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Abstract: The potential or reference evapotranspiration (ET0) is considered as one of the fundamental
variables for irrigation management, agricultural planning, and modeling different hydrological
pr◦Cesses, and therefore, its accurate prediction is highly essential. The study validates the feasibility
of new temperature based heuristic models (i.e., group method of data handling neural network
(GMDHNN), multivariate adaptive regression spline (MARS), and M5 model tree (M5Tree)) for
estimating monthly ET0. The outcomes of the newly developed models are compared with empirical
formulations including Hargreaves-Samani (HS), calibrated HS, and Stephens-Stewart (SS) models
based on mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency.
Monthly maximum and minimum temperatures (Tmax and Tmin) observed at two stations in Turkey
are utilized as inputs for model development. In the applications, three data division scenarios are
utilized and the effect of periodicity component (PC) on models’ accuracies are also examined. By
importing PC into the model inputs, the RMSE accuracy of GMDHNN, MARS, and M5Tree models
increased by 1.4%, 8%, and 6% in one station, respectively. The GMDHNN model with periodic input
provides a superior performance to the other alternatives in both stations. The recommended model
reduced the average error of MARS, M5Tree, HS, CHS, and SS models with respect to RMSE by
3.7–6.4%, 10.7–3.9%, 76–75%, 10–35%, and 0.8–17% in estimating monthly ET0, respectively. The HS
model provides the worst accuracy while the calibrated version significantly improves its accuracy.
The GMDHNN, MARS, M5Tree, SS, and CHS models are also compared in estimating monthly
mean ET0. The GMDHNN generally gave the best accuracy while the CHS provides considerably
over/under-estimations. The study indicated that the only one data splitting scenario may mislead
the modeler and for better validation of the heuristic methods, more data splitting scenarios should
be applied.

Keywords: potential evapotranspiration; heuristic models; empirical formulation; hydrological
processes; water management and sustainability

1. Introduction

Reference evapotranspiration (ET0) is one of the major components in the hydro-
logical cycle [1]. It contributes to a rationale water resources management [2,3], and it
is important in agriculture for measuring crop water requirement quantification [4]. In
addition, ET0 is used as inputs for several hydrological models, and adopted for climate
change studies [5]. Several empirical and semi-empirical methods have been developed
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at different time scales for ET0 prediction. The performance of the methods varies with
respect to the meteorological variables included in the methods, ranging from temperature
based, radiation based, and combination methods [6]. One of the earliest methodologies,
the ET0 calculated using the standards FAO56 Penman-Monteith, has been adopted as
a reference approach [7]. However, ET0 can be measured directly using lysimeters [2].
Measurement of ET0 is varied from one region to another and that is totally based on the
regional climate characteristics [8]. Hence, empirical formulation is demonstrated as a
remarkable limitation on the ET0 estimation. During the last few decades, models based
on computer aid capacity indicated a distinguished progress in the hydrology and water
resources fields [9–13]. Artificial intelligence (AI) models have been extensively applied
as a reliable soft computing technology for ET0 estimation based on the available and
measured climatic variables [14–16].

A review of the literature indicates that numerous studies have examined the applica-
tion of several AI models for estimating ET0 [17–28]. In more detailed state-of-the-art, Yin
et al. [26] introduced a new hybrid AI model dependent on the hybridization of a genetic
algorithm with a kernel model i.e., a support vector machine (GA-SVM) for modeling
daily ET0 in China using several daily climatic variables including Tmax, Tmin, wind speed
(U2), relative humidity (RH), and solar radiation (SR). Compared to classical an artificial
neural network (ANN) and the SVM models, the scholars demonstrated the superiority of
the GA-SVM in predicting ET0. Jovic et al. [17] proposed a hybrid method called genetic
programming (GP) for estimating ET0 using eight climatic variables. Mattar [20] applied
gene expression programming (GEP) for modeling monthly ET0 in Egypt, using five input
variables Tmax, Tmin, RH, U2 and Rs. Tao et al. [25] introduced a hybrid method called
adaptive neuro-fuzzy inference systems (ANFIS) with a firefly algorithm (FA) (ANFIS-FA)
for modeling daily ET0 at Burkina Faso. Using six input variables namely, Tmax, Tmin,
maximum relative humidity (RHmax), Rs, U2, and vapor pressure deficit (VP), the authors
demonstrated that the FA significantly increased the exactness of the ANFIS method, and
that the hybrid ANFIS-FA provided high accuracy with a determination coefficient (R2)
nearly equal to 0.97 compared to a R2 of 0.91 obtained using standard ANFIS. Using data
from India, Adamala [27] compared four models in predicting daily ET0, using fewer
inputs variables: Tmax, Tmin, and extra-terrestrial radiation (Ra). The applied models were
a wavelet neural network (W-ANN), ANN, multi linear regression (MLR), and wavelet
linear regression (W-MLR). The authors reported that decomposition of the input variables
applying wavelet transform significantly improved the performance of the models with
Nash-Sutcliffe efficiency (NSE) equal to 0.82. Using Tmax, Tmin, RH, U2, Rs, and sunshine
hours (SH), Gavili et al. [28] demonstrated that ANN model was better than GEP and
ANFIS for predicting monthly ET0 in Iran, with a NSE value that reached 0.98 during the
testing phase for all tested stations. Khoshravesh et al. [19] compared three regression
methods, namely multivariate fractional polynomial (MFP), Bayesian (BR), and robust
regressions (RBR) for modeling monthly ET0 in Iran, using Tmax, Tmin, mean temperature
(Tmean), and Rs. Karbasi [29] built a new Gaussian process regression (GPR) for forecasting
daily ET0 several days in advance and demonstrated that the use of wavelet decomposition
significantly increased the abilities of the methods and the RMSE dropped from 0.816 mm
to 0.068 mm.

Among several machine learning models explored over the literature, the group
method of data handling type neural network (GMDHNN) is an dependent on the Rosen-
blatt’s perceptron method introduced by Farlow [30]. GMDHNN is successfully applied in
diverse engineering applications [31–34]. Within hydrology and water resources related
research, Najafzadeh et al. [35] developed the GMDHNN model for scour depth (SD) of
pipelines estimation due to waves variability; the prediction of local SD at bridge abutments
in coarse sediments with thinly armored beds was conducted by Najafzadeh et al. [36];
simulation of flow discharge of straight compound channels was reported by Najafzadeh
and Zahiri [37]; prediction of significant wave height was established by Shahabi et al. [38];
prediction of turbidity considering daily rainfall and discharge data was determined by Tsai
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and Yen [39]; an improved modeling of the discharge coefficient for triangular labyrinth
lateral weirs was described by Parsaie and Haghiabi [40]; an evaluation of treated water
quality in a water treatment plant was carried out by Alitaleshi and Daghbandan [41]; a
prediction of turbidity and the free residual aluminum of drinking water was tested by
Daghbandan et al. [42]. Based on the reported literature review, only one study reported
the implementation of the GMDHNN ET0 modeling developed by da Silva Carvalho and
Delgado [43]. The study conducted based on the calculated FAO56 Penman-Monteith using
only previous values and very limited data of daily scale over three years (January 2011 to
January 2014), were utilized for the modeling development.

Multivariate adaptive regression splines (MARS) model introduced by Friedman [44],
and M5 tree (M5Tree) model established developed by Quinlan [45]. They are another
distinguished category of a data driven model, which is mainly used in environmental,
hydrology, irrigation, and hydraulic studies. The MARS model is one of the sophisticated
AI models, as it has the ability to provide a non-parametric feature that is able to identify
the actual relationship between predictors and predicted using splines method for detecting
the nonlinearity pattern [46]. The MARS model has been successfully applied in many
hydrological applications [47–52]. The MARS model was successfully used to predict water
pollution by Kisi and Parmar [47], to forecast sediment load by Adnan et al. [48], to model
daily streamflow by Yin et al. [49], to predict evaporation by Ghaemi et al., [50], and to
predict monthly river flow by Adnan et al. [51].

However, fewer applications related to the ET0 modeling can be seen in the related
literature. For instance, Mehdizadeh et al. [53] compared MARS, SVM, and GEP for
modeling monthly ET0 in Iran, using several climatic variables as inputs: Tmax, Tmin,
Tmean, RH, U2, VP, Ra, Rs, and Rn. The authors have compared several scenarios, namely
temperature-based, radiation-based, mass transfer-based, and meteorological parameters-
based scenarios. For the temperature-based scenarios, using only Tmax, Tmin, and Ra, the
research finding approved the potential of MARS model over the SVM and GEP with a
R2 equal to 0.944 in the validation phase. Mehdizadeh et al. [22] investigated the capacity
of MARS and GEP models for estimating daily ET0 in Iran using four climatic variables:
Tmean, RH, U2, and Rs. The author demonstrated that the MARS model performed the best
using all climate variables with a R2 nearly equal to 0.99 in the validation phase. Using four
climatic variables, namely, Tmean, RH, U2, and Rs, Kisi [54] compared MARS, M5Tree and
least square support vector machines (LSSVM) for modeling monthly ET0 in Turkey. The
authors demonstrated that in some cases, MARS is superior over the two others in terms
of performance accuracy. Keshtegar et al., [55] and Keshtegar and Kisi, [56] applied the
M5Tree, ANFIS, and ANN for modeling daily ET0 in Turkey, using Tmean, RH, U2, and Rs
as input variables. Kisi and Kilic [57] compared M5Tree and ANN for modeling daily ET0
in USA, using Tmean, RH, U2, and Rs. Rahimikhoob [58] compared M5Tree and ANN for
modeling monthly ET0 in USA, using Tmean, RH, U2, and Ra, in Iran. The authors reported
that both methods produced almost similar estimates with smaller differences.

The majority of the aforementioned studies have been conducted using several input
variables. With the exception of the investigation by Mehdizadeh et al. [53], in which the
MARS model was applied for modeling ET0 using only temperature data as inputs, there
are limited studies that have applied MARS and M5Tree models for ET0 utilizing only
temperature inputs. Hence, the major objective of the present investigation was to assess
the performances of GMDHNN, MARS, and M5Tree models to estimate ET0 using only
temperature and extra-terrestrial radiation and validating the results against the empirical
formulations (i.e., HS, CHS and SS). The main motivation of the current study is using
specific climate data (temperature) to simulate the ET0, as this involves highly essential
and significant factors influencing ET0, while recording of such data for long durations
is an easy task in developing countries. The other difference of this study compared to
previous ones is the use of different data splitting scenarios and the inclusion of periodicity
(month number of the year) as an input to the GMDHNN, MARS, and M5Tree models.
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2. Materials and Methods
2.1. Case Study

In the present study, monthly maximum and minimum temperatures (Tmax and Tmin),
solar radiation, relative humidity, and wind speed measured at Adana (latitude 37◦00′

N, longitude 35◦19′ E, altitude 27 m) and Antakya (latitude 36◦33′ N, longitude 36◦30′ E,
altitude 100 m) stations in the Mediterranean Region of Turkey were utilized. The stations
operated by the Turkish Meteorological Organization can be observed from Figure 1. The
data periods used for the Adana and Antakya are 1968–2015 and 1983–2010, respectively.
The statistical parameters of the data employed in the applications are summed up in
Table 1. Ra has the highest correlation with ET0 followed by the Tmin and Tmax and Ra has
a higher correlation with ET0 in Antakya compared to Adana. It is also visible from Table 1
that ET0 in Adana is higher than for Antakya.
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Figure 1. The location of the Adana and Antakya stations.

Table 1. The statistical parameters of climatic data used in the study.

Station Variable xmin xmax xmean Sx Csx Correlation with ET0

Adana

Tmin (◦C) −3.4 23.4 9.33 7.70 0.08 0.828
Tmax (◦C) 17.0 44.0 31.3 7.02 −0.41 0.850

Ra (MJ/m2) 15.5 41.7 29.4 9.35 −0.14 0.920
ET0 (mm) 0.57 6.52 3.32 1.52 0.04 1.000

Antakya

Tmin (◦C) −4.6 24.8 9.18 8.16 0.22 0.860
Tmax (◦C) 14.4 42.6 28.8 7.64 −0.32 0.878

Ra (MJ/m2) 16.0 41.6 29.5 9.16 −0.11 0.926
ET0 (mm) 0.28 7.20 3.39 1.86 0.06 1.000

Tmin, Tmax, Ra, and ET0 are minimum and maximum temperatures, extraterrestrial radiation, and
reference evapotranspiration, respectively. xmin, xmax, xmean, Sx, and Csx are minimum, maximum,
mean, standard deviation, and skewness, respectively.

2.2. Group Method of Data Handling Type Neural Network

GMDHNN is a powerful machine learning tool based upon the principle of termina-
tion. In this principle, the system follows the one process through data importing, rearing,
hybridizing, choice, and rejection. The GMDH algorithm is divided into two parts: one
is the parameter and other is the non-parameter. If the variance is low, then parametric
algorithms provide the best results and for high variance, non-parametric algorithms per-
form better. The GMDHNN model is capable of handling the multiple input variables and
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provides single output. There are different layers in the GMDHNN model, which have a
set of neurons; these neurons are further linked with quadratic polynomial in every layer,
which provides the new neurons for the next layer [59–61]. The output of the database
with multiple input variables and M numbers of observations is defined as below.

mi = f (yi,1, yi,2, yi,3, . . . , yi,M) (i = 1, 2, 3, 4, . . . , N) (1)

Here, (y1, y2, y3, y4, . . . , yM) is the real input of the mapping f and mi is the real output
based upon the real input. For the identification of the problem, f̂ is considered as mapping
instead of f to forecast the m̂ (output value) instead of m, and this m̂ is close to m. The
provided input (y1, y2, y3, y4, . . . , yM) is used for the GMDHNN training to attain the
output m̂i as given below.

m̂i = f̂ (yi,1, yi,2, yi,3, . . . , yi,M) (i = 1, 2, 3, . . . , N) (2)

The GMDH-NN algorithm is working to minimize the MSE (mean square error) for
making the model most effective for prediction. This MSE is calculated as E below to make
the error level reach its minimum.〈

E =

{
N

∑
i=1

[
f̂ (yi,1, yi,2, yi,3, . . . , yi,M)− yi)

]2
}

/N → min

〉
(3)

As we discussed above, neurons are connected with the quadratic polynomial, while
Kolmogorov-Gabor polynomial is used to conduct relation mapping between input and
output variables [53,55,56]. This Kolmogorov-Gabor polynomial can be expressed as below

m = d0 +
M

∑
i=1

diyi +
M

∑
i=1

M

∑
j=1

dijyiyj +
M

∑
i=1

M

∑
j=1

M

∑
k=1

dijkyiyjyk + . . . (4)

To minimize the variation between the actual output (m) and estimated output (m̂), a
regression model is applied for each pair of input variables

(
yi, yj

)
.

2.3. Multivariate Adaptive Regression Splines

The Multivariate adaptive regression splines model (MARS) was proposed by Fried-
man [44] as a new data driven technique, looking for any possible nonlinear and nonpara-
metric relationship which can exist and can be built between a set of inputs and output
variables. MARS is used to try to identify and automatically establish the possible explicit
regression equation between the regressors and the dependent variables in a stepwise
manner; another important advantage of the MARS model is its abilities to provide the
part of the contribution of each predictor to the dependent variable, and at the end of the
training procedure it provides the final rankings of the regressors individually based on its
rank [44]. A wide range of applications of the MARS model can be found in the literature
including: estimating heating load in buildings [62,63], predicting centerline segregation in
steel cast products [64], predictions of landslide susceptibility [65], estimating fractional
snow cover (FSC) from MODIS data [66], and predicting monthly discharge and mean
soil temperature [22,62]. Using the MARS model, the space of regressors is divided into
several subspaces called knots, each has its own function and splines (segments) which
are used to link all these knots, and all the spline are grouped to form a basis function
(BF). Hence, globally speaking, the MARS model is based on three major clear and precise
components: knots, spline, and BF, and the development of the model is achieved in two
phases: forward (building) and backward (pruning) phases. In the forward phase, a high
dimensional model is built that contains the chosen knots and their corresponding BF.
During the backward phase, the BF that provides fewer contributions to the decreasing of
the error is pruned via generalized cross-validation (GCV) [66].

Firstly, MARS starts by building a set of BF with the following equation [44]:

BFm(x) = max(0, c− x) or BFm(x) = max(0, x− c) (5)
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where x is one of the regressor variables, c is the threshold value for the regressor x, and
the BF is the basis function. Consequently, the MARS model is developed as an ensemble
of the BF as follow:

Y = f (x) = ψ0 +
M

∑
m=1

ψmBFm(x). (6)

Y is the response (dependent) variable (ET0), BF is the basis function, x is a regressor
that contributing to the formation of the BF, and ψm are unknown coefficients of the mth
BF, while M is the total number of the BF [44,66]. The GCV is expressed as follow:

GCV(M) =

1
N

N
∑

i=1
(yi − f (xi))

2

(
1− c(M)

N

)2 . (7)

N is the quantity of the pattern, M presents the BF number, yi is the targeted variable
(ET0), f (xi) is the predicted value of the pattern i, and c(M) is the penalty factor [67]. The
MARS model was implemented utilizing the MatLab toolbox ARESLab [68].

2.4. M5 Model Tree

The M5 model tree (M5Tree), which is an amended version of the original decision tree
(DT), was proposed by Quinlan [45]. DT was originally proposed for solving classification
problems using a splitting method, for which the available information from the data is
extracted via the construction of a tree composed of three kinds of nodes: the internal, the
roots, and the leaves nodes [45]. The M5Tree has been used for solving several problems,
such as predictions of energy consumption in buildings [69], air quality modeling [70],
predicting liquefaction-induced lateral spreading [71], forecasting solar ultraviolet [72], and
predicting daily water levels in rivers [73]. The M5Tree is a regression model in which the
training data are being apportioned to smaller subsets through the construction of a tree
and using a gain ratio criterion, an individual regression model is built for each subset [45].
Once the tree had been constructed, the training process starts and tries to determine the
best separation to different subsets with respect to two conditions: (i) the leaves nodes
of the tree only contains patterns from one subset or (ii) separation does not occur until
any improvement in the gain ratio is observed. For a given n number of nodes leaves
corresponding to k breaking points, each subset has its own linear model as follow [73]:

Y =


λ01 + λ11x, i f x ≤ Z1
λ02 + λ12x, i f x > Z1

. . . ,
λ0n−1 + λ1n−1x, i f x ≤ Zk

λ0n + λ1nx, i f x >Zk

(8)

where Y is the calculated ET0, x is one of the input variables selected for model development
(climatic variables), λ01 and λ1i (i = 1:n) are the parameters of the linear models at n leave,
and Z1:k are the breaking points values. According to Quinlan [45], building an M5Tree
model generally takes two major steps: the growth step (create a DT) and the tree pruning
step to prune back an overgrown tree. The standard deviation reduction (SDR) statistical
metric was used to compute the error at each node as the splitting criterion [74,75]:

SDR = sd(T)−∑
|Ti|
|T| sd(Ti). (9)

Ti indicates the subset of the ith possible test, T represents the examples number
reaching the node, and sd is the standard deviation of the observations. The M5Tree is
applied utilizing the MATLAB toolbox M5PrimeLab [76].

2.5. Stephens-Stewart Model

Stephens and Stewart’s [77] method is used for pan evaporation estimation. It can be
expressed as

Epan = R(a + bTmean) (10)
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where Epan is daily pan evaporation (mm/month), R is solar radiation (mm/month) at daily
scale, and a and b refer the fitted parameters. In the present study, the SS method given
in Equation (9) was used for ET0 estimation by using extraterrestrial radiation instead of
solar radiation data:

ET0 = Ra(a + bTmean) (11)
where ET0 denotes the reference evapotranspiration (mm/month) and Ra refers the ex-
traterrestrial radiation (mm/month).

2.6. Hargreaves and Samani Model

Hargreaves and Samani (HS) [78,79] is a temperature-based model and need only
fewer input variables: extraterrestrial radiation (Ra) (mm/day), Tmax and Tmin (◦C):

ET0 = 0.0023Ra(Tmean + 17.8) (Tmax − Tmin)
0.5 (12)

where Tmax and Tmin are the monthly maximum and minimum temperatures (◦C), respec-
tively. The calibrated version of HS given in the following equation was also employed in
this study:

ET0, calibrated = a + bET0 (13)
where a and b are fitted parameters.

2.7. Model Development by Heuristic Methods

In the presented study, three abovementioned heuristic methods were implemented
for monthly ET0 estimation. Three different data division scenarios: 50–50%, 60–40%, and
75–25%, were employed in the applications so as to see the effect of training/test size on
models’ accuracy. It is well-known that data-driven methods are highly affected by the
size of the training data and that more data generally produce a better model. As also
mentioned in the introduction section, the studies in the existing literature generally utilize
four climatic inputs: air temperatures (Tmax, Tmin), wind speed (U2), relative humidity
(RH), and solar radiation (SR) in ET0 estimation. In developing countries, measurement of
all these variables is always not possible and therefore models requiring a limited number
of inputs are necessary in such cases. As was also reported by a recent review [1], future
studies are required for developing new models with limited inputs. Keeping this in the
mind, the following two input combinations were considered in this study:

Tmin, Tmax, Ra
Tmin, Tmax, Ra, α.

It is worth mentioning that the air temperature is easily available in every place and
that Ra can be calculated using the Julia date. The developed models are be useful in
practical applications because they only need a smaller number of input variables. The
periodicity (α, month number of the year) was also considered in the model input to
see its influence on models’ exactness if there is any. The flowchart provided in Figure 2
summarizes the model development procedure.

In the applications, GMDHNN, MARS, and M5Tree heuristic methods were employed
to estimate monthly ET0 while only utilizing temperature data as model inputs. Data of two
stations, Adana and Antakya, were used for calibration of the methods. First, monthly ET0
values were calculated by the FAO–56 PM formula using data of minimum and maximum
temperatures, relative humidity, solar radiation, and wind speed following the guideline
of Allen et al. [7]. Then, the obtained ET0 data were used for the calibration and test of the
selected models. The outcomes of GMDHNN, MARS, and M5Tree methods were compared
with the empirical HS, calibrated HS (CHS), and SS regression methods.
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3. Application and Results

The models were evaluated with respect to three commonly used statistics: root
mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency
(NSE) [80–82]. RMSE and MAE varied from 0 to positive infinity. RMSE and MAE out-
comes equivalent to 0 indicate a perfect fit. NSE varies from negative infinity to 1 and
1 means that models perfectly catch the observed values. The expressions of the RMSE,
MAE, and NSE are:

RMSE =

√
∑N

i=1(ET0,i − ET0,iM)2

N
(14)

MAE =
∑N

i=1|ET0,i − ET0,iM|
N

(15)
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NSE = 1− ∑N
i=1(ET0,i − ET0,iM)2

∑N
i=1
(
ET0,i − ET0

)2 . (16)

In the equations, N is the quantity of data, ET0 is average value of the reference evap-
otranspiration computed by FAO–56 PM, ET0,iM is estimated ET0, and ET0,i is computed
reference evapotranspiration.

For Adana Station, GMDHNN, MARS, M5Tree, HS, CHS, and SS models are compared
in Table 2 while considering RMSE, MAE, and NSE statistics. In the table, training and
testing accuracies can be observed for three different train-test scenarios. In the three
implemented heuristic methods, default structures were used and models were calibrated
by introducing the training data; in case of the 1st, 2nd, and 3rd scenarios, 50%, 60%,
and 75% of the whole data were utilized to obtain optimal parameters of the models.
After calibration process, the calculated parameters of the GMDHNN, MARS, and M5Tree
models were kept and they were directly used in the testing stage and models were
validated by the test data; in case of the 1st, 2nd, and 3rd scenarios, 50%, 40%, and
25% of the whole data were utilized to assess the models’ accuracies based on the three
aforementioned statistics (RMSE, MAE, and NSE). GMDHNN2, MARS2, and M5Tree2
models were also developed by adding periodicity component (α) to the GMDHNN1,
MARS1, and M5tree1 models so as to see its effect on models’ accuracy in estimation ET0.
It is obvious that there was not any considerable effect of α on models’ exactness in this
station. M5Tree models had better fitting in the training stage whereas the GMDHNN and
MARS models has a superior performance to the M5Tree in the testing stage. GMDHNN
has a better accuracy than the MARS but the difference is not too large. The calibration
process considerably increases the HS performance in the estimation of ET0. Average
statistics in Table 2 show that the GMDHNN and SS have almost the same performance
and they show a superior performance to the other models with respect to three criteria.
The relative differences between the GMDHNN/SS and MARS2 models with respect to
average RMSE and MAE are 2.9% and 3%, respectively. Detailed results indicate that a
slight difference exists between periodic MARS (MARS2) and SS models in 50–50% and
60–40% train-test scenarios, while the latter performs better than the first in a 75–25%
scenario. These results tell us that the use of one data-splitting scenario may mislead
modelers during evaluation of the methods’ accuracy. The methods are also compared in
Figure 3 with respect to RMSE and NSE in the testing stage. The variation of the criteria
(RMSE, NSE) with respect to different splitting scenarios is parallel to each other for all of
the applied methods. NSE decreases and RMSE slightly increases from the first splitting
scenario (50–50%) to the third scenario (75–25%).

Table 2. Root mean square error (RMSE), Mean absolute error (MAE), and Nash-Sutcliffe efficiency
(NSE) statistics of each model for different data splitting strategies—Adana.

Model Input
Training Test

RMSE
(mm)

MAE
(mm) NSE RMSE

(mm)
MAE
(mm) NSE

50% training and 50% test

MARS1 Tmin, Tmax, Ra 0.454 0.363 0.908 0.467 0.359 0.907
MARS2 Tmin, Tmax, Ra, α 0.461 0.356 0.905 0.466 0.357 0.907
M5Tree1 Tmin, Tmax, Ra 0.408 0.301 0.926 0.518 0.406 0.885
M5Tree2 Tmin, Tmax, Ra, α 0.408 0.301 0.926 0.518 0.406 0.885

HS Tmin, Tmax, Ra 2.021 1.777 −0.82 2.006 1.782 −0.72
CHS Tmin, Tmax, Ra 0.523 0.407 0.878 0.510 0.383 0.889

SS Tmin, Tmax, Ra 0.501 0.390 0.888 0.463 0.355 0.909
GMDHNN1 Tmin, Tmax, Ra 0.448 0.353 0.898 0.456 0.347 0.895
GMDHNN2 Tmin, Tmax, Ra, α 0.443 0.347 0.901 0.453 0.343 0.898
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Table 2. Cont.

Model Input
Training Test

RMSE
(mm)

MAE
(mm) NSE RMSE

(mm)
MAE
(mm) NSE

60% training and 40% test

MARS1 Tmin, Tmax, Ra 0.435 0.344 0.916 0.510 0.389 0.889
MARS2 Tmin, Tmax, Ra, α 0.447 0.347 0.912 0.492 0.376 0.898
M5Tree1 Tmin, Tmax, Ra 0.402 0.288 0.929 0.529 0.406 0.881
M5Tree2 Tmin, Tmax, Ra, α 0.402 0.288 0.929 0.529 0.406 0.881

HS Tmin, Tmax, Ra 2.048 1.809 −0.86 1.960 1.734 −0.63
CHS Tmin, Tmax, Ra 0.509 0.396 0.885 0.527 0.395 0.882

SS Tmin, Tmax, Ra 0.482 0.376 0.897 0.482 0.368 0.901
GMDHNN1 Tmin, Tmax, Ra 0.428 0.331 0.909 0.480 0.368 0.902
GMDHNN2 Tmin, Tmax, Ra, α 0.424 0.327 0.910 0.478 0.366 0.903

75% training and 25% test

MARS1 Tmin, Tmax, Ra 0.438 0.339 0.916 0.516 0.408 0.884
MARS2 Tmin, Tmax, Ra, α 0.437 0.336 0.917 0.522 0.405 0.882
M5Tree1 Tmin, Tmax, Ra 0.385 0.279 0.935 0.550 0.424 0.869
M5Tree2 Tmin, Tmax, Ra, α 0.385 0.279 0.935 0.550 0.424 0.869

HS Tmin, Tmax, Ra 2.053 1.821 −0.841 1.894 1.659 −0.556
CHS Tmin, Tmax, Ra 0.504 0.388 0.889 0.552 0.414 0.868

SS Tmin, Tmax, Ra 0.479 0.370 0.900 0.491 0.382 0.896
GMDHNN1 Tmin, Tmax, Ra 0.421 0.322 0.914 0.497 0.385 0.881
GMDHNN2 Tmin, Tmax, Ra, α 0.420 0.320 0.915 0.495 0.384 0.883

Average

MARS1 Tmin, Tmax, Ra 0.442 0.349 0.913 0.498 0.385 0.893
MARS2 Tmin, Tmax, Ra, α 0.448 0.346 0.911 0.493 0.379 0.896
M5Tree1 Tmin, Tmax, Ra 0.398 0.289 0.930 0.532 0.412 0.878
M5Tree2 Tmin, Tmax, Ra, α 0.398 0.289 0.930 0.532 0.412 0.878

HS Tmin, Tmax, Ra 2.041 1.802 −0.840 1.953 1.725 −0.635
CHS Tmin, Tmax, Ra 0.512 0.397 0.884 0.530 0.397 0.880

SS Tmin, Tmax, Ra 0.487 0.379 0.895 0.479 0.368 0.902
GMDHNN1 Tmin, Tmax, Ra 0.432 0.335 0.907 0.478 0.367 0.893
GMDHNN2 Tmin, Tmax, Ra, α 0.429 0.331 0.909 0.475 0.364 0.895

Tmin, Tmax, Ra, and α are minimum and maximum temperatures, extraterrestrial radiation, and
periodicity (month number), respectively. RMSE, MAE, and NSE are the root mean square error,
mean absolute error, and efficiency coefficient, respectively.
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Figure 3. Comparison of different methods for estimating ET0, in the x-axis: (1) MARS1, (2) MARS2,
(3) M5Tree1, (4) M5Tree2, (5) GMDHNN1, (6) GMDHNN2, (7) CHS, and (8) SS—Adana.

Table 3 reports the training and testing statistics of the employed methods for Antakya
Station. Unlike the Adana Station, including the periodicity input considerably improves
the accuracy of MARS and M5Tree methods in the testing stage. Similar to for the previous
station, here temperature based GMDHNN models also show superior performance to the
MARS and M5Tree models in the estimation of ET0. All heuristic methods outperform the
SS method. A considerable improvement is observed for the HS method after calibration:
RMSE and MAE are increased from 1.715 mm and 1.557 mm to 0.655 mm and 0.541 mm
with respect to average statistics, respectively. The SS model has better accuracy than the
HS and CHS models in the estimation of ET0 using only temperature data as inputs. The
relative differences between GMDHNN2 and MARS2/M5Tree/SS models with respect
to average RMSE and MAE are 3.7%/10.7%/0.8% and 4%/11.7%/1.1%, respectively. The
results of the Antakya Station suggest the use of a periodicity input in model development.
The RMSE and NSE values of the applied methods are also compared in Figure 4 for the
testing stage. Here the criteria also vary in similar ways for all the methods except for
the CHS. Unlike Adana Station, the NSE slightly increases and RMSE decreases from the
50–50% splitting scenario to a 75–25% scenario. Comparison of the two stations (compare
Figures 3 and 4 or Tables 2 and 3) reveals that the models generally provide better estimates
for Antakya Station compared to Adana. A higher correlation between the inputs (Tmin,
Tmax, Ra) and output (ET0) in Antakya compared to Adana may be the reason for this.

Table 3. RMSE, MAE, and NSE statistics of each model for different data splitting strategies—Antakya.

Model Input
Training Test

RMSE
(mm)

MAE
(mm) NSE RMSE

(mm)
MAE
(mm) NSE

50% training and 50% test

MARS1 Tmin, Tmax, Ra 0.383 0.290 0.959 0.635 0.521 0.872
MARS2 Tmin, Tmax, Ra, α 0.369 0.286 0.962 0.566 0.460 0.963
M5Tree1 Tmin, Tmax, Ra 0.341 0.257 0.968 0.639 0.527 0.870
M5Tree2 Tmin, Tmax, Ra, α 0.335 0.256 0.969 0.598 0.489 0.886

HS Tmin, Tmax, Ra 1.513 1.316 0.367 1.781 1.613 0.065
CHS Tmin, Tmax, Ra 0.641 0.456 0.886 0.718 0.603 0.848

SS Tmin, Tmax, Ra 0.438 0.339 0.947 0.678 0.572 0.864
GMDHNN1 Tmin, Tmax, Ra 0.350 0.268 0.963 0.552 0.436 0.912
GMDHNN2 Tmin, Tmax, Ra, α 0.345 0.263 0.965 0.550 0.433 0.913
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Table 3. Cont.

Model Input
Training Test

RMSE
(mm)

MAE
(mm) NSE RMSE

(mm)
MAE
(mm) NSE

60% training and 40% test

MARS1 Tmin, Tmax, Ra 0.464 0.359 0.938 0.468 0.370 0.933
MARS2 Tmin, Tmax, Ra, α 0.454 0.345 0.941 0.453 0.373 0.966
M5Tree1 Tmin, Tmax, Ra 0.406 0.305 0.953 0.478 0.380 0.930
M5Tree2 Tmin, Tmax, Ra, α 0.439 0.326 0.945 0.441 0.348 0.941

HS Tmin, Tmax, Ra 1.612 1.402 0.256 1.722 1.569 0.127
CHS Tmin, Tmax, Ra 0.676 0.487 0.869 0.647 0.538 0.877

SS Tmin, Tmax, Ra 0.526 0.400 0.921 0.510 0.436 0.923
GMDHNN1 Tmin, Tmax, Ra 0.441 0.339 0.939 0.426 0.345 0.943
GMDHNN2 Tmin, Tmax, Ra, α 0.430 0.335 0.941 0.424 0.342 0.945

75% training and 25% test

MARS1 Tmin, Tmax, Ra 0.455 0.351 0.941 0.368 0.276 0.957
MARS2 Tmin, Tmax, Ra, α 0.443 0.349 0.944 0.335 0.269 0.971
M5Tree1 Tmin, Tmax, Ra 0.390 0.291 0.957 0.373 0.304 0.963
M5Tree2 Tmin, Tmax, Ra, α 0.406 0.299 0.953 0.367 0.292 0.958

HS Tmin, Tmax, Ra 1.663 1.463 0.211 1.641 1.489 0.168
CHS Tmin, Tmax, Ra 0.677 0.497 0.869 0.601 0.481 0.888

SS Tmin, Tmax, Ra 0.526 0.416 0.621 0.410 0.327 0.648
GMDHNN1 Tmin, Tmax, Ra 0.439 0.347 0.940 0.318 0.248 0.968
GMDHNN2 Tmin, Tmax, Ra, α 0.426 0.337 0.944 0.304 0.247 0.969

Average

MARS1 Tmin, Tmax, Ra 0.434 0.333 0.946 0.490 0.389 0.921
MARS2 Tmin, Tmax, Ra, α 0.422 0.327 0.949 0.451 0.367 0.967
M5Tree1 Tmin, Tmax, Ra 0.379 0.284 0.959 0.497 0.404 0.921
M5Tree2 Tmin, Tmax, Ra, α 0.393 0.294 0.956 0.469 0.376 0.928

HS Tmin, Tmax, Ra 1.596 1.394 0.278 1.715 1.557 0.120
CHS Tmin, Tmax, Ra 0.665 0.480 0.875 0.655 0.541 0.871

SS Tmin, Tmax, Ra 0.497 0.385 0.830 0.533 0.445 0.812
GMDHNN1 Tmin, Tmax, Ra 0.410 0.318 0.947 0.432 0.343 0.941
GMDHNN2 Tmin, Tmax, Ra, α 0.401 0.312 0.950 0.426 0.341 0.942

Tmin, Tmax, Ra, and α are minimum and maximum temperatures, extraterrestrial radiation, and
periodicity (month number), respectively. RMSE, MAE, and NSE are the root mean square error,
mean absolute error, and efficiency coefficient, respectively.
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Figure 4. Comparison of different methods for estimating ET0, in the x-axis: (1) MARS1, (2) MARS2,
(3) M5Tree1, (4) M5Tree2, (5) GMDHNN1, (6) GMDHNN2, (7) CHS and (8) SS—Antakya.

Figure 5 illustrates the FAO–56 PM and estimated ET0 obtained by using six different
methods for Adana Station. It is apparent from the scatterplots that the HS considerably
overestimates ET0 while the CHS has less scattered estimates compared to HS. GMDHNN
and SS methods have the least scattered estimates among the applied methods and are
closely followed by the MARS method. The methods are graphically compared in Figure 6
in estimation of ET0 of Antakya Station. Here the CHS also considerably improves the HS
accuracy. GMDHNN also has the least scattered estimates followed by the MARS in this
station.
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Figure 5. The FAO–56 PM and estimated ET0 by: (a) MARS, (b) M5tree, (c) GMDHNN, (d) HS, (e) CHS, and (f) SS
methods—Adana.
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Figure 6. The FAO–56 PM and estimated ET0 obtained by: (a) MARS, (b) M5tree, (c) GMDHNN, (d) HS, (e) CHS, and (f) SS
methods—Antakya.

The monthly mean estimates of the GMDHNN, MARS, M5Tree, HS, CHS, and SS
methods are compared in Figure 7. In Adana Station, the GMDHNN2, MARS2, M5Tree1,
and SS model results are generally very close to each other while the CHS underestimates
the ET0 of March and May and overestimates those of July and August. The models’
estimates do not considerably change with respect to splitting scenarios. In Antakya Station,
however, the models’ accuracy changes for different train-test scenarios. For example, the
GMDHNN2, MARS2, M5Tree1, and SS models are less successful in estimation of ET0 in
the case of the 50–50% splitting scenario while the 75–25% train-test scenario provides the
best estimates. This also confirms the necessity of considering different splitting scenarios
in evaluating the accuracy of the applied methods in the estimation of ET0. It is apparent
that the CHS has the worst estimates while the GMDHNN2 maps the mean monthly ET0
better than the other models. All the models underestimate ET0 of Antakya Station in the
50–50% splitting scenario.
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Figure 7. The FAO–56 PM and estimated monthly mean ET0 by MARS, M5tree, GMDHNN, CHS and SS methods: (a) Adana,
(b) Antakya using different splitting scenarios: (i) 50–50% (ii), 60–40%, (iii) 75–25%.

4. Conclusions

The ability of new temperature based regression methods were compared with
Hargreaves-Samani, calibrated Hargreaves-Samani, and Stephens-Stewart methods in
modeling monthly reference evapotranspiration. The applied models only used maximum
and minimum temperatures and extraterrestrial radiation inputs that were measured and
calculated for two stations in Turkey. Data division scenarios of 50–50%, 60–40%, and
75–25% were applied in the study to evaluate the aforementioned methods. The periodicity
component (the month number of the year varying from 1 January to 12 December) was
also used as an input to the models so as to examine its effect on models’ performances.
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Three commonly used criteria: RMSE, MAE, and NSE, were used for comparison of the
methods. The results indicated the following conclusions:

In Adana Station, GMDHNN and the SS model performed better than the other
models. In Antakya Station, however, the GMDHNN model provided the best accuracy
followed by the MARS and M5Tree in modeling monthly reference evapotranspiration.

The calibration procedure considerably increased HS model accuracy. For example,
average RMSE and MAE statistics of HS were increased from 1.715 mm and 1.557 mm to
0.655 mm and 0.541 mm for Antakya Station.

The periodicity component increased the accuracy of GMDHNN, MARS, and M5Tree
models in Antakya Station only. RMSE decrements of the GMDHNN, MARS, and M5Tree
models in the test stage were 1.4%, 8%, and 6%, respectively.

The applications revealed the necessity of using different data division scenarios for
better evaluation of the compared models.

Comparison of the models in estimating monthly mean reference evapotranspi-
ration revealed that the GMDHNN model generally had better accuracy compared to
other models while the CHS models provided the worst estimates. By implementing the
GMDHNN model, the average RMSE of MARS, M5Tree, HS, CHS, and SS models respec-
tively decreased by 3.7–6.4%, 10.7–3.9%, 76–75%, 10–35%, and 0.8–17% when estimating
monthly ET0.

The results of this study recommend the use of the GMDHNN model for the prediction
of ET0 in regions where only the temperature is available while other meteorological data
are not available or are missing for a long duration.
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