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Abstract: Neural relation extraction (NRE) models are the backbone of various machine learning
tasks, including knowledge base enrichment, information extraction, and document summarization.
Despite the vast popularity of these models, their vulnerabilities remain unknown; this is of high
concern given their growing use in security-sensitive applications such as question answering and
machine translation in the aspects of sustainability. In this study, we demonstrate that NRE models
are inherently vulnerable to adversarially crafted text that contains imperceptible modifications of
the original but can mislead the target NRE model. Specifically, we propose a novel sustainable term
frequency-inverse document frequency (TFIDF) based black-box adversarial attack to evaluate the
robustness of state-of-the-art CNN, CGN, LSTM, and BERT-based models on two benchmark RE
datasets. Compared with white-box adversarial attacks, black-box attacks impose further constraints
on the query budget; thus, efficient black-box attacks remain an open problem. By applying TFIDF
to the correctly classified sentences of each class label in the test set, the proposed query-efficient
method achieves a reduction of up to 70% in the number of queries to the target model for identifying
important text items. Based on these items, we design both character- and word-level perturbations
to generate adversarial examples. The proposed attack successfully reduces the accuracy of six
representative models from an average F1 score of 80% to below 20%. The generated adversarial
examples were evaluated by humans and are considered semantically similar. Moreover, we discuss
defense strategies that mitigate such attacks, and the potential countermeasures that could be
deployed in order to improve sustainability of the proposed scheme.

Keywords: robust; sustainability; adversarial attack; black-box attack; TFIDF; relation extraction;
deep neural networks

1. Introduction

Relation extraction (RE) is the classification of relations between two entities. It is
important and useful in several applications of natural language processing (NLP) [1], such
as question answering [2], information extraction [3], knowledge-base machine translation,
and document summarization. Recently, deep neural networks (DNNs) have been applied
successfully in a variety of NLP tasks [4,5]. The outstanding performance of these DNNs
on complex data has received attention from researchers and are now frequently used in
different domains such as NLP, computer vision, speech recognition, etc. Among these
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neural models, RNNs, CNNs, GNNs, and pre-trained models such as BERT have obtained
state-of-the-art results for RE. RNNs look for a sequence of words in a text to capture
dependencies of words and text structures. CNNs recognize the key phrases of text using
pattern recognition and feature extraction techniques, while GNNs capture the internal
structures of the graphs such as semantic and syntactic parse trees. Pre-trained models
such as BERT, which use transfer learning techniques, are pre-trained on huge text corpus,
e.g., the Wikipedia text corpus, and after fine tuning, they can be applied to many different
kinds of NLP tasks. In particular, complex deep neural RE models have exhibited higher
accuracy on supervised RE datasets, such as the SemEval-2010 Task 8 [6] and the TACRED
dataset [7]. Traditional RE methods, such as kernel- and feature-based methods, suffer
from erroneous labeling [8].

To overcome this, supervised DNN models have been used [9]. However, the charac-
terization understanding of the behavior of these complex neural models is a challenging
task. The statistical learning perspective implies that more complex models are more prone
to brittleness [10]. There has been an ongoing discussion regarding the sustainability of
these models as to the extent to which they understand natural language [11] and utilize
the cues and unintentional biases in the training dataset [12,13]. The behavior of these
models becomes unpredictable if they are evaluated or tested on data outside the defined
distribution of the training dataset; therefore, to expose these “blind spots,” adversarial
attacks have been used for robustness evaluation of these deep machine learning models.
Normally, the attacker applies either a white-box attack or black-box attack. In a white-box
attack on textual data, the attacker uses the gradient information of the victim model to
find the positions of important words and perturb them in multiple ways. On the other
hand, black-box attacks are blind attacks, in which the attacker has no access to gradients of
the victim model. More often, adversarial text generation in a black-box attack is done by
finding the significant words that has a high impact on the confidence score of the victim
model and then perturbing those words. Supervised RE models currently use a test set for
evaluation and measurement. Higher accuracy scores on test sets indicate that the model is
effective only if the real world is represented by the test set [14]. However, the distribution
of test and training sets are most likely to be the same, as they are generated in parallel and
do not necessarily represent real-world scenarios [15].

In this study, we use focus on evaluating and improving the robustness of supervised
RE models in the aspects of sustainability under black-box adversarial attack settings. These
RE models are responsible for predicting the class of relations between two mentioned
entities. RE is a multiclass classification task. Accordingly, each supervised RE dataset is
designed to classify different classes of relations. As sensitive automated systems such as
question answering use RE models at the back-end, it is meaningful to fully understand
the extent to which these models are sustainable or being affected by adversarial attacks
and their degree of robustness to wording changes. Furthermore, it is also necessary to
determine the deficiencies of the datasets used to train these models [10].

1.1. Challenges

As adversarial attacks have been successful in image and speech classification [16,17],
researchers have attempted to extend them to tasks related to NLP, such as text classification,
sentiment analysis, machine translation, machine comprehension, and text entrainment.
Generating adversarial examples for text domains remains challenging because of the
discrete nature of textual data. Furthermore, in addition to the ability to mislead the text
classifier, it is important to preserve the utility of the original text after the attack:

1. Human prediction should remain unchanged.
2. Semantic similarity should be maintained.
3. Adversarial examples should appear natural and fluent.

Previous studies have barely fulfilled all these requirements. For example, in [18]
single-word erasure was used, and in [11], non-related phrases were added and removed.
These types of changes resulted in unnatural text. Moreover, under black-box settings,
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it is difficult to identify significant text items for classification. Black-box adversarial
attacks are evaluated based on the number of queries made to identify significant items
for classification. It is highly important to consider the cost associated with the number of
such queries in attacks on real-world systems. Attack time can be minimized by reducing
the number of queries [19,20]. A method is considered more efficient if the average clock
time for perturbing a single example is shorter. Query-based approaches have primarily
been used to calculate word importance by deleting a certain word in a sentence, and to
determine whether the predictions have changed. This method is effective, but it invokes
the classifier for every word, which is time-consuming; thus, the following questions arise
in the aspects of sustainability:

1. Determining significant words for an adversarial attack and invoking the classifier as
rarely as possible.

2. Generating adversarial examples that can mislead the classifier considering the char-
acteristics of RE datasets and models.

3. Evaluating the success of an attack.

4. Improving the robustness of these models.

1.2. Contributions

To better understand the robustness of supervised NRE models, we propose certain
sustainable adversarial attack methods and accordingly generate adversarial examples to
address the aforementioned questions. As mentioned earlier, the test sets have almost the
same distribution as the training datasets. We used term frequency—inverse document
frequency (TFIDF) to determine important words in sentences of each class label from the
test set. This method, which has not previously been used, does not invoke the classifier
to repeatedly determine significant words. It is conceivable that test sets contain hints
for attackers because by obtaining the TFIDF of all correctly classified sentences of a
specific class in a test set, TFIDF can identify up to an average of 70% of important words
for classification. To perturb a word, we used both character-level attacks (CLAs) and
word-level attacks (WLAs) to fully understand the vulnerabilities of NRE models.

We apply the proposed framework to attack state-of-the-art and representative NRE
models, namely, CNN [21], attention Bi-LSTM [22], and R-Bert [23] for the SemEval-
2010 Task 8 dataset, and PA-LSTM [7], C-GCN+PA-LSTM [24], and SpanBERT [25] for
the TACRED RE dataset. We automatically evaluated attack success by comparing the
classification accuracy before and after the attack with variants of our attack and modified
baseline algorithms of other text classification tasks; we also used human evaluations.
The proposed adversarial attack successfully reduced the accuracy of the targeted models
to under 20%, and not more than 20% of the words were perturbed in a sentence. The
adversarial sentences were correctly classified by the human judges. At the end of the
adversarial attack, we performed adversarial training to retrain the model for improved
sustainability and robustness. To the best of our knowledge, this is the first study to
evaluate and measure the robustness of supervised RE models under adversarial examples.
The contributions of this study can be summarized as follows:

1.  We propose a novel query-efficient TFIDF-based black-box adversarial attack and
generate semantically similar and plausible adversarial examples for NRE task.

2. Our mechanism evaluates supervised RE models using black-box adversarial attacks;
this has not been previously undertaken. It was demonstrated that no available open-
source RE model is robust and sustainable to character- and word-level perturbations.

3. Our proposed adversarial attack makes use of test samples to find significant words
in a sentence, therefore reducing the number of queries and time required to generate
an adversarial example.

4. In comparison to other similar black-box attacks on text classification and entailment
tasks with a minor modification in their algorithms for RE dataset (constraints on
modifying the mentioned entities). Our method achieves a higher attack success rate
in the lowest number of queries.
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5. We further discussed two potential defense mechanisms to defend the models against
the aforementioned attacks along with evaluations.

The rest of the paper is organized as follows. Related work is briefly reviewed in
Section 2. The proposed method is described in Section 3. Experiments on datasets and
their corresponding target models are presented in Section 4. Section 5 describes the
effectiveness and efficiency of the proposed attack model. Attack evaluation is carried out
in Section 6. The transferability of the generated adversarial sentences between models
is discussed in Section 7. Defense strategies against adversarial attacks on supervised RE
models are considered in Section 8. The paper is concluded in Section 9.

2. Related Work

The evaluation of DNN-based classifiers has recently attracted considerable attention.
Researchers have crafted unperceivable adversarial perturbations that can mislead such
classifiers. These adversarial examples were first introduced in [26] to evaluate the robust-
ness of state-of-the-art CNN-based image classifiers using small perturbations applied to
input images. It was demonstrated that the classifier was vulnerable to such perturbations.

It is impractical and expensive to generate adversarial examples [26]; therefore, various
generation methods have been proposed, including [16,27] gradient [28], decision function,
and [29] evolution-based methods. As adversarial attacks were first used in computer
vision and were later adopted in NLP, few attempts have been made to attack NLP neural
models and evaluate their robustness. Unlike in the case of images, where the embedding
space is continuous, and perturbations are carried out by altering pixels, adversarial
attacks cannot be directly made on textual data because of the discrete nature of these data.
In [11,30], difficulties were reported in using a fast gradient sign method (FGSM) [16] to
attack an RNN-based neural NLP model owing to the intrinsic differences between textual
data and images.

In [27], TextFool also used FGSM to determine significant text items in the context of
text classification, and three attack strategies, namely, addition, removal, and modification,
were proposed to evaluate a CNN text classifier [31]. However, these techniques were
manually performed.

TextFool was modified in [32]. An adverb w; that contributes more to the text classifi-
cation task is first removed. Then, it is checked whether the grammar is incorrect, and in
this case, a word p; is inserted. This word is selected from a candidate pool consisting of
typos, synonyms, and genre-specific words. If the grammar or similarity is not satisfied,
then the word w; is replaced with p;. It has been demonstrated that this method is more
effective than TextFool because the POS and grammar of the original text are not affected.

In [33,34], character-level perturbations called Hotflip were performed by inserting,
deleting, and swapping letters, causing translation errors and wrong outputs in text classi-
fication and machine translation tasks. In [35], this was extended by adding a controlled
attack in which a specific word is removed from the output, and a targeted attack in
which a specific word is replaced. These methods change the meaning of sentences and
intentionally introduce errors. Reference [36,37] discussed techniques of adding random
noise to text by changing the tokens of word, while [38] proposed word dropout strategy
to improve the sustainability of language models. This does not preserve the semantics of
the sentence and modify the sentence in an unnatural way.

Small manually constructed adversarial datasets were used to evaluate the vulner-
ability of sentiment analysis [39,40], machine translation [41,42], and natural language
understanding [43] systems. In this type of attack, the attacker would be highly confident
regarding the labels and grammatical correctness of instances; however, it is expensive to
exploit human knowledge of language and is difficult to construct and scale larger datasets.
Recently, in [44], an adversarial dataset was introduced for stress test evaluation in natural
language inference. This dataset contains methods for generating new adversarial claims
to evaluate the sustainability of state-of-the-art models in the context of a shared task
called MultiNLI by using three types of perturbations: meaning-altering transformation,
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rule-based transformation, and distractor phrases. This approach is comparatively cheaper
than manual constructing a dataset, as several instances can be changed by one rule.

The problem of query efficiency of black-box adversarial attacks has been addressed by
many researchers [45-47] in image classification domain but it has been neglected in studies
of black-box adversarial attack on textual data. Most of the textual black-box adversarial
attacks are carried out by querying the victim models many times for perturbation of just
one word, which invokes the model’s classifier thousands of time, therefore taking more
time and using more processing power.

However, in this study we focus on the query efficiency of our proposed black-box
adversarial attack. In addition,the robustness issue of sustainable supervised RE models has
also not been considered, and to the best of our knowledge, this is the first study to evaluate
the robustness of deep neural networks for RE. Furthermore, we compare the proposed
TFIDF method with previous methods of determining significance words in sentences, and
evaluate the models using different character-level and word-level perturbations.

3. Methodology
3.1. Problem Formulation

Givenasetof N labels Y = {y1, 2, y3...yn } and a set of N sentences S = {s1, 2, 54...5N' },
each sentence has two mentioned entities (e1,¢;) and n words w s; = {wq, w, €1..€2...Wwy }.
We have a pre-trained relation classification model F : S — Y that maps features from the
input text space X to the feature space of N labels Y. The aim of the adversary is to generate
valid adversarial examples S,;, for a sentence s; € S such that F(S) = y and F(S,4,) = z,
with y # z. The adversarial example should also be semantically and syntactically similar
to the original sentence, that is, Sim(S, S,4,) >€, where € is a threshold value between
0 and 1 indicating the minimum semantic similarity between S and S,4,. Therefore, the
similarity function is Sim : X x X — (0,1).

3.2. Threat Model

Compared with the case of a white-box attack, in which the attacker has complete
knowledge of the model, in a black-box setting, attackers have no access to the target model
architecture, training data, or parameters. Therefore, in this case, the attacker can only
query the target model and obtain a confidence score or prediction. The black-box attack
should meet the following three requirements:

1. It should generate fluent adversarial examples that are semantically similar to the
original sentence.

2. The target NRE model/classifier should be invoked as few times as possible.

3. It should fool the NRE model into producing erroneous outputs.

3.3. Adversarial Attack

We intend to experiment with different variants of the attack model. The adversarial
attack consists of the following steps:

1.  Determining important words and sorting them in descending order according to
their importance.

2. Using these words to generate adversarial sentences.

Checking the similarity constraint between the original and adversarial sentences.

4.  Checking whether the adversarial sentence changes the output of the model.

@

We propose three methods for determining the importance of a word: TFIDF-based,
query-based (QB), and a combination thereof. We generate two types of perturbations in a
sentence: word-level and character-level. We combine these techniques as follows:

e TFIDF+(WLA/CLA).
e QB+(WLA/CLA).
e Combined (TFIDE-QB+(WLA/CLA)).
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We describe each step of these methods in detail in the next section, and the results
from different variants are presented in Section 6. The proposed method for generating
adversarial sentences and misleading supervised RE models is shown in Algorithm 1.
The algorithm shows the third variant of the proposed attack model, that is, combined
(TFIDF-QB+(WLA/CLA)), as it covers all types of the proposed attack methods.

3.3.1. Step 1: Word Importance Ranking (Lines 1-8 and 24-28)

The first step of a black-box attack is to determine important words. In supervised
relation classification, each sentence is given with two mentioned entities. The objective is
to determine important words around these entities, for example, those words that come
before, after, or between the entities. In the process for generating adversarial examples,
these entities are not changed or modified. We propose three methods and compare their
performance in terms of the invocation frequency of the classifier. The following methods
are used to select important words.

1.  TFIDF-based word importance ranking (TFIDF-WIR).
2. QB word importance ranking (QB-WIR).
3. Combined TFIDF and QB word importance ranking ((TFIDF+QB)-WIR).

TFIDF-Based Word Importance Ranking

Term frequency-inverse document frequency provides statistics regarding word im-
portance in a document, corpus, or collection. For example, in our case, if we take the
SemEval-2010 Task 8 dataset as an example, we are given nine types of relations, and a
label “other” if there is no relation identified. We generated nine documents, one for each
class label from the test set. Each document contains the sentences correctly classified by
all target models for that specific class label. An example of the cause—effect relationship
from the SemEval-2010 Task 8 dataset is as follows:

Traffic < el > vibrations < /el > on the street outside caused the < e2 > movement
</e2> of the light.

It has been demonstrated that not all words contribute equally to the classification
of semantic relations [48]. To determine the relation, the word “caused” is of particular
significance, whereas the word “street” is less correlated with the semantics of cause—
effect relationships. The TFIDF list of important words of each class-label document
provides almost 70% of the important words and their weights, which are significant for
the classification of a relation. Figure 1 shows the lists of words belonging to particular
classes. The words in each document are ranked in descending order of their weights. The
mentioned entities of the sentences are not included in these lists because they should
not be changed, as the goal of RE is to determine the relation between the entities. After
obtaining TFIDF, we arrange the words in each document according to their importance
ranking. We further use the NLTK library to filter out a few non-related stop words such as
“the,” “when,” and “none,” but not words such as “inside,” “by,” and “from,” as some stop
words may also affect the prediction output. This method does not invoke the classifier
because it checks the target word in the generated list of important words.
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Algorithm 1: Black-box TFIDE-QB combined attack.

o U e W

7
8

9
10
11
12
13
14
15

16

17

18
19

20
21

22

23

24

25
26
27

Input: Sentence S = {wq, wy...e1..ep..wy } , original label y, classifier F,

Sim()Funtion , threshold €, and TFIDF [y;;s]

Output: S,;, adversarial sentence
1 Initialize: S5, < S
2 for each word w; in S do

o

if w; # ey or ey (mentioned entities) then
for each word k in TFID f[y;;s;] do
if k = wi If the word is present in TFIDF[y;s;] then
L L Z1ist = Get the importance score of top 4 w;

EZlist # null then

Zordered < Sort Zj;s according to importance Score in TFI DFy;s
Input: Attack type
if Attack type = "CharAttack” then
for w] in Zordered do

Sado = Char Attack(wj, Saa0,y, F(.))

if Sim(S, S,4, <€) then

| Return none
else if F(S,4, # y) then

Attack successful, Return S, 4,

else if Attack type = "WordAttack” then

for wj in Zordered do
Sudo = Word Attack(w;, Saao, y, F(.))
if Sim(S, Sy40 <€) then
L Return none
else if F(S4, # y) then

Attack successful, Return S,

eise if Z = null, that is, no word found in T fIDF|y;;s;] then
for each word w; in S do

if w; # ey or ey (mentioned entities) then
L Zji+ = Compute the word importance P(w;, ) from Equation (4)

28 Zordered < Sort Zjjs according to P(w; )
29 Repeat steps from lines 9-23
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Cause-efect Component-Whole C -C i Entity-Destination Entity-Origin

1. Caused 1. Of 1.In 1. Poured 1. From

2. From 2. Comprises 2. Inside 2. Put 2. Away
3. Resulted 3. Contains 3. Hidden 3. Arrived 3. Originated

4. Triggered 4. From 4. Full 4. Sent 4. Departed
1846. Small 1812. Way 936. Get 876. Made -1380. Years
1847. Long 1813. Set 937. Little 877. Also 1381. Set

Instrument-Agency Member-Collection Message-Topic Product-Producer

1. Using 1. Member 1. Subject 1. Produced

2. Tool 2.0f 2. Topic 2. Built

3. Help 3. Various 3. Related 3. Maker

4. Exam 4. Like 4. Informed 4. Constructed

875. Found 1833. Since 1234. Litle 1547. Sentences

876. Still 1834. Another 1235. Long 1548. Since

Figure 1. TFIDF word importance list for the SemEval-2010 Task 8 test set.

TF is the number of times a word appears in a document divided by the total number
of words in the document: 0
i,j
Yk i
IDF measures the weight of a term across all the documents, and it is calculated
as follows:

tfij = @

N
idf (w) = log(=—). 2
Flw) = log(77) @
TF-IDF: The TF-IDF score is obtained by multiplying TF and IDF:
N
TF — IDF = tf;; x log(~+) 3)
dfi

Query-Based Word Importance Ranking

This technique has been used in several studies [49,50] to determine the importance of
a word in black-box settings. As RE is different from other classification tasks, we adopted
this method with a minor change, that is, the mentioned entities are not included in the
word importance ranking. Given the sentence s consisting of n words w;, to determine the
words that are significant for the classification of the relation between the two mentioned
entities, the words around the mentioned entities should be individually deleted so that
their significance may be checked. If the deletion of a specific word reduces the confidence
or the prediction score of the original label, we consider it an important word. Thereby, the
words are ranked according to the change in the confidence score of the original label. This
method invokes the classifier to determine the importance of each word in a sentence. To
represent the sentence, we have three scenarios: a word may be deleted before, between,
and after the mentioned entities. Thus, the sentence after the removal of the i;;, word can
be as follows:

= {wl....w,-,l,wiﬂ ..... €1...€2....Z0n} ’
= {wy....e..W; _1, W y1...3.... w5 }, and
S ={wq....l1..00...W; 1, Wj 1 1..Wy }.

Hence, the importance score of w; is
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P(wj,) = Fy(S) — Fy(S). )

Fy(S) is the classification accuracy of the original sentence, and Fy(S) is the classifica-
tion accuracy after the removal of the ith word.

Combined TFIDF-WIR and QB-WIR

We now combine the aforementioned methods (TFIDF-WIR and QB-WIR). We assume
that it is possible that not all important words may be present in the list of important words
generated by TFIDF when the test set is used. It is most likely that TFIDF will determine
most of the important words as it is applied to the test set, the distribution of which is
almost the same as that of the training set. However, if it fails, the QB method will be used.

Algorithm 1 shows the combined method for selecting important words from lines 1-8
(TFIDF-WIR) and 24-28 (QB-WIR).

3.3.2. Step 2: Word Transformer (Line 10-23):

After the selection of important words in Step 1, we propose character- and word-level
perturbations. Line 9 of Algorithm 1 requests the perturbation type according to which
adversarial sentences are to be generated, and lines 12 and 19 call functions corresponding
to character- and word-level perturbations, respectively. These functions are described in
Algorithms 2 and 3.

Character-Level Attack

This type of perturbation is used to modify the characters of important words. It
has been demonstrated that the meaning of a sentence is inferred or preserved by a
human reader if a small number of characters are changed [33,45]. Moreover, character-
level perturbations can strongly mislead the prediction process in other text classification
tasks [43]; however, its effect on relation classification remains unknown. The characters of
the selected important words can be perturbed in various manners. Algorithm 2 shows
the function for CLA. This function provides five adversarial sentences according to
five suggested CLAs described below. Subsequently, the best sentence with the lowest
prediction score of the original label y is selected.

Algorithm 2: CLA.

1 Function Char Attack(w, x, yF(.))
2 X = Generate Ado(w, x)
3 forx; in X do

| Score(k)= Fy(x) — Fy (%)
Advyesy = arg maxy, Score(k)
Return Advy,;
7 end Function

'

(=) |

The function Generate Adv(w, x) in Algorithm 2 is important because it applies all
types of character-level perturbations to the given word w in the sentence x. We use the
following types of character-level perturbations: Insert-C, Repeat-C, Swap-C, Delete-C,
and Replace-C. These perturbations are described below, and they are applied to the letters
between the first and last character of the word.

1. Insert-C: The inserting strategy can be applied in several ways. For example, there are
26" combinations for inserting a character from the latin alphabet. Special characters
such as “!” and “@”, as well as a space “ ” between the first and the last character of a
word can also be inserted. We opt to insert a symbolic character because the resulting
mistyped words can be easily understood by humans; however, the embedding
vectors are different from those of the original words, and thus the classifier can
be fooled.
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2. Repeat-C: This is almost the same concept as the inserting technique, but here we
select a random character between the first and last character of an important word
and repeat it once. As in the previous case, the resulting word can be easily identified
by human readers as the original.

3. Swap-C: This randomly swaps two adjacent letters without changing the first and
last letter.

4.  Delete-C: This deletes a letter between the first and last letter. This perturbation can
also be easily recognized by a human, but the classifier may fail.

5. Replace-C: This replace the original letters with visually similar letters. For example,
“0” can be replaced with zero “0,” the letter “a” can be replaced with “@,” or lower

case letters can be replaced with upper case.

Word-Level Attack

This type of perturbation has previously been used differently [44,46-48]. We propose
three types of WLAs: synonym replacement, word swap, and word repetition. The function
for MLAs is presented in Algorithm 3. It produces adversarial sentences with all three
types of word-level perturbations. Subsequently, we select the adversary that yields the
best result in terms of the prediction reduction of the original class label. Generate Adv(w, x)
has the same function as in a CLA, but here, it returns word-level perturbed adversarial
sentences. Each type of word-level perturbation is described in detail below.

Algorithm 3: WLA.

1 Function Word Attack(w, x, yF(.))
2 X = Generate Adv(w, x)

3 forX; in X do

a | Score(k)=Fy(x) — Fy(Xx)

5 Advpes = arg maxx, Score(k)

6 Return Advy,;

7 end Function

1.  Synonym replacement: This is a popular attack strategy because it preserves word
semantics. This function replaces a word with a synonym. We obtained important
words by the aforementioned methods and gathered a synonym list for replacement
(except for the mentioned entities and a few unimportant stop words). The synonym
list is initiated by the N-nearest neighbor synonyms of an important word according
to the cosine similarity between words in the vocabulary. There are several ways
to obtain synonyms from available resources. To represent the words, one can use
“NLTK Wordnet” to obtain the top synonyms or the new counter-fitting method in [51].
In this study, we used the counter-fitting embedding space to find the synonyms of
the words, because it produced the best results on the SimLex-999 dataset [52]. This
dataset was designed to measure model performance in determining the semantic
similarity between words. We select the top k synonyms with a distance to the selected
word greater than ¢ (sigma).

2. Word swap: This method is easy to apply, as it randomly swaps a selected important
word with preceding or succeeding words. If the model is unaware of the word order,
it can yield erroneous outputs. Human readers can easily understand and identify
the word order in a sentence, but the classifier may fail. This perturbation function
returns a modified sentence with an important word swapped with the word before
or after it.

3. Word repetition: We can perturb a sentence by repeating some words (except for the
mentioned entities important words, and a few stop words such as “the” and “is”), as
repeating an important word can increase the confidence score of the original label.
Therefore, this function returns a sentence with the least important words repeated.
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3.3.3. Step 3: Semantic Similarity

There are four popular methods for evaluating the utility of the generated adversarial
text: edit distance, Jaccard similarity coefficient, semantic similarity, and Euclidean distance.

Edit distance and the Jaccard similarity coefficient can be applied to raw text, whereas
semantic similarity and the Euclidean distance are applied to word vectors. We use
cosine semantic similarity because the other metrics can only reflect the magnitude of
the generated adversarial text, and they cannot ensure that the generated perturbation
preserves the semantic similarity from the original text. In this study, we use the universal
sentence encoder [53], which produces high-dimensional vectors of the adversarial and
the original sentence. Using these vectors, we can determine the cosine similarity between
these sentences. Given two high-dimensional vectors P and Q representing the original
and the adversarial sentence, respectively, the cosine similarity is defined as follows:

. P Lizipl X 4
Sim(p, q) = N | 5
) = VI ()T (i) ;

After obtaining the cosine semantic similarity value of the original and the adversarial
sentence, we verify whether the value is below or above the threshold € to control the
semantic similarity of adversarial sentences.

4. Experiments
4.1. Datasets

There are number of datasets available for relation extraction tasks, the main dif-
ferences in all these datasets are the type of relation that needs to be extracted and the
length of the sentences. We selected SemEval 2010 Task 8 [6] and KBP TACRED [7] for our
experiment. These two dataset are among the top benchmark datasets used for supervised
RE. In addition, most of the work published on RE used these dataset together for exper-
imentation. Furthermore, uniqueness of entity types, i.e., (SemEval Task 8 2010 relation
between nominals, e.g., cause—effect and TACRED: Relation between subjects and objects,
e.g., Person-Title) and their classification requirements (SemEval 2010 Task 8 is a multi-way
classification tasks, whereas TACRED is a one-way classification task) make them the best
choice to evaluate the sustainability of NRE models. We believe that these two datasets
cover the most common characteristics of almost all the supervised RE datasets and are
therefore well suited for our experiment. The statistics of these datasets are provided
in Table 1.

Table 1. Dataset statistics.

Task Dataset Train Dev Test Classes  Avg
SemEval-2010 Task 8 8000 0 2717 9 19.1
TACRED 68,124 22,631 15509 42 36.2

Relation extraction

4.2. Targeted Models

We trained three open-source state-of-the-art target models on each dataset: CNN [21],
attention Bi-LSTM [22], and R-BERT [23] on SemEval-2010 Task 8, and PA-LSTM [7], C-GCN
+ PA-LSTM [24], and SpanBert [25] on TACRED. The codes for these models are available
on GitHub. The models were trained using the same hyper-parameters as mentioned in
their research papers and achieved almost the same results. The original accuracy of these
models on the corresponding datasets is provided in Table 2.
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Table 2. Original accuracy of target models before adversarial attack.
SemEval-2010Task 8 CNN Attention Bi-LSTM R-Bert
Original accuracy 82.7% 84.0% 89.25%
TACRED PA-LSTM C-GCN+PA-LSTM SpanBert
Original accuracy 65.1% 68.2% 70.8%

5. Attack Efficiency and Effectiveness

To evaluate the effectiveness and efficiency of the proposed attack model, we selected
500 and 1000 sentences that were correctly classified by all the target NRE models from
the test sets of SemEval-2010 Task 8 and TACRED, respectively. For SemEval-2010 Task
8, the objective of the attacker is to change the prediction label of the original sentence to
one of the remaining eight labels, and for TACRED, to one of the remaining 41 labels. The
attacker is not allowed to make changes to any mentioned entity, subject, or object in both
tasks, but can only perturb the words around them to generate an adversarial sentence.
The results of the main black-box attack TFIDF+QB-CLA and TFIDF+QB-WLA are shown
in Table 3. The success of the attack is calculated by the difference in the accuracy of the
original label before and after the attack. It can be seen that the proposed attack can achieve
a particularly high success rate. Even though in both supervised RE tasks, less than 20%
of the words were perturbed, the accuracy of the original label dropped to below 20% on
average. This demonstrates that the proposed attack can always reduce prediction accuracy,
regardless of the sentence length and model accuracy. Furthermore, BERT is slightly more
robust than the other models on both tasks. On SemEval-2010 Task 8, the accuracy of
BERT dropped from 87.7% to 22.5% after a CLA, and to 20.6% after a WLA, whereas the
corresponding results for CNN and attention Bi-LSTM were 14.6% and 17.1% for CLA, and
15.2% and 17.4% for WLA, respectively. On TACRED, the accuracy of the original label in
SpanBert was reduced from 69.1% to 18.4% and 23.1% by CLA and WLA, respectively. The
corresponding results for PA-LSTM and C-GCN+PA-LSTM were 12.9% and 14.1%, and
13.1% and 18.7%, respectively. It can be concluded that even though BERT is more robust
than CNN, GCN, and LSTM-based models, it can be fooled by adversarial attacks.

Table 3. Accuracy of target models after adversarial attack.

Dataset SemEval-2010 Task 8 TACRED
Model CNN Att- Bi-LSTM R-Bert PA-LSTM C-GCN+PA-LSTM SpanBert
Original 81.2% 83.4% 87.7% 62.6% 64.5% 69.1%
TFIDF+QB-CLA 14.6% 17.1% 22.5% 12.9% 13.1% 18.4%
TFIDF+QB-WLA 15.2% 17.4% 20.6% 14.1% 18.7% 23.1%
Semantic similarity (Avg) 0.81% 0.70% 0.67% 0.86% 0.81% 0.76%
Perturbed words (Avg) 9.3% 11.1% 14.2% 13.7% 14.9% 18.2%
Avg length 19.1 36.2

It can also be observed that the average number of perturbed words and the average
semantic similarity for both WLAs and CLAs are correlated. If the percentage of perturbed
words is high, the semantic similarity decreases. For example, on both tasks, the word
perturbation percentage in CNN is lower than in attention Bi-LSTM and BERT-based
models, and therefore, the semantic similarity is higher. The word perturbation rate
in BERT-based models is higher than that in all other models, demonstrating the high
robustness of the former.
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6. Attack Evaluation

As this is the first study on adversarial attacks in supervised RE, the robustness
of encoders such as CNN, LSTM, GCN, and BERT has not been evaluated for this task.
We applied six different methods to generate adversarial sentences by using different
combinations for the selection of significant words. By comparing the results of each attack,
it was demonstrated that even though in black-box settings, most previous studies on
adversarial attacks in different text classification tasks used the QB approach to determine
the important words, these words can be obtained from the test sets by using TFIDF. This
is because for the classification a specific relation such as “entity-origin” from SemEval-2010
Task 8 and “Person-City_of_birth” from TACRED, words such as “arrive” and “died”
are frequently repeated in sentences related to their class labels. These words are not
important for other types of relations. Applying TFIDF to all groups of sentences belonging
to a particular class label can provide almost 70% of the important words from each class
label group. We explain this in Section 3.3.1. In the QB technique for determining word
importance, the classifier is queried and invoked to determine the importance of every
word. For example, for 500 sentences, the classifier is invoked nearly 1200-1500 times for
SemEval-2010 Task 8, and for 1000 sentences from TACRED, it is invoked up to 2500-3000
times to determine three important words per sentence on average. By contrast, the TFIDF
method never invokes the classifier.

Tables 4 and 5 show different aspects of the proposed attack. Column Invok# (W1, )”
indicates the number of times that the classifier was invoked for each task to determine
important words. In the TFIDF-based method, the classifier was not invoked at all ults,
whereas in the combined method TFIDF-QB, the classifier was invoked 300-400 times for
SemEval-2010 Task 8 and 750-800 times for TACRED; this is preferable to only using the
QB-based method, the attack success rate of which is also high.

Table 4. Results of adversarial attack on 500 sentences of SemEval-2010 Task 8 and corresponding
targeted models.

Attack Types Victim Models  Invok# (WI,,)  AvgTime (s)  Attack Success
CNN 0 2.51 83.4%
TFIDF-CLA Att- Bi-LSTM 0 2.36 74.8%
R-Bert 0 2.74 77.2%
CNN 0 2.42 76.4%
TFIDF-WLA Att- Bi-LSTM 0 2.21 71.5%
R-Bert 0 2.66 73.9%
CNN 1215.4 24.71 85.4%
OB-CLA Att- Bi-LSTM 1299.6 25.77 83.3%
R-Bert 1486.7 27.2 81.2%
CNN 1215.4 2222 87.1%
OB-WLA Att- Bi-LSTM 1299.6 24.42 83.8%
R-Bert 1486.7 28.92 81.4%
CNN 376 6.54 91.5%
(TFIDF+QB)-CLA Att- Bi-LSTM 386 6.77 93.6%
R-Bert 395 11.52 92.7%
CNN 376 6.66 94.3%
(TFIDF+QB)-WLA  Att- Bi-LSTM 386 7.21 91.2%

R-Bert 395 7.67 90.8%
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The fifth column shows the attack success percentage for 500 sentences in SemEval-
2010 Task 8 (Table 4), and 1000 sentences in TACRED (Table 5) against the corresponding
target NRE models. This indicates the number of sentences for which the attack model
was successful in generating adversarial sentences. It is noticed that, on the SemEval-2010
Task 8 dataset, the combined attack TFIDF-QB generated more successful adversarial
sentences, that is, 91.5%, 93.6%, and 92.7%, for CLA, and 94.3%, 91.2%, and 90.8% for WLA
(Table 4). The corresponding results for the TACRED dataset were 97.4%, 96.2%, 95.5%
(CLA), and 95.3%, 92.4%, and 92.1% (WLA), as seen in Table 5. This attack success rate
is significantly higher than those of the TFIDF and QB methods. The low success rate of
TFIDF is caused by missing important words in the TFIDF-list, implying that this method
may be unable to determine the important words in all test sentences. To overcome this,
the combined method TFIDF-OB uses the QB method to obtain the remaining important
words. Accordingly, invoking the classifier only a few hundred times using TFIDF-QB can
provide better and more successful attacks in supervised RE. The column “AvgTime” in
both tables shows the time required for generating one adversarial sentence. Here, it can
also be noticed that TFIDF (CLA and WLA) required significantly less time to complete
both tasks (2-4 and 5-6 s) than the other two methods QB (CLA, WLA) (24-28 and 4348 s)
and TFIDF-QB+(CLA, WLA) (6-11 and 11-17 s). The average sentence length in TACRED
is almost twice as much as that of SemEval-2010 Task 8, and thus the average time required
to generate a single adversarial sentence is also almost twice as much. All these columns
are correlated. For example, if an attack rarely invokes the classifier to determine significant
words, the time to generate one successful adversarial sentence is shorter. TFIDF is effective
in generating adversarial sentences in a short time, but the attack success is rather low. The
QB-based method can determine almost all significant words, but it requires more time and
invokes the classifier a few thousand times. Therefore, TFIDF-QB (CLA, WLA) exploits
the advantages of both the TFIDF and QB methods to achieve high attack success on NRE
models in a short time.

Table 5. Results of adversarial attack on 1000 sentences from TACRED and corresponding
targeted models.

Attack Types Victim Models Invok# (WI,,)  AvgTime(s)  Attack Success
PA-LSTM 0 5.82 80.7%
TFIDF-CLA C-GCN+PA-LSTM 0 6.10 79.8%
Span-Bert 0 5.31 77.3%
PA-LSTM 0 6.7 79.1%
TFIDF-WLA C-GCN+PA-LSTM 0 6.42 77.4%
Span-Bert 0 5.55 76.3%
PA-LSTM 2571.2 45.74 88.4%
QB-CLA C-GCN+PA-LSTM 2719.8 47.46 86.3%
Span-Bert 3018.9 47.97 82.2%
PA-LSTM 2571.2 43.12 85.2%
QB-WLA C-GCN+PA-LSTM 2719.8 45.23 83.6%
Span-Bert 3018.9 48.85 82.7%
PA-LSTM 792 11.51 97.4%
(TFIDF+QB)-CLA C-GCN+PA-LSTM 778 13.72 96.2%
Span-Bert 802 15.54 95.5%
PA-LSTM 792 13.91 95.3%
(TFIDF+QB)-WLA  C-GCN+PA-LSTM 778 15.23 92.4%

Span-Bert 802 16.82 92.1%
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6.1. Comparison of Perturbation Types

The distributions of all types of generated perturbations for both datasets are shown
in Figures 2 and 3. Figure 2a,b show the distribution of CLAs and WLAs for SemEval-2010
Task 8. It can be seen that Insert-C was more effective for CLA-type perturbations in CNN
and attention BI-LSTM, whereas Swap-C performed better on R-Bert; however, overall, the
attack success of all methods on BERT remained lower than on the other models. In WLA,
Synonym-W affected the CNN and attention BI-LSTM almost as the Repeat-W operation;
however, for R-Bert, Repeat-W proved to be a more effective attack.

SEMEVAL Task 8 -CLA SEMEVAL Task 8 -WLA
0.8 N |nsert-C 0354 _ Synonym-W
| mm Delet-C mm Repeat-W
07 m Repeat-C 0.30 + mm Shuffle-W
06 mmm Replace-C
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Figure 2. (a) shows the distribution of Character Level Attaks (CLA’s) perturbations and (b) shows the distribution of World
Level Attacks (WLA'’s) perturbation on 500 sentences of SemEval-2010 Task 8 data set.

Tacred-CLA TACRED-WLA
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Figure 3. (a) shows the distribution of Character Level Attaks (CLA’s) perturbations and (b) shows the distribution of World
Level Attacks (WLA'’s) perturbation on 1000 sentences of TACRED data set.

Similarly, Figure 3¢c,d show the distributions of both types of perturbation (CLA and
WLA) for the TACRED dataset. The classifiers of the TACRED datasets were easily fooled
by almost every type of character-level perturbation. Synonym-W in WLA proved to be the
most effective in this case, indicating that the training set of TACRED did not repeatedly
use synonyms of important words in different sentences of the same class, whereas in
SemEval-2010 Task 8, words such as “caused” and its synonyms such as “resulted” have
been used on different occasions. This explains the reduced effectiveness of Synonym-W
on SemEval-2010 Task 8.
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Figures 2b and 3d show the WLA distribution on the target models for both datasets.
Figure 2b shows that the Synonym-W and Repeat-W (repeat non-significant words) opera-
tions are dominant in attacks on CNN and Bi-LSTM for SemEval-2010 Task 8. However,
their effect is not significantly stronger because the sentences in SemEval-2010 Task 8 are
shorter and less complicated than those in TACRED. The Swap-W operation was the least
dominant. In the case of the TACRED dataset, all three models were fooled by synonym re-
placement. Here, it should be noticed that TACRED is quite larger than SemEval-2010 Task
8. Moreover, not all synonyms are used, but only a few important words for classification
are repeatedly used in each type of sentence.

6.2. Comparison with Modified Baseline Black-Box Attacks of Simple Text Classification Tasks

As mentioned earlier, our work is the first to evaluate the sustainability of supervised
RE DNNSs. Black-box adversarial attacks designed for other text classification problems
cannot be directly applied to RE datasets to generate adversarial sentences. In RE datasets,
each sentence has mentioned entities ‘el” and ‘e2’. The relation is to be extracted between
these entities, which the attacker is not supposed to alter during the generation of an
adversarial sentence, by doing so, the attack RE will lose its meaning. In Algorithm 1 Line
(3), we used conditions for not making any changes to the mentioned entities of the sentence.
In this case, if we want to apply the baseline black-box attacks of other text classification
tasks to RE, then those algorithms need a slight modification in the same way, so that the
mentioned entities are not altered during the generation of adversarial sentences.

The baselines that we modified for comparison to our RE problems are described below:

1.  PSO: It uses substitution based on sememe and particle swarm optimization. It is a
score-based attack [54].

2. Textfooler: It ranks the words using the confidence score of targeted victim model
and replaced those words with synonyms [50].

3. PWWS: This approach used the confidence score of models and rank them accordingly.
It uses WordNet for substituting the words [55].

Table 6 shows the comparison of modified baselines with our specialised TFIDF+QB-
WLA attack for RE. Our model fully outperformed other attack models in terms of query
efficiency (column:Invoke#(WIm)) by generating adversarial sentence in only a few queries
to the models, therefore saving processing time. In terms of after attack accuracy (col-
umn:acc%) our model brought down the accurracy of PA-LSTM, C-GCN+PA-LSTM,CNN
and Att Bi-LSTM better than PSO,TF and PWWS while for R-BERT and Span-BERT TF
performed better. The column pert% shows the number of words perturbed for generat-
ing adversarial sentences. our model shows lower pecentage of words peturbed while
attacking PA-LSTM and Att-Bi-LSTM.

6.3. Adversarial Sentence Examples

Table 7 shows two successful adversarial sentences for SemEval-2010 Task 8, and
two for TACRED. The first changed the prediction of the classifier from 92.3% “cause—
effect” to 73.4% “other” by only using two character-level perturbations.”Resulted” was
changed to “res ulted”, but a space between “s” and “u” was inserted using the Insert-C
operation, and “bombs” was changed to “b0mbs” by the Replace-C operation. The second
adversarial sentence changed the prediction from 87.4% “entity—origin” to 82.1% “product-
producer” by using two types of WLA: Synonym-W replaced the word “constructed” with
“manufactured”, and “from” with “against”.

Similarly, in TACRED, the first adversarial sentence changed the prediction of the
original label “Per:Spouse” 92.4% to “Per:other_Family” 84.2 % by the WLA operations
Synonym-W and Swap-W. “wife” and “husband” were replaced with “bride” and “hubby,”
respectively, and “appeared” was swapped with the “hubby.” The second adversarial
sentence for TACRED was generated by three CLA perturbations, that is, Replace-C, Swap-
C, and Insert-C, by changing “Attended” to “atteNded”, “received” to “recieved”, and
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“professor” to “proffessor”. This perturbation reduced the accuracy of the original label
“Per:School_attended” 88.9% to “Per:Other_Family” 77.9%.

6.4. Human Evaluation

We performed a human evaluation test to determine whether the adversarial sen-
tences generated for the RE task were easy to recognize. Ten graduate-level students were
selected as judges to score the reading fluency and verify whether the generated adversarial
examples were semantically similar to the originals. We selected 100 adversarial sentences
generated in the R-Bert model for SemEval-2010 Task 8, and 100 adversarial sentences
generated in SpanBert for the TACRED dataset. Subsequently, we mixed them with their
corresponding 100 original sentences for each dataset. The judges were divided into two
groups of five individuals each. We asked the judges to score the similarity between the
original and adversarial sentences on a [1-5] Likert scale indicating the likelihood of adver-
sarial sentences being modified by a machine. Table 8 shows a comparison of automatic
evaluation with human evaluation. It can be seen that the models are misclassified at a high
rate, but the human classification is almost similar to that of the original classification. The
Likert-scale score is slightly higher for the machines that generate adversarial sentences
than for those generating the original sentences because the judges think that there are
minor changes in synonyms or spellings in the original words. Nevertheless, the machine
evaluation of the original text and human evaluation of adversarial texts are quite close,
implying that it remains challenging for humans to perceive the modifications.
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Table 6. Comparison of modified word-level black-box adversarial attacks of other text classification tasks on 1000 and 500 sentences of TACRED and SemEval-2010 Task 8 datasetswith
our combined TFIDF+QB-WLA.

PA-LSTM C-GCN+PA-LSTM Span-BERT
Dataset Attack
Orig%  Acc.%  Pert.%  Invoke# W(Im) Orig%  Acc.%  Pert.%  Invoke# W(Im) Orig%  Acc.%  Pert.%  Invoke# W(Im)
PSO 149 15.8 2588 15.7 14.8 2774 18.2 18.9 2917
TF o 15.3 16.1 2577 15.4 14.4 2766 19.7 18.1 2905
Tacred pwws  0%26% 15.7 17.2 2601 645 16.1 15.2 2892 69-1 22.8 20.4 3024
Ours 14.1 13.7 792 13.1 149 778 18.4 18.2 802
CNN Att-Bi-LSTM R-BERT
Dataset Attack
Orig%  Acc.%  Pert.% Invoke # W(Im)  Orig%  Acc.%  Pert.%  Invoke # W(Im) Orig%  Acc.%  Pert.%  Invoke # W(Im)
PSO 15.7 8.9 1201 17.7 114 1229 21.1 12.4 1349
TF 16.6 10.2 1193 18.7 11.7 1211 19.2 13.2 1376
SemEval 2010 Task 8 pyyyyg 812 19.9 134 1225 83.4 218 14.1 1272 87.7 262 145 1462
Ours 15.2 9.3 376 17.4 11.1 386 20.6 14.2 395
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Table 7. Adversarial examples for SemEval-2010 Task 8 and TACRED. Changing a fraction of the words in a sentence with adversarially generated bugs (WLA and CLA) misleads the
classifier to yield incorrect outputs. The new sentence preserves most of the original meaning and is correctly classified by humans although it contains small perturbations.

SemEval-2010 Task 8, Adversarial Sentence Examples

Original sentence
Relation: cause—effect, 92.3%

The <el>airstrike</el>also resulted in several secondary<e2>explosions</e2>, leading Marines
at the site to suspect that the house may have contained

Adversarial sentence CLA
Relation: other, 73.4%

The <el>airstrike</el>also resutted res ulted in several secondary <e2>explosions</e2>, leading Marines
at the site to suspect that the house may have contained homemade bobs bOmbs.

Original sentence
Relation: entity-origin, 87.4%

This <el>paper</el>is constructed from a portion of a <e2>thesis</e2>presented by Edward W. Shand, June, 1930,
for the degree of Doctor of Philosophy at New York University.”

Adversarial sentence WLA
Relation: product—producer, 82.1%

This <el>paper</el>is manufactured coustructed against froffi a portion of a <e2>thesis</e2>presented
by Edward W. Shand, June, 1930, for the degree of Doctor of Philosophy at New York University.”

TACRED, adversarial sentence examples

Original sentence
Relation: per:spouse 92.4%

In a second statement read to the inquest jury, Jupp ’s wife Pat said her husband appeared to have realized
instantly his injuries would likely be fatal-asking a colleague to call her and tell her he loved her. (Subj: Jupp, Obj: Pat)

Adversarial Sentence- WLA
Relation: Per: other_Family, 84.2%

In a second statement read to the inquest jury, Jupp ‘s wifé bride Pat said her husbu7id appeared hubby
appeared to have realized instantly his injuries would likely be fatal-asking a colleague to call her and tell her he
loved her. (Subj: Jupp, Obj: Pat)

Original Sentence

Relation: Per: school_attended, 88.9%

He attended Princeton University and then the University of California , where he received a Ph.D. in 1987
and was promptly hired as a professor. (Subj: He, Obj: University of California)

Adversarial sentence CLA
Relation: Per: other_Family, 77.9%

He attended atteNded Princeton University and then the University of California , where he recetved
recieved a Ph.D. in 1987 and was promptly hired as a professor proffessor. (Subj: He, Obj: University of California)
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Table 8. Comparison of machine and human evaluation. Columns 4 and 5 represent the classification accuracy by the model

and human, respectively. The last column represents a human evaluation of the degree to which the sentence was likely to

be perturbed by a machine. A larger score indicates a higher probability.

Dataset Model Examples Model Accuracy Human Accuracy Score [1-5]
Original 98.1% 94.5% 1.57
CNN
Avg adversarial 14.9% 92.3% 212
BiLSTM Original 88.6% 90.1% 1.80
- i-
SemEval-2010 Task 8 Avg adversarial 17.25% 88.4% 2.0
Original 95.2% 98.1% 1.71
R-Bert
Avg adversarial 21.55% 75.3% 2.05
Original 82.1% 90.6% 1.42
PA-LSTM
Avg adversarial 13.5% 89.2% 2.09
C.GCN4+PA-LSTM Original 91.3% 95.3% 1.89
- + -
TACRED Avg adversarial 15.9% 90.1% 222
Original 96.6% 94.6% 1.96
Span-Bert -
Avg adversarial 20.7% 85.1% 2.84

7. Transferability

This property is popular in attacks on image classifiers. For example, adversarial
images generated in a model are tested on another model to determine whether the
other image classifier can be fooled as well. In text classification, it is also important to
test this property, and the transferability of adversarial text between models has been
studied [56,57]. However, the transferability of adversarial attacks on NRE models has not
been considered. We evaluated this property by generating adversarial texts on both the
RE datasets used in this study and the corresponding NRE models.

Table 9 shows the results of the experiment. It can be seen that transferability is
quite moderate. For SemEval-2010 Task 8, the attack success rates are not as high as on
TACRED, as the classifiers of SemEval-2010 Task 8 are smarter and more robust than those
of TACRED. This is because TACRED is a new dataset, and the classifier has only obtained
a few high results for this dataset compared with SemEval-2010 Task 8. The transferability
of BERT-based models is quite high. For example, a value of 81.4% is achieved in the case
of the PA-LSTM model on adversarial sentences generated for TACRED. This evaluation
demonstrates that the adversarial sentences generated by the proposed method are highly
transferable across all the other models.

Table 9. Transferability of generated adversarial sentences between targeted models for SemEval-2010
Task 8 and TACRED.

CNN Att Bi-LSTM R-BERT
CNN 97 4% 66.7% 32.9%
SemEval-2010 Task 8  Att Bi-LSTM 71.8% 96.4% 31.5%
R-BERT 78.1% 69.4% 94.5%
PA-LSTM C-GCN+PA-LSTM  SpanBERT
PA-LSTM 99.2% 76.9% 52.3%
TACRED C-GCN+PA-LSTM  91.4% 97.2% 58.6

SpanBert 81.4% 79.5% 90.2%
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8. Defense Strategies

Herein, we discuss potential defense strategies that can be applied to improve the
robustness of these deep neural network models. There are techniques such as spell check-
ers and adversarial training. In [15,33], it was demonstrated that deep neural models
remain vulnerable to misspelled words even after a spell checker is applied. We ap-
plied two methods to improve the robustness of the targeted models: spell checking and
adversarial training.

8.1. Spell Checker

We applied the Google spell checker to the character-level perturbations, and we
analyzed which misspelled words or noise were easily detected by the spell checker. The
pie chart shows the correction rate for misspelled or altered words. It can be seen that the
Insert-C (37.0%) and Delete-C (30%) error types are the easiest to detect, whereas Replace-C
errors are not easily detected because this operation replaces a word by visually similar
characters. For example, if we replace “a” by “@” between the first and last characters, the
spell checker cannot detect the replacement. The spell checker is not suitable for adversarial
sentences generated by WLAs, as words are not misspelled. The attack success results are
given in Table 10. It can be seen that the spell checker reduces the attack success rate, but
the attack success rate on TACRED is higher than on SemEval-2010 Task 8, because the
accuracy of the best model on the former dataset is approximately 71%. This implies that
the classification models require substantial improvement. BERT proved to be more robust
than CNN, LSTM, and GCN-based models.

Table 10. Success rate of adversarial attack after spell checking in the case of character-level perturbation.

Attack Success Rate

CNN Att Bi-LSTM R-Bert
SemEval-2010 Task 8
26.4% 24.3% 18.9%
PA-LSTM C-GCN+PA-LSTM SpanBert
TACRED
39.4% 38.2% 32.7%

8.2. Adversarial Training

Adversarial training is another defense method that has long been used in image-
based adversarial attacks. Moreover, this method has been adopted to defend classifiers
against adversarial attacks in various text classification tasks. In adversarial training,
models become more robust by adding adversarial sentences generated by adversarial
attacks to the training set. In our experiment, we selected 5000 and 2000 sentences from the
training sets of TACRED and SemEval-2010 Task 8, respectively, and generated adversarial
sentences with both character- and word-level perturbations. Subsequently, we trained
each corresponding model using these mixed datasets. The performance of each model
before and after adversarial training on the test sets is shown in Table 11, which also shows
the average number of perturbed words per sentence for CLA and WLA before and after
adversarial training. It can be noted that after adversarial training, model accuracy on the
adversarial sentences generated from the test sets increased. Moreover, the BERT-based
model became more robust through adversarial training than all other models, and the
average percentage of perturbed words also increased, demonstrating it was difficult
to fool the models using originally perturbed words. Accordingly, it can be concluded
that adversarial training can improve the accuracy of targeted models to some degree
against adversarial attacks. However, adversarial training has the limitations that the
attack strategies are unknown, and the number of adversarial sentences for training is
limited. This is particularly relevant in practice, as attackers do not make their strategies
and adversarial texts public.
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Table 11. Success rate of adversarial attack after adversarial training.
Dataset SemEval-2010 Task 8 TACRED

Model CNN Att- Bi-LSTM R-Bert PA-LSTM C-GCN+PA-LSTM SpanBert
Original TFIDF+QB-CLA 14.6% 17.1% 22.5% 12.9% 13.1% 18.4%
+Adv-training 29.4% 26.1% 32.6% 27.3% 32.7% 35.3%
(Original) TFIDF+QB-WLA 15.2% 17.4% 20.6% 14.1% 18.7% 23.1%
+Adv-training 33.3% 35.2% 38.8% 27.6% 32.3% 36.5%
Perturbed words (Avg) 9.3% 11.1% 14.2% 13.7% 15.1% 18.2%
Af. Perturbed words (Avg) 12.3% 15.1% 17.2% 17.6% 19.3% 22.1%

References

9. Conclusions and Future Work

We studied adversarial attacks against two popular RE datasets to evaluate the robust-
ness of six representative deep learning NRE models under black-box settings and prove its
feasibility and sustainability. It was experimentally demonstrated that no open source NRE
model is sustainable and robust against character and word-level adversarial attacks. The
proposed TFIDF method is efficient, fast, and effective in generating adversarial sentences,
and that the combined (TFIDF-QB)-based method reduced attack time by minimizing the
number of queries. Human evaluation demonstrated that the adversarial sentences were
legible and imperceptible. Furthermore, the proposed defense strategies (spell checker and
adversarial training) have the possibility of improving model robustness. We believe that
our findings will aid in the development of more robust RE classifiers.

In the future, we aim to find new attack methods under black-box settings to evaluate
document level RE tasks and also enhance the sustainability of other NLP related tasks.
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