, the service delivery distance is minimized. For further improvements,
the suggested methodological framework must be applied in case of e-commerce activity
development and significant changes in business customers’ locations.

5. Discussion

Efficiency improvement is quite important in the multi-stage e-commerce transport
system. The results of such analysis could help to reduce delivery costs for customers.

For the design of the multi-stage transport system, the author included warehouse
selection methods. Most of which searched for a geographic midpoint place to establish a
warehouse or a nearby warehouse location. However, the aspects of reverse flow were not
included in the application of these methods.

The study expanded the application of distance-dependent models, by including
more distance calculation metrics between the locations of producers, warehouse alter-
natives, and business customers for analyzing delivery and return flows. According to
the case study, it is evident that neither the nearest warehouse of some locations nor the
location representing geographical mid-point is selected to reach efficiency in the trans-
port system. The new theoretical findings show that the main component for efficiency
increase in the transport system is the review of return flow and volume when selecting
warehouse location.

The author presented the methodology useful for designing the transport system,
which serves e-commerce activity. Following current needs, the research covered more
detailed service distance analysis, supporting the geographic maximal coverage condition.
The maximal coverage model helped decide the appropriate number of warehouses re-
quired and suggested which warehouse alternatives follow the geographical coverage of
the territory.
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The author analyzed not only Euclidean distance as selected in previous studies
following p-median, p-center, p-dispersion, set-covering, fix charge, and maximal covering
models but also included path-based distance and showed differences that are important
in decision making. In the case study, the author revised four warehouse alternatives and
showed the potential to ground decisions by revising the results of path-based distances.

The review of the effect of the return is important for e-commerce activity. For the
identification of which location requires pick-up, the author used the Mersenne Twister
algorithm, which allowed the determination of new results. Furthermore, the author
investigated how the level of returns influences the increase of service distance and affects
the warehouse selection results. Aiming to minimize service distance, the company must
estimate the actual level of returns and finalize the design of the transport system by decid-
ing on warehouse location. During warehouse selection, the alternatives of warehouses are
ranked according to the priority row. The accumulated service distance results are used
during ranking and prioritize the warehouse selection. Additionally, the savings in service
distances are presented accordingly.

The efficiency gains are especially important for business subjects that can take ad-
vantage of e-commerce. The increase in efficiency could help meet the UN Sustainable
Development Goals. The positive impacts could benefit trade volume and the environment
through the reduction of vehicle use, and subsequently for customers who would pay a
lower price for the delivery. These changes mean that a holistic approach to e-commerce
policy is needed. Policymakers should stimulate the solutions, which impact various policy
areas, especially those identified in this paper. Periodic policy reviews can help ensure
continuous efficiency increase in the system serving e-commerce activity.

In summary, designing a multi-stage transport system is one of the strategic decisions
that should be assessed by precise distance calculations, business expansion strategies,
practical experience, expectations, and many other important factors. The study extends
current studies but has some limitations: the volume of delivery and return flows, product
type, and transport time are not included in the analysis of the transport system. The
study did not analyze the costs for opening a warehouse, as was investigated by the
fixed charge warehouse selection model, but these could be included in other studies. In
future, the research could be developed in other directions such as analysis of weighted-
Euclidean and path-based distances, the selection of the number of serving warehouses, the
research of the impact of warehouse-oriented strategies, i.e., warehousing and transship-
ment on e-commerce delivery costs, and the comparison of single-stage and multi-stage
transport systems.

6. Conclusions

This study investigated the design of the multi-stage transport system, which serves
e-commerce needs. To research such a multi-stage transport system, the author developed
the methodology.

Various methods are used for the design of a multi-stage transport system such as
vehicle routing, classical warehouse selection, and methods used to research e-commerce
activity. The efficiency of the transport system and delivery costs strongly depend on
warehouse location. The author investigated the number of models essential for serving
warehouse selection. During the application of classical warehouse selection methods,
authors used Euclidean service distance metric, which does not guarantee that the finding
of geographical midpoint means the highest efficiency of the transport system.

The revision of these problems requires investigation into the geographic coverage
of multiple locations belonging to the transport system, the impact of returns on service
distance metrics, and ranking of warehouses in an effort to minimize total service distance.
The extension of the application of the maximal coverage method follows the accessibility of
multiple locations and efficiency increase in the transport system. The author incorporated
the return flow, which is typical of e-commerce activity and the Mersenne Twister algorithm
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for identifying locations with return needs. The involvement of the return flow in the study
shows that this component influences warehouse ranking results.

The study presents methodological implications where the involvement of path-based
distance metric into classical warehouse selection models presents different results from
previous investigations. The research shows that path-based service distance is about 20%
longer than the Euclidean one and suggests the selection of different warehouse alternatives
rather than the application of the Euclidean service distance metric.

For the practical application of the maximal coverage method, the author investigated
the transport system with four alternative warehouses and revised the condition of manda-
tory closeness service distance. The case study shows that mandatory closeness distance
could be covered with three serving warehouses; otherwise, the multi-stage transport
system is designed with a single warehouse when mandatory closeness service distance is
equal to maximal coverage service distance. The efficiency of the transport system highly
depends on the level of return flow that suggests different choices among warehouse alter-
natives. This also proves that the identification of a geographical midpoint for warehouse
establishment does not guarantee that its selection is the most efficient solution.

The design of the multi-stage e-commerce transport system is quite complex. The
complexity of the multi-stage e-commerce transport system was revealed in this study and
the results that meet sustainability requirements were highlighted. These results are also
important for policymakers and practitioners researching e-commerce transport systems.
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