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Abstract: Phosphorus is an essential macronutrient, both as a component of several important
plant structural compounds and as a catalyst in the conversion of numerous important biochemical
reactions in plants. The soil Olsen P (OP) level is an important factor affecting crop production and
P-use efficiency (PUE). We tested the effect of six OP levels and P doses on maize yield, where the P
doses were 0, 22, 44, 59, 73, and 117 kg P,Os5 ha~!, with three replications, from 2017 to 2019. The
response of crop yield to the OP level can be divided into two parts, below 28 mg kg ! and above
28 mg kg~ 1. The change point between the two parts was determined as the agronomic critical level
for maize crops in the study area. The PUE (%) increased with soil OP levels and decreased with P
fertilizer application rates. In addition, results for the low P application rate (P2), 22 kg P,Os ha—1,
showed that PUE significantly increased with an increase in the soil OP level compared with PUE
at a low OP level (OP1), 0 kg P,O5 ha~l. The PUE value increased by 49.5%, 40.1%, and 32.4%
at a high OP level (OP6) in 2017, 2018, and 2019, respectively, compared to that at a low OP level
(OP1). At the same OP levels, in all three years, the PUE at a high P application rate (P6) decreased
significantly, in the range of 62.8% to 78.7%, compared to that at a low P application rate (P2). Under
an average deficit of 100 kg ha~! P, the OP level of the soil in all three years decreased by 3.9 mg kg~
in the treatment without P addition (P1) and increased by 2.4-3.5 mg kg ™! in the P treatments for
each 100 kg ha~! P surplus. A phosphorus application rate of 44 kg P,Os ha~! and an OP level of
28 mg kg~ ! are sufficient to obtain an optimum yield, increase the PUE, and reduce environmental
hazards in the study area in northeastern China.

Keywords: phosphorus; relative yield; phosphorus-use efficiency; Zea mays L.

1. Introduction

Phosphorus (P) is one of the three essential macronutrients (with nitrogen (N) and
potassium (K)) for plant growth and development, and accounts for about 0.2% of the dry
weight of the plant [1,2]. Phosphorus is generally considered the main driving force of
water eutrophication [3]. Maintaining optimal OP with optimum P application is highly
important to reduce water pollution, particularly in hilly areas [4]. Better management of P
fertilizer in cropping systems can be achieved by maintaining an optimal balance of input
and output of P [5,6]. In China, P fertilizer use increased 91-fold from 1960 to 2008 [7,8],
and total grain production increased from 110 million Mg to 483 million Mg, or 3.4-fold,
during the same period [9]. Aulakh et al. [10] showed that 26 kg P ha~! is sufficient in
a wheat and soybean cropping system that yields 6.55 t ha~! grain yield. A study of a
maize and wheat cropping system grown on Aridisol soil reported that the critical P rate
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was 40 kg P ha~! for maize yield and 53 kg P ha~! for wheat yield [11,12]. Thus, soil
OP levels have improved significantly in most regions of the world [13-15]. Olsen P is
the P value extracted from Olsen solution [16], which is used globally to characterize the
content of available P in soil. Phosphorus fertilization is a common practice to ensure
adequate P supply, leading to extreme soil environmental problems, e.g., leaching, soil
acidification, and reduction in soil fertility [17]. Soil should contain the optimum level of
OP, in addition to other elements, to ensure the ideal yield and reduce P loss to protect the
environment [5,18,19].

The OP level is the main factor influencing crop yield and P-use efficiency (PUE) [20].
Determination of critical levels of OP is important to improve PUE and maximize agro-
nomic yields. The critical level of soil OP for crop production has been defined as the
level below which crop production shows a large response to application of P fertilizer,
above which the response is minimal. Below the critical level of OP, the crop can no longer
absorb sufficient P for growth and severe yield reductions are observed [21]. Chen et al.
(2015) [22] found that the critical level of OP and the P rate for maize grain yield in Luvic
Xerosols in Sichuan Province in China were 19.1 mg kg~! and 32 kg P ha™!, respectively,
and the grain yield was 6.3 t ha~1. Critical levels of soil OP for maize range between 4 and
15.0 mg P kg~ ! in alluvial soil in south-western France [23], and the mean critical levels
of OP for maize using three models ranged between 12.1 and17.3 mg kg ! in Calcaric
Cambisol in China [24]. The critical level of OP usually depends on the crop type [23] and
location, due to differences in soil characteristics and climate [25].

The critical level also depends on the target production grade and the availability of
other elements [26]. In China, the total net P application is 242 kg P ha~!, and the soil
OP has increased from 7.4 to 24.7 mg kg ! [5]. Furthermore, the PUE value is below 20%
and ranges between 20 and 40 mg kg~! in over 90% of Chinese arable land, and soil OP is
above 40 mg kg~ ! in 9.4% of arable land [12,27]. OP values exceeding 40 mg kg~ ! pose a
threat to the environment [5,28]. Hence, it is important to maintain the optimal yield and
properly manage the optimal OP level to reduce the risk of environmental pollution [29].
Scientists are making considerable efforts to determine the critical OP levels that can be
used to ensure both optimal crop yields and environmental quality [30,31].

Phosphorus-use efficiency is influenced by several factors, such as OP content, P
application rate, soil characteristics, and climate [32-34]. Numerous short-term field
experiments conducted around 2000 in China showed that the average PUE of wheat,
maize, rice, and other cereal crops was less than 20% [20,35]. Syers et al. [36] noted that the
PUE of crops differed in the range between 10% and 50%, according to data from different
soils in China, the United States, Brazil, the United Kingdom, India, and Canada [37-41].

To achieve high maize yields in the study area, the PUE needs to be improved as a
function of OP in soil with a similar pH, organic matter, and soil texture. Based on field
experiments, we hypothesized that optimal application of P fertilizer in maize cropping
systems can maximize yield and improve the PUE based on different levels of OP in soil.
The objective of this study was to investigate the relationship between PUE and OP, so as to
manage P fertilization, optimize the OP level and thus increase PUE in the maize cropping
system, and reduce P leaching, which is a major source of pollution.

2. Material and Methods
2.1. Site Description

The field trials were carried out in 2017, 2018, and 2019 at the Gongzhuling Exper-
imental field in Jilin province, northeastern China (43.5047° N, 124.8228° E). The study
site is located in a warm temperate zone with a semi-humid climate. The monthly mean
rainfall and temperature values during the cultivation period showed the lowest rainfall
(21 mm) and temperature (8 °C) in October, and the highest temperature (24 °C) and rainfall
(366 mm) in July and August, respectively. The highest and lowest total seasonal rainfall
values were 1074 and 461 mm/year in 2018 and 2017, respectively, as shown in Figure 1.
The study area soil is classified as China black soil and Luvic Phaeozems, according to
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the FAO system classification [42], and the soil texture is clay loam (clay content 32%) as
shown in Table 1.
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Figure 1. Monthly average rainfall (mm) and temperature (°C) at the experimental area in 2017, 2018,
and 2019.

Table 1. The initial soil characteristics (data are the means from 2017, 2018, and 2019).

Parameter Value

Organic matter (g kg 1) 22.8
Total N (g N kg™ 1) 1.40
Total P (g Pkg™!) 0.6

Total K (g K kgfl) 18.42
Available P (mg kg™!) 32.3
Soil pH (soil: water = 1:2.5) 5.6
Bulk density (g cm~3) 1.2
Clay content (<0.002 mm, %) 32.1

2.2. Experiment Design and Crop Management

Before planting, soil samples were collected from the experimental site at a depth of
0-20 cm to analyze the initial soil properties for 2017, 2018, and 2019, particularly the initial
OP levels and their susceptibility to different doses of P fertilizers in previous years. The
field was ploughed by disc harrow during the first week of April. The cropping system
was continuously maize (Zea mays L.). Maize was planted in late April; the intra-row and
inter-row spacings were 25 cm and 75 cm, respectively. Manual weeding was performed to
control weeds, and herbicides like (atrazine) were applied during crop growth as needed.
The maize was harvested at the end of September. A randomized complete block design
was used in the experiment with three replicates, with three main plots. The plot size was
15 x 4.2 m?; each plot had 6 rows and the plant density was 53,333 plants ha~!. Levels of
OP in the plots were dependent on different historical doses of P fertilizer application. We
selected six OP levels, marked as OP1, OP2, OP3, OP4, OP5, and OP6, corresponding to
16, 20, 28, 38, 43, and 49 mg kg_l, respectively, and the interaction of these OP levels with
different rates of P fertilizer application. The P source was P pentoxide (P,Os), namely, P1,
P2, P3, P4, P5, and P6, corresponding to 0, 22, 44, 59, 73, and 117 kg P,Os ha-1, respectively.
Nitrogen (N) was applied as urea (CH4N,O) at 100 kg N ha~! and potassium as potassium
chloride (KCI) at 100 kg K,O ha~! for all treatments. All of the fertilizer treatments were
added to the soil before maize planting.
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2.3. Soil Sampling and Analyses

Soil samples were collected before planting and at harvest time from the plough layer
(0-20 cm) during the study period. Fresh soil samples were mixed thoroughly, air-dried,
and sieved through a 2.0 mm sieve and stored for analysis. Soil samples were analyzed for
soil organic C [43], total P [44], available P [16], and pH in a 1:2.5 soil-to-water ratio [45].
Total N was determined using micro-Kjeldahl digestion, available N (alkaline diffusion
method), and 1 mol L~! NH,OAc-extractable K, following the methods of [46].

2.4. Plant Sampling and Analyses

The grain yield and aboveground biomass (leaves and stems) of maize were measured
at harvesting. Three maize plants were collected from the middle strip of every plot.
The samples were air-dried and ground for further analyses. The plant samples were
digested with concentrated HSO, and HyO; (30%) and then the total P concentration was
estimated using the molybdate method [47]. The phosphorus concentration was multiplied
by grain yield and aboveground biomass yield to calculate the P absorbed by the grain and
aboveground biomass, and then the phosphorus-use efficiency (PUE) was calculated:

Us — Uy
A

PUE = x 100 1)
where Uy is the amount of P absorbed by the maize treated with P, Uj is the amount of
P absorbed by crops without P treatment, and P, is the amount of phosphorus applied.
Considering that the experiment was carried out in the same location for three consecutive
years, we calculated the PUE for the maize crop with the same precept [48].

Pgp =P —Pg 2)

where Pj is the apparent P balance, P4 is the amount of phosphorus applied, and Py, is the
total amount of P absorbed by grains and the aboveground biomass of maize crops. The
relative yield was calculated to find the relationship between the relative yield under six
Olsen P levels in black soil at Gongzhuling in northeastern China during the study period
(2017, 2018, and 2019), as follows:

where Yp is the relative yield, Y is the yield of different treatments (kg ha='), and Yy, is
the maximum yield (kg ha~!) among the treatments.

2.5. Statistical Analysis

Regression equations for correlations between the soil OP levels and P application
rates with grain yield and aboveground biomass yield were determined with Duncan’s
test using the SAS 9.0 software package (SAS Institute Inc., Cary, NC, USA). Significant
differences in PUE and OP level among the various P applications were determined at the
p < 0.05 significance level using the least significant difference (LSD), using the SPSS 21.0
software package. The figures were drawn using the SigmaPlot 12.5 software package.

3. Results
3.1. Grain Yield Response to Olsen P Levels and P Application Rates during the Three Years of
the Experiment

The P fertilizer treatments and six OP levels had a significant effect on the grain yield
of maize. All fertilizer treatments produced a significantly higher grain yield than the
control in all three years (2017, 2018, and 2019). We observed that grain yield with P1
(control) gradually increased with the increase in OP level from OP1 to OP3 in all three
years and then remained stable in OP4 to OP6, as shown in Figure 2. Comparing the grain
yield for the three years 2017, 2018, and 2019, it was observed that the highest grain yield
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was recorded in 2018 (12.4 Mg ha~!). This is because the average rainfall in 2018 was
relatively higher than in 2017 and 2019, as shown in Figure 1.
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Figure 2. The grain yield of maize under six Olsen P levels and P application rates in black soil at Gongzhuling, northeastern
China, in 2017, 2018, and 2019. Different letters within a column are significantly different at p < 0.05. OP represents the Olsen P
levels, OP1, OP2, OP3, OP4, OP5, and OP6, corresponding to 16, 20, 28, 38, 43, and 49 mg kgfl, respectively, and P represents
the P application rates, 1, P2, P3, P4, P5, and P6, corresponding to 0, 22, 44, 59, 73, and 117 kg P,Os ha=1, respectively.

3.2. Grain and Aboveground Biomass Yield Response to Olsen P Levels and P Application Rates

Figure 3a,b show the average grain yield and aboveground biomass of maize crops
during the study period (2017, 2018, and 2019) under six OP levels and P application
rates. Compared with P1 (control), all P fertilizer treatments significantly increased the
grain yield and aboveground biomass during the study period. The grain yield in the P1
treatment increased gradually with the increase in OP levels from OP1 to OP3, and was then
stable from OP4 (38 mg kg~ !) to OP6 (49 mg kg~ '), although the Olsen P level increased.
With the improvement in the soil fertility level, the effect of P fertilizer application on
yield was not obvious, and there was no significant difference in yield between various P
fertilizer treatments.

Phosphorus fertilization significantly increased the crop production (p < 0.05), es-
pecially in the treatments with P application, as shown in Figure 3. This shows that P
deficiency has a significant effect on the grain yield of maize. In our study, we observed
that grain yield and aboveground biomass yield increased by 42.6% and 36.0%, respectively,
compared to P1 (control). Specifically, the average grain yield and aboveground biomass
were 38.6% and 32.5% higher in the P6 treatment with high OP (OP6) than in the control
treatment (P1).
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Figure 3. (a) The average grain yield and (b) aboveground biomass yield of maize under six Olsen
P levels and P application rates in black soil at Gongzhuling, northeastern China, during the study
period 2017, 2018, and 2019. Different lowercase letters indicate a significant difference (p < 0.05)
between grain and aboveground biomass yield at each Olsen P level. OP represents the Olsen P
levels, OP1, OP2, OP3, OP4, OP5, and OP6, corresponding to 16, 20, 28, 38, 43, and 49 mg kgfl,
respectively, and P represents the P application rates, P1, P2, P3, P4, P5, and P6, corresponding to 0,
22,44,59, 73, and 117 kg P05 ha~1, respectively.

3.3. Grain and Aboveground Biomass Yield Response to P Application Rates

Figure 4a,b show the average grain yield and aboveground biomass of maize crops
during the study period 2017, 2018, and 2019 under six P application rates. We compared
P1 (control) in average grain yield and aboveground biomass (8.1 and 13.5 t ha~!) with
other P fertilizer application rates, P2, P3, P4, P5, and P6, corresponding to 9.2, 9.8, 10,
9.9,and 9.8 and 14.7, 15.6, 15, 8, 15.8, and 15.9, respectively. The grain and aboveground
biomass yield significantly increased during the study period. The grain yield with P1
(control) increased gradually with an increase in P application from P1 to P3, and was then
stable from OP4 (59 kg P,0Os5 ha=1) to P6 (117 kg P05 ha™1), although the P application
rate increased.
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Figure 4. (a) The average grain yield and (b) aboveground biomass yield of maize under P application
rates in black soil at Gongzhuling, northeastern China, during the study period 2017, 2018, and 2019.
Different lowercase letters indicate a significant difference (p < 0.05) between grain and aboveground
biomass yield at each of the P rates. The phosphorus fertilizer application rates were P1, P2, P3, P4,
P5, and P6, corresponding to 0, 22, 44, 59, 73, and 117 kg P,O5 ha™1, respectively.

3.4. Phosphorus-Use Efficiency Response to Soil OP Levels and P Application Rates

Figure 5 shows the PUE (%) by maize crop at six OP levels and P application rates
during the study period of 2017, 2018, and 2019. We observed that PUE (%) showed a
positive trend with OP levels and a negative trend with P application rates, as shown in
Figure 5. When comparing PUE at the low OP level (OP1) with PUE at the high OP level
(OP6) at the same P application rate (P2), we observed that the PUE increased significantly
with an increase in soil OP level. Phosphorus-use efficiency increased at a high OP level
(OP6) in the range of 32.4-49.5% compared to PUE at a low OP level (OP1) during the
study period of 2017, 2018, and 2019. During the study period, when the PUE value at the
low P application rate (P2) was compared with the PUE value at the high P application
rate (P6) at the same OP levels, it was found that the PUE value decreased significantly, in
the range of 62.8-78.7%. The maximum PUE during the study period was 33.0% recorded
at OP6 at the low P application rate (P2). The minimum PUE was 5.9%, recorded at OP1 at
the high P application rate (P6), as shown in Figure 5.
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Figure 5. The average phosphorus-use efficiency (PUE) of maize crops under six levels of Olsen P
and P application rates in black soil at Gongzhuling, northeastern China, during the study period
2017, 2018, and 2019. Note: OP1, OP2, OP3, OP4, OP5, and OP6 refer to the six Olsen P levels of 16, 20,
28, 38,43 and 49 mg kg‘l, respectively. P2, P3, P4, P5, and P6 refer to the five phosphorus application
rates of 22, 44, 59, 73, and 117 kg P ha~1, respectively. Different lowercase letters within a column
indicate significant differences at different P fertilizers rates within the Olsen P level (p < 0.05).

3.5. Phosphorus-Use Efficiency Response to P Application Rates

Figure 6 shows the average PUE (%) of the maize crops at six P application rates during
the study period of 2017, 2018, and 2019. We observed that PUE (%) showed a negative
trend as the P application rate increased. Comparing the PUE at a low P application rate
(P2 22 kg P05 ha—!) with the PUE at a high P application rate (P6 117 kg P,Os5 ha™1),
we observed that the PUE decreased significantly with the increase in P application rate
during the study period. During the study period, the maximum PUE was 28%, recorded
at P2, and the minimum PUE was 7%, recorded at P6, as shown in Figure 6.
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Figure 6. The average phosphorus-use efficiency (PUE) of maize crops under six P application rates
in black soil at Gongzhuling, northeastern China, during the study period 2017, 2018, and 2019. The
phosphorus fertilizer application rates were P1, P2, P3, P4, P5, and P6, corresponding to 0, 22, 44,
59, 73, and 117 kg P»0s5 ha~t, respectively. Different lowercase letters within a column indicate
significant differences at p < 0.05.
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3.6. The Agronomic Critical Level of Olsen P for Maize in Black Soil

The correlation between relative yield and soil OP levels, fitted with the Michaelis
equation, is shown in Figure 7. Relative yield increased with an increase in soil OP level.
The response of relative yield to the levels of OP was divided into two parts. In the first
part, the OP level was below 28 mg kg~ !, and the yield increased significantly with the
increase in OP level and was significantly related to the amount of P fertilizer. In the second
part, above 28 mg kg~ !, there was no response to P fertilizer, so the crop yield was stable
despite the increase in OP level. The change point between the two parts was considered
to be the agronomical critical level for OP.

1.2
1.0 +
—~ 0.8 1
$
< 061 y = 97.02*(1-exp(-0.088*x))
s
s R? =0.76, =108, P<0.0001
E .
E ——= no fertilizer response
0.2 4
Highly fertilizer response &
0.0
T ;8 T T
0 2 60

20 0 4
Soil Olsen P (mg kg )

Figure 7. The relative yield under six Olsen P levels in black soil at Gongzhuling, northeastern China,
during the study period 2017, 2018, and 2019.

3.7. Effect of Experimental Factors Year, Olsen P, and P Application Rate on the Growth, Yield, and
PUE of Maize Crops

The interaction between the three experimental factors—year, OP, and P application—
with grain yield, aboveground biomass, and PUE, is shown in Table 2. The grain yield
and aboveground biomass showed a highly significant difference, R?> = 0.97 and 0.62,
respectively (p < 0.01), with year, OP, P application, and year x OP. Regarding PUE, there
was a highly significant difference, R? = 0.96 (p < 0.01), for all the experimental factors,
with the exception of year x OP x P, which showed no significant difference, as shown
in Table 2. From the results in Table 2, we can conclude that the factor OP is the main
factor affecting the maize yield (grain and above ground biomass) and PUE value of the
maize plant.
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Table 2. Summary of statistical analysis of the effect of year, Olsen P, and P application on grain yield,
aboveground biomass, and PUE.

Dependent Factor: Grain Yield

Factor df Mean Squares p-Value
Year (Y) 2 1486.8 **
Olsen P (OP) 5 2.4 **
P application (P) 5 15.9 **
Y x OP 10 1.8 **
Y xP 10 19 **
OP x P 25 0.8 *
Y xOP x P 50 0.6 ns
Error 216 0.5 -
R% =0.97 - - -

Dependent factor: aboveground biomass yield
Year 2 117.6 **
or 5 16.9 **
P 5 68.4 **
Y x OP 10 5.9 o
Y xP 10 2.3 ns
OP x P 25 2.7 ns
Y x OP x P 50 12 ns
Error 216 2.4 -
R? = 0.62 - - -
Dependent factor: phosphorus-use efficiency (PUE)

Year 2 1208.4 **
or 5 105.0 **
P 5 4252.4 **
Y x OP 10 23.7 **
Y x P 10 109.6 w*
OP x P 25 34.2 **
Y x OP x P 50 10.0 ns
Error 216 9.9 -
R?=0.96 - - -

Note: ns: no significant at the 0.05 level; * Significant at the 0.05 level; ** Significant at the 0.01 level.

4. Discussion
4.1. Crop Yield Response to Soil Olsen P Levels and P Application Rates

Excessive P application leads to significant environmental problems [49], whereas
insufficient P input will lead to low crop yields and soil fertility degradation [50,51]. Thus,
optimal P application is necessary for a sustainable agricultural system. This research
supports our hypothesis that optimal P application will lead to higher crop production
and improve PUE in the maize cropping system. The critical OP level can be described as
the OP level at which the yield does not change despite the increase in OP levels and P
application rate. The critical OP level for a continuous maize cropping system in black soil
in the study area was 28 mg kg !, as shown in Figure 7. We observed the P application rate,
44 kg P ha~!, was sufficient to meet crop requirements for optimal crop yield. Xia et al. [11]
noted 40 kg P ha~! was sufficient to meet the maize crop requirements of P in clay soil,
where the OP level was 20.3 mg kg~ !.

Moreover, in this study, we observed that there was no response to yield increases
when the OP level reached 28 mg kg ™! in all P application rates (P2 to P6). Tang et al. [52]
noted that growing crops without P fertilizer application resulted in a significant decrease
in crop productivity over time in many locations in China. Continuous cultivation with-
out P fertilizer application significantly reduces the OP levels in the soil. Although we
observed a difference in OP level between treatments with P fertilization and treatments
without P fertilization, the OP level decreased significantly with continued cultivation
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without P fertilization, whereas the OP level increased significantly with continued P
fertilization [53,54].

4.2. The Phosphorus-Use Efficiency of Maize and Olsen P Influence on Maize Yield

The PUE could be used to characterize the P effects [55,56]. In China, about 15-20% of
the P is absorbed by plants in the year of P fertilizer application [27,57]. In our study, among
six OP levels and P application treatments, there were significant differences (p < 0.05) in
PUE during the study period, as shown in Figure 5. In general, the PUE was low in
the study area. Due to the low soil pH (5.5 to 6) in this area, some elements are more
active, particularly aluminum (Al), which reacts with P to form compounds that lead to P
precipitation, thus making P unavailable for the plant.

In our result, we observed the maximum PUE was 33% at a high OP level (OP6) and
a low P application rate. The minimum PUE was 5.9% at a low OP level and a high P
application rate. The PUE at a high OP level and a low P application rate was 5.6 times
more than the PUE at a low OP level and high P application rate. This indicates PUE has a
positive correlation with the OP level and a negative relationship with the P application
rate. Xu et al. [58] reported that a higher PUE value was obtained using the optimal P
fertilizer management practice, whereas high rates of P fertilizer result in a low PUE value,
due to the overuse of P fertilizer. Xin et al. [59] and Chuan et al. [60] noted that the average
PUE values for maize and wheat in China were 15.7% and 10.2%, respectively. Dobermann
et al. [61] suggested that P inputs in grain production systems in soils that are not readily
P-fixable should aim to achieve 30 to 50 kg of grain for each kg of P applied. Moreover,
the main problem of most soils globally is a low PUE, which is the main reason why PUE
needs to be improved [24,62,63]. Overall, significant effort still needs to be made regarding
the best management practices to further improve PUE in China.

4.3. Critical Levels of Olsen P for Crop Yield

A critical OP level can be defined as “a soil P status above which crop yield does not
respond to P fertilization” [24,64,65]. In our study, the critical level of OP for maize was 28
mg kg!. Once the critical level of OP is reached or slightly exceeded, P fertilizer application
should be reduced to maintain the existing OP level [25,66]. Tang et al. [24] reported the
critical OP level for maize in the range of 13-15 mg kg ~!. Critical OP levels for maize in the
state of Idaho in the western US and France range from 7 to 11 mg kg’l [23,67]. Liet al. [5]
noted that the critical OP level for rice in China ranged between 10 and 20 mg kg’l, and
Bado et al. [68] noted a level of 17 mg kg ™! as a critical OP level for rice in Africa. Changes
in critical levels may also result from differences in the models used to estimate the critical
levels [64].

Critical OP levels range between 10 and 40 mg kg~ !, depending on the climate, soil
properties, and crop type. When the soil OP is below the agronomically critical levels of
OP, the PUE increases significantly if the soil OP is increased; when the soil OP level is very
close to the agronomically critical levels of OP, the PUE may reach the maximum value or
change slightly if the level of the soil OP changes; and when the soil OP level is significantly
above the agronomically critical levels of OP, the PUE decreases with increasing OP level.
The critical level of OP in our study was 28 mg kg, as shown in Figure 7, consistent with
the range of 10-40 mg kg ! reported by Jordan [69]. This critical OP level allowed us to
determine the critical OP level beyond which crop yields do not respond to P application
(Figure 7).

4.4. Phosphorus Fertilizer Management Strategies

The P management strategy used in agriculture can be based on the critical level of
the soil OP, because OP is the most commonly used index in China [64]. By combining the
relationships among soil OP, total P, and P budget (P input by fertilizer minus P output by
crop uptake) [70], the amount of P fertilizer needed to adjust soil OP to the agronomically
critical level can be calculated. Moreover, the PUE should be considered to protect the
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limited P resources and reduce P loss risk [71]. In addition, P leaching has been shown to
occur in many soil types in China when the soil OP level is higher than 40 mg kg ! [64].
According to the present study, to achieve a relatively high crop yield, PUE, and soil fertility,
the optimum OP should range from the agronomically critical level (28 mg kg~ !) to the
leaching change-points of OP (usually 40 mg kg ™! for most soils of China). Thus, we
inferred that the optimum Olsen P level should be around 28 mg kg ! in the study area in
northeastern China.

5. Conclusions

A rational P management strategy can contribute to enhanced total grain yields and
PUE in maize cropping systems. Strategies used for soil P management are implemented
to achieve a balance among food security, resource limitations (high PUE), and pollution
prevention in the field. First, the agronomically critical levels of soil OP for crop yield
should be achieved. In the current study, the agronomically critical level of OP varied
depending on soil types, crop species, and climate. Over time, the PUE presented an
increasing trend in the study area, and an initially increasing and then an obviously
decreasing trend. Moreover, the correlation was used to describe the response relationship
of PUE with soil OP. All of the change rates were very small, indicating that the PUE
values increased slightly or remained unchanged as the soil OP increased under most of
the fertilization treatments in the study area. When the soil OP level is very high, the PUE
decreases, wasting P resources and leading to significant environmental problems, such as
the eutrophication of water bodies. Thus, the OP level should be maintained at an optimal
level. Based on the data from the three-year period of the field experiment, to achieve a
high PUE, crop yield, and soil fertility, the optimal level of soil OP is 28 mg kg~! in the
study area. Furthermore, to realize the goal of optimizing P use in diverse soil types and
crop systems in China, additional studies and collaborations are required.

Author Contributions: Conceptualization, K.I. and S.Z.; writing—original draft preparation, K.I.;
writing—review and editing, K.I. and S.Z.; resources and data curation, Q.W. and L.W.; visualization,
W.Z. and C.P; supervision, S.Z.; funding acquisition, S.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
(2016YFD0200301), by the Special Fund for Agro-scientific Research in the Public Interest of China
(201503120) and by the National Natural Science Foundation of China (41977103, 41471249).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: We thank all staff for their valuable work associated with these long-term
Monitoring Networks of Soil Fertility and Fertilizer Effects in China.

Conflicts of Interest: The authors declare no conflict of interest.

1. Sharma, S.B.; Sayyed, R.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing
phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [CrossRef]

2. Yang, J.; Zhang, J.; Huang, Z.; Zhu, Q.; Wang, L. Remobilization of Carbon Reserves Is Improved by Controlled Soil-Drying
during Grain Filling of Wheat. Crop Sci. 2000, 40, 1645-1655. [CrossRef]

3. Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M.
Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc.
Natl. Acad. Sci. USA 2008, 105, 11254-11258. [CrossRef]

4. Gao, Y; Zhu, B.,; Zhou, P; Tang, J.-L.; Wang, T.; Miao, C.-Y. Effects of vegetation cover on phosphorus loss from a hillslope
cropland of purple soil under simulated rainfall: A case study in China. Nutr. Cycl. Agroecosyst. 2009, 85, 263—-273. [CrossRef]

5. Li, H; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X; et al. Integrated soil and plant
phosphorus management for crop and environment in China. A review. Plant Soil 2011, 349, 157-167. [CrossRef]


http://doi.org/10.1186/2193-1801-2-587
http://doi.org/10.2135/cropsci2000.4061645x
http://doi.org/10.1073/pnas.0805108105
http://doi.org/10.1007/s10705-009-9265-8
http://doi.org/10.1007/s11104-011-0909-5

Sustainability 2021, 13, 5983 13 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Mustafa, A.; Hu, X.; Abrar, M.M,; Shah, S.A.A ; Nan, S.; Saeed, Q.; Kamran, M.; Naveed, M.; Conde-Cid, M.; Hongjun, G.; et al.
Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in
fractions under continuous maize cropping. Appl. Soil Ecol. 2021, 165, 103971. [CrossRef]

Shah, S.A.A.; Xu, M.; Abrar, M.M.; Mustafa, A.; Fahad, S.; Shah, T.; Yang, X.; Zhou, W.; Zhang, S.; Nan, S.; et al. Long-term
fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese loess plateau soil. Chemosphere
2021, 267, 128897. [CrossRef]

Zhang, F.; Cui, Z.; Chen, X; Ju, X,; Shen, J.; Chen, Q.; Liu, X.; Zhang, W.; Mi, G.; Fan, M,; et al. Integrated Nutrient Management
for Food Security and Environmental Quality in China. Adv. Agron. 2012, 116, 1-40. [CrossRef]

FAO. FAOSTAT Database-Agriculture Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011.
Aulakh, M.S,; Pasricha, N.S.; Bahl, G.S. Phosphorus fertilizer response in an irrigated soybean-wheat production system on a
subtropical, semiarid soil. Field Crops Res. 2003, 80, 99-109. [CrossRef]

Xia, H.-Y,; Wang, Z.-G.; Zhao, ].-H.; Sun, J.-H.; Bao, X.-G.; Christie, P.; Zhang, E-S.; Li, L. Contribution of interspecific interactions
and phosphorus application to sustainable and productive intercropping systems. Field Crops Res. 2013, 154, 53—-64. [CrossRef]
Zhang, L.; van der Werf, W.; Bastiaans, L.; Zhang, S.; Li, B.; Spiertz, J. Light interception and utilization in relay intercrops of
wheat and cotton. Field Crops Res. 2008, 107, 29-42. [CrossRef]

Rowe, H.; Withers, PJ.A.; Baas, P.; Chan, N.I; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al.
Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security.
Nutr. Cycl. Agroecosyst. 2016, 104, 393—412. [CrossRef]

Wang, R.; Guo, S.; Li, N.; Li, R;; Zhang, Y,; Jiang, J.; Wang, Z.; Liu, Q.; Wu, D.; Sun, Q.; et al. Phosphorus Accumulation and
Sorption in Calcareous Soil under Long-Term Fertilization. PLoS ONE 2015, 10, e0135160. [CrossRef] [PubMed]

Withers, PJ.A.; Vadas, P.A.; Uusitalo, R.; Forber, K.J.; Hart, M.; Foy, R H.; Delgado, A.; Dougherty, W.; Lilja, H.; Burkitt, L.L.; et al.
A Global Perspective on Integrated Strategies to Manage Soil Phosphorus Status for Eutrophication Control without Limiting
Land Productivity. J. Environ. Qual. 2019, 48, 1234-1246. [CrossRef] [PubMed]

Olsen, S.R.; Cole, C.V,; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate;
No. 939; US Department of Agriculture: Washington, DC, USA, 1954.

Mahmood, M; Tian, Y.; Ma, Q.; Ahmed, W.; Mehmood, S.; Hui, X.; Wang, Z. Changes in Phosphorus Fractions and Its Availability
Status in Relation to Long Term P Fertilization in Loess Plateau of China. Agronomy 2020, 10, 1818. [CrossRef]

Bin, X.I; Zhani, L.-M.; Liu, S.; Wang, H.-Y; Luo, C.-Y.; Ren, T.-Z.; Liu, H.-B. Long-term phosphorus accumulation and agronomic
and environmtal critical phosphorus levels in Haplic Luvisol soil, northern China. J. Integr. Agric. 2016, 15, 200-208.

Poulton, PR.; Johnston, A.E.; White, R.P. Plant-available soil phosphorus. Part I: The response of winter wheat and spring barley
to Olsen P on a silty clay loam. Soil Use Manag. 2012, 29, 4-11. [CrossRef]

Aziz, M.Z.; Yaseen, M.; Naveed, M.; Wang, X.; Fatima, K.; Saeed, Q.; Mustafa, A. Polymer-Paraburkholderia phytofirmans PsJN
Coated Diammonium Phosphate Enhanced Microbial Survival, Phosphorous Use Efficiency, and Production of Wheat. Agronomy
2020, 10, 1344. [CrossRef]

Edmeades, D.; Metherell, A.K.; Waller, ].E.; Roberts, A.H.C.; Morton, ].D. Defining the relationships between pasture production
and soil P and the development of a dynamic P model for New Zealand pastures: A review of recent developments. N. Zeal. |.
Agric. Res. 2006, 49, 207-222. [CrossRef]

Chen, Y.; Zhou, T.; Zhang, C.; Wang, K.; Liu, J.; Lu, J.; Xu, K. Rational Phosphorus Application Facilitates the Sustainability of the
Wheat/Maize/Soybean Relay Strip Intercropping System. PLoS ONE 2015, 10, e0141725. [CrossRef] [PubMed]

Colomb, B.; Debaeke, P.; Jouany, C.; Nolot, ]. Phosphorus management in low input stockless cropping systems: Crop and soil
responses to contrasting P regimes in a 36-year experiment in southern France. Eur. J. Agron. 2007, 26, 154-165. [CrossRef]
Tang, X.; Ma, Y.; Hao, X.; Li, X,; Li, ].; Huang, S.; Yang, X. Determining critical values of soil Olsen-P for maize and winter wheat
from long-term experiments in China. Plant Soil 2009, 323, 143-151. [CrossRef]

Johnston, A E.; Poulton, P.R.; Fixen, P.E.; Curtin, D. Phosphorus: Its efficient use in agriculture. In Advances in Agronomy; Elsevier:
Amsterdam, The Netherlands, 2014; pp. 177-228.

Ashraf, M.N,; Hu, C.; Wu, L,; Duan, Y.; Zhang, W.; Aziz, T.; Cai, A.; Abrar, M.M.; Xu, M. Soil and microbial biomass stoichiometry
regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. J. Soils
Sediments 2020, 20, 3103-3113. [CrossRef]

Zhang, W.; Ma, W.; Ji, Y.; Fan, M.; Oenema, O.; Zhang, F. Efficiency, economics, and environmental implications of phosphorus
resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 2008, 80, 131-144. [CrossRef]

Zhong, X.; Zhao, X.; Huajun, B,; Li, H.; Guitong, L.; Qimei, L. The evaluation of phosphorus leaching risk of 23 Chinese soils I.
Leaching criterion. Acta Ecol. Sin. 2004, 24, 2275-2280.

Rupp, H.; Meissner, R.; Leinweber, P. Plant available phosphorus in soil as predictor for the leaching potential: Insights from
long-term lysimeter studies. Ambio 2017, 47, 103-113. [CrossRef]

Johnston, A.E.; Poulton, PR.; White, R.P. Plant-available soil phosphorus. Part II: The response of arable crops to Olsen P on a
sandy clay loam and a silty clay loam. Soil Use Manag. 2012, 29, 12-21. [CrossRef]

Moody, PW. Environmental risk indicators for soil phosphorus status. Soil Res. 2011, 49, 247-252. [CrossRef]

Gilsanz, C.; Baez, D.; Misselbrook, T.H.; Dhanoa, M.S.; Cérdenas, L.M. Development of emission factors and efficiency of two
nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 2016, 216, 1-8. [CrossRef]


http://doi.org/10.1016/j.apsoil.2021.103971
http://doi.org/10.1016/j.chemosphere.2020.128897
http://doi.org/10.1016/b978-0-12-394277-7.00001-4
http://doi.org/10.1016/S0378-4290(02)00172-7
http://doi.org/10.1016/j.fcr.2013.07.011
http://doi.org/10.1016/j.fcr.2007.12.014
http://doi.org/10.1007/s10705-015-9726-1
http://doi.org/10.1371/journal.pone.0135160
http://www.ncbi.nlm.nih.gov/pubmed/26288011
http://doi.org/10.2134/jeq2019.03.0131
http://www.ncbi.nlm.nih.gov/pubmed/31589721
http://doi.org/10.3390/agronomy10111818
http://doi.org/10.1111/j.1475-2743.2012.00450.x
http://doi.org/10.3390/agronomy10091344
http://doi.org/10.1080/00288233.2006.9513711
http://doi.org/10.1371/journal.pone.0141725
http://www.ncbi.nlm.nih.gov/pubmed/26540207
http://doi.org/10.1016/j.eja.2006.09.004
http://doi.org/10.1007/s11104-009-9919-y
http://doi.org/10.1007/s11368-020-02642-y
http://doi.org/10.1007/s10705-007-9126-2
http://doi.org/10.1007/s13280-017-0975-x
http://doi.org/10.1111/j.1475-2743.2012.00449.x
http://doi.org/10.1071/SR10140
http://doi.org/10.1016/j.agee.2015.09.030

Sustainability 2021, 13, 5983 14 of 15

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Vandamme, E.; Rose, T.].; Saito, K.; Jeong, K.; Wissuwa, M. Integration of P acquisition efficiency, P utilization efficiency and low
grain P concentrations into P-efficient rice genotypes for specific target environments. Nutr. Cycl. Agroecosyst. 2015, 104, 413-427.
[CrossRef]

Wang, G.; Chen, B.; Khan, K.S.; Zheng, W.; Liang, H.; Han, Z.; Chen, ]J. Novel value-added phosphorus-potassium-activator
fertilizers improve phosphorus use efficiency and crop yields. Environ. Pollut. Bioavailab. 2019, 31, 323-330. [CrossRef]

Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World Phosphorus Use Efficiency in Cereal Crops. Agron. J. 2017, 109,
1670-1677. [CrossRef]

Syers, J.K.; Johnston, A.D.; Curtin, D. Efficiency of Soil and Fertiliser Phosphorus Use: Reconciling Changing Concepts of Soil
Phosphorus with Agronomic Information. In FAO Fertilizer and Plant Nutrition Bulletin; FAO: Rome, Italy, 2008.

De Oliveira, L.E.Z.; de Souza Nunes, R.; de Sousa, D.M.G.; de Figueiredo, C.C. Dynamics of residual phosphorus forms under
different tillage systems in a Brazilian Oxisol. Geoderma 2020, 367, 114254. [CrossRef]

Johnston, A.E.; Syers, ] K. A new approach to assessing phosphorus use efficiency in agriculture. Better Crops 2009, 93, 14-16.
Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, E; Yang, X.; Sun, B.; Zhang, S. Phosphorus efficiency, soil phosphorus
dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric. Ecosyst.
Environ. 2018, 256, 1-11. [CrossRef]

Lazali, M.; Blavet, D.; Pernot, C.; Desclaux, D.; Drevon, ].J. Efficiency of Phosphorus Use for Dinitrogen Fixation Varies between
Common Bean Genotypes under Phosphorus Limitation. Agron. J. 2017, 109, 283-290. [CrossRef]

Wu, Q.; Zhou, W,; Chen, D,; Cai, A.; Ao, J.; Huang, Z. Optimizing Soil and Fertilizer Phosphorus Management According to
the Yield Response and Phosphorus Use Efficiency of Sugarcane in Southern China. J. Soil Sci. Plant Nutr. 2020, 20, 1655-1664.
[CrossRef]

Shi, X.; Yu, D.; Xu, S.; Warner, E.; Wang, H.; Sun, W.; Zhao, Y.; Gong, Z. Cross-reference for relating Genetic Soil Classification of
China with WRB at different scales. Geoderma 2010, 155, 344-350. [CrossRef]

Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification
of the chromic acid titration method. Soil Sci. 1934, 37, 29-38. [CrossRef]

Lu, R K. Analytical Methods of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000;
pp- 147-150.

Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1996; pp. 475-490.
Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E. Methods of Soil Analysis; American Society of Agronomy:
Madison, WI, USA, 1965.

Sparks, D.L.; Page, A.L.; Helmke, P.A ; Loeppert, R.H.; Soltanpour, PN.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of
Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1996.

Zhang, H.; Xu, M.; Shi, X; Li, Z.; Huang, Q.; Wang, X. Rice yield, potassium uptake and apparent balance under long-term
fertilization in rice-based cropping systems in southern China. Nutr. Cycl. Agroecosyst. 2010, 88, 341-349. [CrossRef]

Le, C,; Zha, Y;; Li, Y;; Sun, D.; Lu, H; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag.
2010, 45, 662-668. [CrossRef]

Mustafa, A.; Minggang, X.; Shah, S.A.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al.
Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J.
Environ. Manag. 2020, 270, 110894. [CrossRef]

Vitousek, PM.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, PJ.; Katzenberger, J.; Martinelli, L.A.;
Matson, P.A,; et al. Nutrient Imbalances in Agricultural Development. Science 2009, 324, 1519-1520. [CrossRef]

Tang, X.; Li, J.; Ma, Y,; Hao, X.; Li, X. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various
soil and climate conditions. Field Crops Res. 2008, 108, 231-237. [CrossRef]

Djodjic, F.; Borling, K.; Bergstrom, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. Qual.
2004, 33, 678-684. [CrossRef]

Shen, Y.; Duan, Y.; McLaughlin, N.; Huang, S.; Guo, D.; Xu, M. Phosphorus desorption from calcareous soils with different initial
Olsen-P levels and relation to phosphate fractions. J. Soils Sediments 2019, 19, 2997-3007. [CrossRef]

Yu, X.; Liu, X.; Zhu, T.H,; Liu, G.H.; Mao, C. Isolation and characterization of phosphate-solubilizing bacteria from walnut and
their effect on growth and phosphorus mobilization. Biol. Fertil. Soils 2011, 47, 437-446. [CrossRef]

Zhu, X.-K; Li, C.-Y; Jiang, Z.-Q.; Huang, L.-L.; Feng, C.-N.; Guo, W.-S.; Peng, Y.-X. Responses of Phosphorus Use Efficiency, Grain
Yield, and Quality to Phosphorus Application Amount of Weak-Gluten Wheat. J. Integr. Agric. 2012, 11, 1103-1110. [CrossRef]
Li, Q.; Xu, C.; Yin, C,; Kong, L.; Qin, Y.; Hou, Y.; Wang, H.; Zhao, L. Evaluation of fertigation technique for phosphorus application
of maize in the semi-arid region of Northeast China. Plant. Soil Environ. 2019, 65, 401-407. [CrossRef]

Xu, X,; He, P; Pampolino, M.E; Johnston, A.M.; Qiu, S.; Zhao, S.; Chuan, L.; Zhou, W. Fertilizer recommendation for maize in
China based on yield response and agronomic efficiency. Field Crops Res. 2014, 157, 27-34. [CrossRef]

Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting
long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res. 2017, 208, 27-33. [CrossRef]
Chuan, L.; He, P; Jin, J.; Li, S.; Grant, C.; Xu, X,; Qiu, S.; Zhao, S.; Zhou, W. Estimating nutrient uptake requirements for wheat in
China. Field Crops Res. 2013, 146, 96-104. [CrossRef]


http://doi.org/10.1007/s10705-015-9716-3
http://doi.org/10.1080/26395940.2019.1695544
http://doi.org/10.2134/agronj2016.08.0483
http://doi.org/10.1016/j.geoderma.2020.114254
http://doi.org/10.1016/j.agee.2018.01.006
http://doi.org/10.2134/agronj2016.01.0034
http://doi.org/10.1007/s42729-020-00236-8
http://doi.org/10.1016/j.geoderma.2009.12.017
http://doi.org/10.1097/00010694-193401000-00003
http://doi.org/10.1007/s10705-010-9359-3
http://doi.org/10.1007/s00267-010-9440-3
http://doi.org/10.1016/j.jenvman.2020.110894
http://doi.org/10.1126/science.1170261
http://doi.org/10.1016/j.fcr.2008.05.007
http://doi.org/10.2134/jeq2004.6780
http://doi.org/10.1007/s11368-019-02292-9
http://doi.org/10.1007/s00374-011-0548-2
http://doi.org/10.1016/S2095-3119(12)60103-8
http://doi.org/10.17221/287/2019-PSE
http://doi.org/10.1016/j.fcr.2013.12.013
http://doi.org/10.1016/j.fcr.2017.03.011
http://doi.org/10.1016/j.fcr.2013.02.015

Sustainability 2021, 13, 5983 15 of 15

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

Dobermann, A. Nutrient use efficiency—Measurement and management. In Proceedings of the IFA International Workshop on
Fertilizer Best Management Practices, Brussels, Belgium, 7-9 March 2007; pp. 1-28.

Heuer, S.; Gaxiola, R.; Schilling, R.; Herrera-Estrella, L.; Arredondo, D.L.; Wissuwa, M.; Delhaize, E.; Rouached, H. Improving
phosphorus use efficiency: A complex trait with emerging opportunities. Plant . 2017, 90, 868-885. [CrossRef]

Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275-281.
[CrossRef]

Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield,
soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27-37. [CrossRef]

Sucunza, FA.; Boem, FH.G.; Garcia, FO.; Boxler, M.; Rubio, G. Long-term phosphorus fertilization of wheat, soybean and maize
on Mollisols: Soil test trends, critical levels and balances. Eur. J. Agron. 2018, 96, 87-95. [CrossRef]

Johnston, J.; Fixen, P.; Poulton, P. The efficient use of phosphorus in agriculture. Better Crops 2014, 98, 22-24.

Mallarino, A.P.; Schepers, ].S. Role of precision agriculture in phosphorus management practices. Phosphor. Agric. Environ. 2005,
46, 881-908.

Bado, B.V.; De Vries, M.E.; Haefele, S.M.; Marco, M.C.S.; Ndiaye, M.K. Critical Limit of Extractable Phosphorous in a Gleysol for
Rice Production in the Senegal River Valley of West Africa. Commun. Soil Sci. Plant Anal. 2007, 39, 202-206. [CrossRef]
Jordan-Meille, L.; Rubaek, G.H.; Ehlert, PA.L; Genot, V.; Hofman, G.; Goulding, K.; Recknagel, J.; Provolo, G.; Barraclough, P. An
overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use Manag.
2012, 28, 419-435. [CrossRef]

Ma, Y,; Li, J.; Li, X,; Tang, X.; Liang, Y.; Huang, S.; Wang, B.; Liu, H.; Yang, X. Phosphorus accumulation and depletion in soils in
wheat-maize cropping systems: Modeling and validation. Field Crops Res. 2009, 110, 207-212. [CrossRef]

Toth, G.; Guicharnaud, R.-A.; Téth, B.; Hermann, T. Phosphorus levels in croplands of the European Union with implications for
P fertilizer use. Eur. |. Agron. 2014, 55, 42-52. [CrossRef]


http://doi.org/10.1111/tpj.13423
http://doi.org/10.1016/j.resconrec.2015.09.013
http://doi.org/10.1007/s11104-013-1696-y
http://doi.org/10.1016/j.eja.2018.03.004
http://doi.org/10.1080/00103620701759178
http://doi.org/10.1111/j.1475-2743.2012.00453.x
http://doi.org/10.1016/j.fcr.2008.08.007
http://doi.org/10.1016/j.eja.2013.12.008

	Introduction 
	Material and Methods 
	Site Description 
	Experiment Design and Crop Management 
	Soil Sampling and Analyses 
	Plant Sampling and Analyses 
	Statistical Analysis 

	Results 
	Grain Yield Response to Olsen P Levels and P Application Rates during the Three Years of the Experiment 
	Grain and Aboveground Biomass Yield Response to Olsen P Levels and P Application Rates 
	Grain and Aboveground Biomass Yield Response to P Application Rates 
	Phosphorus-Use Efficiency Response to Soil OP Levels and P Application Rates 
	Phosphorus-Use Efficiency Response to P Application Rates 
	The Agronomic Critical Level of Olsen P for Maize in Black Soil 
	Effect of Experimental Factors Year, Olsen P, and P Application Rate on the Growth, Yield, and PUE of Maize Crops 

	Discussion 
	Crop Yield Response to Soil Olsen P Levels and P Application Rates 
	The Phosphorus-Use Efficiency of Maize and Olsen P Influence on Maize Yield 
	Critical Levels of Olsen P for Crop Yield 
	Phosphorus Fertilizer Management Strategies 

	Conclusions 
	References

