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Abstract: The sustainability of water resources in mountainous areas has a significant contribution
to the stabilization and persistence of the ecological and agriculture systems in arid and semi-arid
areas. However, the insufficient understanding of hydrological processes in ungauged mountainous
catchments (UMCs) is not able to scientifically support the sustainable management of water
resources. The conventional parameter transferability method (transplanting the parameters of the
donor catchment model with similar distances or attributes to the target catchment model) still has
great potential for improving the accuracy of the hydrological simulation in UMC. In this study, 46
river catchments, with discharge survey stations and multi-type catchment characteristics in Xinjiang,
are separated into the target catchments and donor catchments to promote an improved model
parameter transferability method (IMPTM). This method synthetically processes the SWAT model
parameters based on the distance approximation principle (DAP) and the attribute similarity principle
(ASP). The performance of this method is tested in a random gauged catchment and compared with
other traditional methods (DAP and ASP). The daily runoff simulation results in the target catchment
have relatively low accuracy by both the DAP method (NS = 0.27, R2 = 0.55) and ASP method (NS =

0.36, R2 = 0.65), which implies the conventional approach is not capable of processing the parameters
in the target regions. However, the simulation result by IMPTM is a significant improvement (NS
= 0.69, R2 = 0.85). Moreover, the IMPTM can accurately catch the flow peak, appearance time, and
recession curve. The current study provides a compatible method to overcome the difficulties of
hydrological simulation in UMCs in the world and can benefit hydrological forecasting and water
resource estimation in mountainous areas.

Keywords: ungauged catchment; hydrological simulation; parameter transfer; SWAT model

1. Introduction

The hydrological model is an essential tool to understand the hydrological process of catchments
under the various climate input and land management [1], which includes a lumped conceptual
model, and semi-distributed or distributed hydrological models, e.g., the Xin’anjiang model [2,3],
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the TOPMODEL model [4,5], and the SWAT model [6–8]. These models have to satisfy the accuracy
requirements of the hydrological process’s simulation with measurement flow data by parameter
calibration and validation. However, many watersheds in mountainous areas are data-deficient
or ungauged, which are difficult to apply to models to conduct the proper management of water
resources [9–11], especially when the snow-cover and icecaps on high-altitude mountains [12] contribute
melting water downstream [13]. Therefore, proper parameterization is one of the key processes to
achieve accurate hydrological simulation in the data-deficient or ungauged catchments.

Hydrology simulation in ungauged catchments has caught the attention of hydrologists for a long
time. The International Association of Hydrological Sciences (IAHS) also put forward the International
Hydrological Plan (PUB) in 2003, with the aim of strengthening hydrological process modeling and
forecasting in ungauged catchments [14]. At present, the main methods conducted in ungauged
catchments are mathematical statistics and hydrological modeling [2,3,15]. The mathematical statistics
method can get the runoff rapidly and roughly. However, it neglects the physical mechanism of
the hydrologic process and cannot describe the temporal and spatial variations of the hydrological
elements [16]. The distributed model has obvious advantages for the hydrological process simulation
in ungauged catchments. Some authors have proposed many methods to parameterize the ungauged
(target) catchments based on the gauged (donor) by using the distance approximation principle [16–18],
the attribute similarity principle [19,20] and the regression analysis method [21,22]. However, these
three parameter transferability methods ignore the differences of climatic or physical properties between
target catchment and donor catchment, such as mean elevation and catchment area, which creates
great uncertainty on the simulated results. Therefore, it is a huge challenge to properly parameterize
the ungauged mountainous catchments (UMC).

Due to the drawback of direct parameter transferring based on the closest or similar attributes, many
scholars have noticed the relationship between model parameters and catchment characteristics [23–26].
Grabowski et al. explored the linear relationship between stream temperature and areal average
landscape variables (average elevation, average slope, curve number) [27]. Athira et al. analyzed
the relationship between the model parameters and the catchment characteristics of 8 catchments
in the US and concluded that there is a nonlinear relationship between them [28]. However, the
parameter transfer approach still has great potential to regionalize to mountainous alpine catchments
for satisfactory results. Therefore, the development of new methods for model parameter transferability
for ungauged catchments still has meaning in practice.

Xinjiang province is located in the arid and semi-arid areas of northwest China, which suffers from
a serious shortage of water resources due to low precipitation and high evapotranspiration [29,30].
However, most of its headwater regions are situated in high-altitude mountainous areas [31,32], and
the snow-melting and ice-melting runoff are the major components of water source for the plain
areas [33–35]. Due to global warming, the frequencies and intensities of mountainous floods and
debris flow have increased significantly and threaten the local population [36–38]. However, the
vast and complex terrain in Xinjiang results in very low densities of meteorological and hydrological
measurement stations (about one station every 3000 km2). Therefore, it becomes extremely difficult
in UMCs to conduct the proper simulation or forecasting for mountainous stream flows [39,40]. The
accurate simulation for UMCs is not only helpful to learn about the hydrological conditions of the
alpine catchment, but also to provide technical support for the sustainable use of downstream water
resources (such as hydropower production, agricultural irrigation, flood and disaster prevention, and
flood resource utilization).

The classic parameter transferability approaches suggested by previous studies are not fully
capable of model parameterization when only a few flow data in surrounding catchments are available.
This paper provides an alternative approach of model parameter transferability for the ungauged
mountainous catchments to reduce the uncertainties of model parameters. In this study, the soil and
water assessment tool (SWAT) model is applied to simulate hydrological processes for 46 mountain
river catchments with discharge gauging stations in Xinjiang. This alternative approach intends to
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make full use of the topographic, climatic characteristics, and SWAT model parameter sets to grasp the
statistical relationships between the ungauged (target) and gauged (donor) catchments. By doing so,
the authors aim to provide an alternative method for the accurate simulation of hydrological processes
in UMCs and to generate accurate simulation results for water authorities.

2. Data and Methods

2.1. Catchments

This proposed alternative method was established and tested on sample catchments to guarantee
the applicability and robustness. A parameter library with a large number of sample parameter sets
could also catch the internal relations among these properties. Therefore, in this study, we used a
set of 46 small to medium-size catchments in Xinjiang (Figure 1 and Table S1). Xinjiang is an arid
and semi-arid region located in the northwest of China (73◦40’ E ~ 96◦18’ E, 34◦25’ N ~ 48◦10’ N).
This region has a complex topography, with the elevation of −216 to 8587 m [29]. Tianshan divides
Xinjiang into two regions, namely, southern Xinjiang and northern Xinjiang, with an average annual
precipitation of 106 and 255 mm, respectively. Alpine catchment in Xinjiang contributes more than
80% of surface runoff, among which glacier and snow-melt runoff accounts for greater than 45% of
total runoff [41]. These 46 small and medium-sized rivers were selected from the three mountains,
Altai Mountain, Tianshan Mountain, and Kunlun Mountain, respectively. These watersheds have
the common characteristics of high average altitude (1844.58~4920.50 m), a large height difference,
and replenishment of snow-melt water runoff. In addition, the watershed area ranges from 163.20 to
14578.74 km2. The types of runoff replenishment include precipitation type, snow melting type, ice
melting type, mixed type and so on. The geographical positions of catchments are shown in Figure 1.
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2.2. Data Sources

The data needed for this study are mainly used in the model build, calibration, and validation
of these catchments’ SWAT hydrological models. The digital elevation model (DEM), soil data, land
use/cover data, and meteorological data (e.g., maximum and minimum temperatures, precipitation)
are collected as model-driven data, while the measured runoff data are used to model calibration and
validation. In order to reduce the differences caused by the driving data, models of the 46 catchments
in Xinjiang are built using the same set of DEM, soil, land use/cover data with a unified projection
coordinate system. DEM data is derived from the ASTER GDEM with the spatial resolution of
30 m (http://www.gisat.cz/content/en/products/digital-elevation-model/aster-gdem), while the soil
data used the FAO-HWSD products with a grid size of 1 km2 (http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). Land use/cover data were
interpreted by human–computer interaction techniques from the Key Laboratory of Remote Sensing
and Geographic Information System, Xinjiang Institute of Ecology and Geography, Chinese Academy
of Sciences. Meteorological data, including daily maximum and minimum air temperatures and daily
precipitation data, were provided by China Meteorological Science Data Sharing Service Network
(http://data.cma.cn/). In addition, other data, such as daily solar radiation, daily relative humidity, and
wind speed, were generated by the simulation of SWAT built-in weather generator. The measured
runoff data of hydrological stations were derived from the Hydrological Yearbook of Xinjiang.

2.3. SWAT Model

The soil and water assessment tool (SWAT) model, which is a semi-distributed hydrological
model with a strong hydro-physical process mechanism, has been applied successfully worldwide [42].
The SWAT model, which includes snow melting module, confluence module, groundwater module,
vegetation interception, and evaporation module, is commonly used to simulate the complex cyclic
processes of water, pesticides, and sediment under the intricate and variable soil types, land-use patterns,
and management measures at different scales [43]. It was also successfully applied in the high-altitude
mountainous catchments in Xinjiang, such as the Kaidu [29], Hotan [31,32], Aksu [7,34], and Tizinafu
river catchments [44], and other parts of the world, such as Karnali river catchment in Nepal [45],
Chungju dam catchment in South Korea [46], and Damma glacier catchment in Switzerland [47].

The parameter sensitivity analysis is indispensable to determine the most sensitive parameters of
the SWAT model before calibration and validation. Parameter sensitivity analysis of the SWAT model
in this study is based on the sequential uncertainty fitting (SUFI-2) [48] algorithm. SUFI-2 is a global
sensitivity analysis method in which the parameter sensitivity input required for the next calibration is
counted at this calibration. Based on statistical theory studies, if t-stat of the hypothesis test samples in
comparison with the critical value of a parameter has a higher value, then the corresponding simulation
effect will be better. The main function of the t-test is to determine the relative significance of all single
samples. P-value is the significant probability value of t-test results, and the result comes from the
look-up table, which mainly reflects the significance degree of t-test statistics. The sensitivity reference
value of the SUFI-2 method is the absolute value of t-stat. The smaller the absolute value of t-stat is,
the lower the sensitivity will be and the corresponding value of p-value indicates whether t-stat is
significant. The closer the p-value is to 0, the stronger the significance will be.

Nash efficiency coefficient (NS), correlation coefficient (R2), and relative average deviation (RE)
are used to evaluate the simulation results. The formulas are as follows:

NS = 1−

∑n
i=1(Qo −Qm)

2∑n
i=1

(
Qo −Qo

)2 , (1)

where Qo represents the daily measured runoff, Qm represents the daily simulated runoff, Qo represents
the multi-year average measured runoff, and n represents the simulated time length. The value range

http://www.gisat.cz/content/en/products/digital-elevation-model/aster-gdem
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://data.cma.cn/
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of the NS efficiency coefficient is (−∞, 1]. The closer the value is to 1, the higher the simulation accuracy
will be. The formula of R2 and RE are as follows.

R2 =

[∑n
i=1

(
Qo −Qo

)(
Qm −Qm

)]2

∑n
i=1

(
Qo −Qo

)2 ∑n
i=1

(
Qm −Qm

)2 , (2)

RE = 1−
Qo −Qm

Qo
(3)

where Qm represents the multi-year average measured runoff. The R2 range is [0,1], and the closer the
value is to 1, the better the simulation result will be. The closer the value of RE is to 0, the smaller the
mean difference between the simulated runoff and the measured runoff.

2.4. Traditional Model Parameter Transferability Methods

2.4.1. Theoretical Basis

The regulation of regional differentiation, also known as the regulation of spatial geography, refers
to the relative consistency of the geographical environment as a whole and its components in a certain
direction while showing some differences in another direction [49]. In this study, there are similar
distributions of land cover or vertical climate change in the adjacent catchment in the same latitudinal
zone and equivalent mountain range, but there are some differences in slope aspect and elevation
range between different catchments, which leads to exclusive climatic and hydrological characteristics
of each catchment.

2.4.2. Traditional Parameter Transfer Methods

The model parameter transferability method is to transfer one or more parameters of a donor
catchment model into the ungauged target catchment model according to certain rules as its model
parameters. In the process of parameter transfer, the selection of donor catchment is associated with
the simulated results of the target catchment model to some extent. Generally, the closer the two
catchments are, the more similar the hydrological processes of the two catchments will be, due to
the more semblable attributes of climate and geography conditions. Therefore, the accuracy of the
traditional parameter transferability method heavily depends on the similarity between the donor
catchment and target catchment.

(1) Distance approximation principle

The distance approximation principle (DAP) is to select the donor catchment that is closest to
the target catchment in space, and then apply the parameters of the donor catchment model directly
to the target catchment model. This method only considers the absolute distance between the donor
catchments and the target catchment [17,18].

(2) Attribute similarity principle

Attribute similarity principle (ASP) chooses some attributes of the catchment, such as meteorology
and topography, to calculate the similarity between the target catchment and other multi-donor
catchments. The main catchment attributes for model parameters’ transformation involved in runoff

yield and concentration in a mountainous catchment, including catchment area (A), average slope (S),
average elevation (E), annual average precipitation (P), and average temperature (T), which can be
used to calculate the similarity of the hydrological process. The formula for calculating the similarity
of attributes between river catchments is as follows.

∅ =
∑n

i=1

∣∣∣XG
i −XU

i

∣∣∣
XU

i

× 100, (4)
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where ∅ is the attribute similarity between the two catchments; XG
i and XU

i are the ith attribute value
of the donor catchment and the target catchment, respectively. The smaller the value of ∅ is, the more
similar the two catchments will be.

The attribute similarity principle can determine the catchment with the highest attribute similarity
and then transfer the parameters of this catchment model to the target catchment model [19,20].

3. Improved Model Parameter Transferability Method

3.1. Basic Idea and Overall Design

The basic idea of the improved model parameter transferability method proposed in this research
is to establish a statistical relationship between the sensitive parameters of multiple river catchment
models and the characteristics of catchment meteorology, hydrology, and terrain based on DAP and
ASP to obtain a new set of parameter transfer rules. Then, the effectiveness of this alternative method
is verified. The detailed process is as follows (Figure 2).

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 18 

3.1. Basic Idea and Overall Design 

The basic idea of the improved model parameter transferability method proposed in this 
research is to establish a statistical relationship between the sensitive parameters of multiple river 
catchment models and the characteristics of catchment meteorology, hydrology, and terrain based on 
DAP and ASP to obtain a new set of parameter transfer rules. Then, the effectiveness of this 
alternative method is verified. The detailed process is as follows (Figure 2). 

Firstly, using the DEM, land use/cover, soil, and meteorology data, SWAT models of 46 river 
catchments with hydrological stations in Xinjiang were built. The sensitivity analysis of 27 
parameters of each catchment model was carried out by the SUFI-2 method, and the parameter 
sensitivity ranking was obtained. We selected some of the top comprehensive ranking parameters 
based on the significance of the p-value, which is sensitive and rational to most catchment models. 
These sensitive parameters were primarily adjusted so that the  efficiency coefficient and 
correlation coefficient  of each catchment model were above 0.6. 

Secondly, in order to avoid the reuse of the target catchment and the donor catchment, 23 
catchments in Xinjiang were randomly selected as the target catchments (one of which was used as a 
case study), and the corresponding donor catchments of these target catchments were selected by 
using DAP and ASP. The relationship of parameters between target catchment models and donor 
catchment models, and the average elevation, temperature, precipitation, river length, and catchment 
area were analyzed in a statistical way; then, we summarized the parameter transfer rules between 
target catchment and donor catchment. 

Finally, we sought the optimal donor catchment of the remaining target catchment in the case 
study according to the DAP or ASP, and based on the established parameter transfer rules, the model 
parameter sets of target catchment were generated. We compared with the measured runoff in the 
target catchment and the simulated results, which generated the model parameters in accordance 
with the parameter transfer rules, and the applicability of the new parameter transfer rules was 
verified. If the improved simulation results are better than those of the original method, it can be 
shown that the new model parameter transferability method can effectively improve the accuracy of 
runoff simulation in the target catchment. 

 

 
Figure 2. Flowchart of the overall design. 

3.2. Parameter Sensitivity Analysis 

Figure 2. Flowchart of the overall design.

Firstly, using the DEM, land use/cover, soil, and meteorology data, SWAT models of 46 river
catchments with hydrological stations in Xinjiang were built. The sensitivity analysis of 27 parameters
of each catchment model was carried out by the SUFI-2 method, and the parameter sensitivity ranking
was obtained. We selected some of the top comprehensive ranking parameters based on the significance
of the p-value, which is sensitive and rational to most catchment models. These sensitive parameters
were primarily adjusted so that the NS efficiency coefficient and correlation coefficient R2 of each
catchment model were above 0.6.

Secondly, in order to avoid the reuse of the target catchment and the donor catchment, 23
catchments in Xinjiang were randomly selected as the target catchments (one of which was used as
a case study), and the corresponding donor catchments of these target catchments were selected by
using DAP and ASP. The relationship of parameters between target catchment models and donor
catchment models, and the average elevation, temperature, precipitation, river length, and catchment
area were analyzed in a statistical way; then, we summarized the parameter transfer rules between
target catchment and donor catchment.
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Finally, we sought the optimal donor catchment of the remaining target catchment in the case
study according to the DAP or ASP, and based on the established parameter transfer rules, the model
parameter sets of target catchment were generated. We compared with the measured runoff in the
target catchment and the simulated results, which generated the model parameters in accordance with
the parameter transfer rules, and the applicability of the new parameter transfer rules was verified. If
the improved simulation results are better than those of the original method, it can be shown that the
new model parameter transferability method can effectively improve the accuracy of runoff simulation
in the target catchment.

3.2. Parameter Sensitivity Analysis

We calibrated and verified 46 river catchment SWAT models and obtained satisfactory results
(Figures S1 and S2). In the current study, 27 parameters of SWAT models for the 46 catchments were
selected for sensitivity analysis by using the SUFI-2 method, and then the sensitivity order was obtained
by composite average. As can be seen from Figure 3 and Table 1, the precipitation lapse rate (PLAPS),
temperature lapse rate (TLAPS), melt factor for snow on 21 June (SMFMX), baseflow alpha-factor
(ALPHA_BF), Manning’s “n” value for the main channel (CH_N2) are the five top sensitive parameters.
The absolute value of the t-stat value is relatively large; the p-value is close to 0. The results show that
the sensitivity parameters of the top 5 in high-altitude mountainous areas are greatly associated with
precipitation, temperature, snow melting, as well as flow concentration of river channel.
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mean p-value of parameters of all catchments’ model. The mean p-value smaller than α implies that the
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Table 1. Comprehensive ranking for the soil and water assessment tool (SWAT) parameters sensitivity
of 46 Xinjiang catchments.

Parameter Physical Meaning of Parameters Ranges t-stat p-value

PLAPS Precipitation lapse rate (mm H2O/km) −1000~1000 −12.41 0.005
TLAPS Temperature lapse rate (◦C/km) −10~10 −3.49 0.006

SMFMX Melt factor for snow on June 21(mm
H2O/◦C-day) 0~20 2.88 0.007

ALPHA_BF Baseflow alpha factor (1/days) 0~1 −2.51 0.012
CH_N2 Manning’s “n” value for the main channel −0.01~3 −2.29 0.026

CH_K1 Effective hydraulic conductivity in
tributary channel alluvium (mm/hr) 0~300 1.9 0.058

CN2 Initial SCS runoff curve number for
moisture condition II 35~98 −1.76 0.088

GWQMN
Threshold depth of water in the shallow
aquifer required for return flow to occur

(mm H2O)
0~5000 1.57 0.126

SURLAG Surface runoff lag coefficient 0.05~24 1.48 0.156

SNOCOVMX
Minimum snow water content that

corresponds to 100% snow cover, SNO100
(mm H2O)

0~500 −1.36 0.190

REVAPMN
Threshold depth of water in the shallow
aquifer for “revap” or percolation to the

deep aquifer to occur (mm H2O)
0~500 −1.27 0.215

SOL_K Saturated hydraulic conductivity (mm/hr) 0~2000 −1.21 0.248
EPCO Plant uptake compensation factor 0~1 −1 0.313

SMFMN Melt factor for snow on December 21(mm
H2O/◦C-day) 0~20 0.98 0.333

LAT_TTIME Lateral flow travel time (days) 0~180 −0.96 0.332
GW_REVAP Groundwater “revap” coefficient 0.02~0.2 −0.93 0.359

SOL_AWC Available water capacity of the soil layer
(mm H2O/mm soil) 0~1 0.89 0.379

TIMP Snow pack temperature lag factor 0~1 0.79 0.468
ESCO Soil evaporation compensation factor 0~1 0.68 0.473

SHALLST Initial depth of water in the shallow aquifer
(mm H2O) 0~50000 0.66 0.532

RCHRG_DP Deep aquifer percolation fraction 0~1 −0.48 0.565
SMTMP Snow-melt base temperature (◦C) −20~20 −0.48 0.593

CH_K2 Effective hydraulic conductivity in main
channel alluvium (mm/hr) −0.01~500 −0.46 0.636

GW_DELAY Groundwater delay time (days) 0~500 0.22 0.716

CH_N1 Manning’s “n” value for the tributary
channel 0.01~30 0.19 0.778

SFTMP Snowfall temperature (◦C) −20~20 −0.11 0.791
OV_N Manning’s “n” value for overland flow 0.01~30 0.11 0.813

3.3. Improved Model Parameter Transferability Method

3.3.1. PLAPS and TLAPS

By simulating the parameters of TLAPS, PLAPS, and the average elevation (H_ave) of the
catchment, the corresponding parameters of the donor catchment and the target catchment were
statistically correlated. In this study, TLAPS/H_ave of the donor catchment and TLAPS/H_ave of the
target catchment (Figure 4a), PLAPS/H_ave of the donor catchment, and PLAPS/H_ave of the target
catchment (Figure 4b) were analyzed based on their correlation. It was found that TLAPS and PLAPS
were significantly correlated with the average elevation (H_ave) of the catchment, and TLAPS and
PLAPS of the donor catchment and the target catchments were similar. The R2 of TLAPS is about 0.70,
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p-value <0.05 (significant), and the R2 of PLAPS is about 0.66, p-value <0.05 (significant). According to
the results of the study, the TLAPS transfer rule is as follows:

TLAPS_T = (TLAPS_D / H_ave_D) × H_ave_T, (5)

where TLAPS_T and TLAPS_D are the target catchment TLAPS and donor catchment TLAPS (◦C/km);
H_ave_T and H_ave_D are the target catchment average elevation and donor catchment average
elevation (m).Sustainability 2020, 12, x FOR PEER REVIEW 9 of 18 
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PLAPS transfer rule is as follows:

PLAPS_T = (PLAPS_D / H_ave_D) × H_ave_T, (6)

where PLAPS_T and PLAPS_D are the target catchment PLAPS and donor catchment PLAPS (mm/km).

3.3.2. SMFMX

According to the relationship between the SMFMX and the average elevation (H_ave) of all
calibrated catchment models, the logarithmic relationship between them is observed, and the fitting
result is shown in Figure 5. The SMFMX parameter increases as the increase of H_ave of the catchment,
and the fitting degree of SMFMX and H_ave R2 are about 0.49, p-value <0.05 (significant). According
to the results of the study, the SMFMX transfer rule is as follows:

SMFMX = 7.9685 × Ln(H_ave) − 56.991, (7)
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3.3.3. CH_N2

Manning’s “n” value for the main channel (CH_N2) is a coefficient that reflects the influence of
the roughness of the river channel on runoff comprehensively. The CH_N2 is influenced by many
factors, and its value is usually measured by experimental data. In this study, it is correlated to the
average slope (Slope_ave) and river channel length (L_reach) of the catchment. And it is found that
the CH_N2 is significantly correlated with the ratio of L_reach to Slope_ave (Figure 6). The two have a
power exponential relationship. R2 is about 0.74, and p-value <0.05 (significant). According to the
study results, the CH_N2 parameter transfer rule is as follows.

CH_N2 = 0.873 × (L_reach/Slope_ave)−0.75, (8)
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3.3.4. ALPHA_BF

On the basis of the existing study, the statistical correlation between the ALPHA_BF and the
Manning’s “n” value for the main channel (CH_N2) shows that the coefficient of ALPHA_BF exhibits
a rising trend with the increase of the CH_N2, and there is a binomial relationship between them
(Figure 7), R2 is about 0.59, and p-value <0.05 (significant). According to the results of this study, the
ALPHA_BF parameter transfer rule is as follows.

ALPHA_BF = 13.281 × (CH_N2)2
−2.5862 × CH_N2 + 0.1385, (9)
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3.3.5. Alternative Model Parameter Transfer Rules

Based on the DAP and ASP, the relationships between the parameters of the SWAT model and
climate/topography of 44 catchments in Xinjiang were combined for the donor catchment selection and
parameter’s transfer rules determination. The main sensitive parameters of each donor catchment
model and corresponding target catchment model are correlated with the catchment characteristic
factors such as average elevation, slope aspect, and river length. Afterwards, the relationship between
these 22 couples of sensitive parameters and catchment characteristic factors is further analyzed, and a
set of improved parameter transfer rules is summarized, which are as follows:

a. The DAP method is used to initially select 2–3 standby donor catchments,
b. The ASP method is used to determine the closest attributes of the candidate donor catchments

as the donor catchments,
c. Correlate the model parameter set of the donor catchment with the closest attributes to the target

catchment model,
d. According to the average elevation of the donor catchment and target catchment, and TLAPS of

the donor catchment, the TLAPS transfer rule of the target catchment is as follows:

TLAPS_T = (TLAPS_D / H_ave_D) × H_ave_T, (5)

e. According to the average elevation of the donor catchment and target catchment, and PLAPS of
the donor catchment, the PLAPS transfer rule of the target catchment is as follows:

PLAPS_T = (PLAPS_D / H_ave_D) × H_ave_T, (6)

f. According to the average elevation of the target catchment, the SMFMX transfer rule of the target
catchment is as follows:

SMFMX = 7.9685 × Ln(H_ave) − 56.991, (7)

g. According to the river channel length and average slope of the target catchment, the CH_N2
transfer rule of the target catchment is as follows:

CH_N2 = 0.873 × (L_reach/Slope_ave)−0.75, (8)

h. According to Manning’s “n” value for the main channel of the target catchment, the ALPHA_BF
transfer rule of the target catchment is as follows:

ALPHA_BF = 13.281 × (CH_N2)2
−2.5862 × CH_N2 + 0.1385, (9)

where TLAPS_T and TLAPS_D are the target catchment TLAPS and donor catchment TLAPS (◦C/km);
H_ave_T and H_ave_D are the target catchment average elevation and donor catchment average
elevation (m); PLAPS_T and PLAPS_D are the target catchment PLAPS and donor catchment PLAPS
(mm/km); L_reach is the length of river channel (km); Slope_ave is the average slope of the catchment,
in the unit of degrees.

4. Case Study

4.1. Selection of Donor Catchment

In order to verify the applicability of the improved parameter transferability rules, the Kuyiersite
(KU) river catchment in Altay Mountain was selected as the target catchment for case analysis and
the other 45 catchments as the undetermined donor catchments. Firstly, based on the distance
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approximation principle, we determined the donor catchment, which is close to the target catchment,
including the Kelan (KL) river catchment and the Kayiersite (KA) river catchment. According to the
attribute similarity principle, six attributes, including the distance (D), catchment area (A), the average
slope (Slope_ave), the average elevation (H_ave), the average annual precipitation (P), and the average
temperature (T) of the target catchment and the donor catchment, were calculated. The results are
shown in Table 2. To sum up, the attributes of the KL river catchment are more similar to those of the
KU river catchment (∅ = 26.87), and the attributes of the KA river catchment are quite different from
those of the KU river catchment (∅ = 66.11), while KA river catchment is closest distance to the KU
river catchment.

Table 2. The similarity of hydrological characteristics and attributes of the target catchment and the
donor catchment.

River Distance
(km)

Catchment Area
(km2)

Average Slope
(◦)

Average Elevation
(m)

Average Annual
Precipitation (mm)

Average Annual
Temperature (◦C)

Attribute Similarity
(∅)

KU - 1967.14 20.70 2540.94 220.16 5.32 -

KL 159.50 2359.87 20.18 2429.38 206.29 5.29 26.87

KA 38.61 1624.98 15.75 2200.04 222.38 5.48 66.11

In virtue of the traditional model parameter transferability method, the model parameters of the
donor catchment are transplanted directly into the KU river catchment, and the results of the model
simulation are presented in Table 3. The NS coefficient transferred by the KA river parameter with
approximate distance is 0.27, while it equals 0.36 when transferred by the model parameters of KL
river catchment with similar attributes. The results show that the accuracy of the simulated runoffs are
relatively low when the parameters of the donor catchment with approximate distance (DAP) and
the donor catchment with high attribute similarity (ASP) are transplanted to KU river catchment, but
the result of parameter transplantation based on ASP is better than that based on DAP. The donor
catchment chosen by DAP and ASP cannot reflect the characteristics of the target catchment very well.
As a result, the simulation results of the two parameter transferability methods have not achieved
good simulation results in accordance with the two methods and the theoretical basis mentioned above.
However, it is more appropriate to select the KL river with highly similar attributes as the donor
catchment of the target catchment.

Table 3. Order of the donor catchments and their simulation results.

Target Catchment—KU River

Distance Proximity Attribute Similarity
Evaluation Indicator

(NS /R2
)

Donor catchment
KA river (DAP) 1 2 0.27/0.55

KL river (ASP) 2 1 0.36/0.65

4.2. Validation of the Improved Model Parameter Transferability Method

By using the improved model parameter transferability rules proposed in Section 3.3.5, the model
parameter of KU river catchment is generated by the model parameters of KL river catchment according
to the characteristics of the catchment area and the average elevation of KU river catchment (the
parameters are detailed in Table S2). The simulated results are shown in Table 4. The accuracy of
the simulated results is improved significantly by the modified model parameters of the KL river
catchment are applied in the KU river catchment model: the NS efficiency coefficient is increased
from 0.36 to 0.69, and the correlation coefficient R2 is increased from 0.65 to 0.85. The simulated result
is satisfactory.
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Table 4. Comparison results for the parameter transfer of the different donor catchments.

Parameter Transfer Scheme
Evaluation Indicator

NS R2

KL river catchment model parameters (ASP) 0.36 0.65
KA river catchment model parameters (DAP) 0.27 0.55

Modified KL river catchment model parameters (IMPTM) 0.69 0.85

By further analyzing the simulation of the runoff curve with different parameter schemes, as
shown in Figure 8, it can be seen that the accuracy of the simulated runoff after the model parameters’
transplantation in the KL river catchment is higher than that of the KA river, but the simulation of
the parameters’ transplantation in the KL river is not good for flow peak’s capture, especially for the
autumn flood peaks; the simulation effect on the winter base flow is good. The model parameters’
transplantation of KA river catchment can capture the flood peak, but the simulation accuracy of
the peak value is not good. The simulation effect is significantly improved by modifying the model
parameters of KL river catchment according to the improved parameter transfer rules, which not only
capture the flood peaks well but also improve the simulation accuracy of the peak value.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 18 
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parameters (KL), and modified KL model parameters (M-KL)) in KU river catchment.

Figure 9 exhibits the comparison between the simulated daily runoff accumulation and the
measured daily runoff accumulation of the three parameters transfer simulation schemes of KU
river in 2010 and 2011. The trends of daily runoff accumulation calculated by the three parameters
transfer schemes are basically the same, but the results of ASP schemes (KL catchment), DAP schemes
(KA catchment), and M-KL schemes were lower than the measured values, especially in summer.
The simulated runoff accumulative total amount of the parameters’ transfer results of the KL river
catchment is similar to that of the measured, while the runoff accumulative total amount of the
parameters’ transfer results of the KA catchment is much lower than that of the measured ones. The
cumulative total amount of daily runoff calculated by improved parameters’ transfer rules of the KL
river catchment after transplantation is closer that of the measured amount, but it accurately grasps
the flow peak amount during the spring snow melting periods. However, in autumn and winter, the
total amount of simulation is lower than the measured value.
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5. Discussion

5.1. Sensitivity Analysis

In order to improve the calibration efficiency, the sensitivity identification for key parameters is
carried out beforehand. In the current study, we identified 27 parameters of the SWAT model related
to flows, snowmelt, groundwater, and evapotranspiration in the sub-basin scale by using the SFUI-2
method. TLAPS, PLAPS, CH_N2, SMFMX, ALPHA_BF were found as the most sensitive parameters
(Table 1 and Figure 3), with the mean p-value passing the 5% confidence test (p-value <5%) in all
catchments. The analysis results are similar to previous studies [7,32,50].

Top five sensitive parameters played vital roles for the mountainous catchments in Xinjiang.
TLAPS and PLAPS are utilized to adjust temperature and precipitation according to elevation bands,
which directly determine the spatial patterns and total amounts of precipitation and temperature [51,52].
They indirectly influence the occurrence time of floods, magnitudes of streamflow, evapotranspiration,
and even water budgets. CH_N2 is a characterization of the roughness of the river channel, which
has a great influence on flow routing. The higher the value of CH_N2, the stronger the scouring
ability of the natural channel [53]. The SMFXM parameters of the snowmelt module are very essential
for mountain watershed models. The reason why SMFXM is sensitive to alpine watersheds may be
due to the relatively large contribution of snowmelt in mountain runoff, especially in summer [54].
ALPHA_BF is a parameter of the groundwater module and is a direct index of groundwater flow
response to changes in recharge [51]. Not all the snowmelt water in the mountainous area directly
generates surface runoff and recharge to the river. Usually, it slowly melts and infiltrates into the
ground. Subsequently, a large proportion of groundwater (17–66%) is supplied to the river [7]. The
similar catchment properties were also confirmed by Me et al. [43] in their catchment.

The hydrologic parameters that were not sensitive in the model were mainly the parameters such
as SHALLST, RCHRG_DP, SMTMP, CH_K2, GW_DELAY, CH_N1, SFTMP, and OV_N. Initial depth
of water in the shallow aquifer (SHALLST) and deep aquifer percolation fraction (RCHRG_DP) are
the initial settings of the groundwater module in the SWAT model. This result indicates that deep
groundwater flow does not significantly impact runoff, probably because the mountainous areas have
steep slopes, sparse surface vegetation, and poor water holding capacity, so it is hard to influence the
streamflow [55]. CH_N1 or OV_N is the Manning’s “n” value for the tributary channel or overland
flow, which are parameters that characterize the roughness of the surface [51]. Due to the large amount
of precipitation and the relatively low temperature in high-altitude mountainous areas, most of them
exist in the form of snowfall. After the temperature rises, they will slowly infiltrate into the ground,
resulting in a reduction in the proportion of runoff contributed by overland flow throughout the
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year [7]. Therefore, these parameters have low sensitivity to hydrological simulation in high-altitude
mountain catchments.

5.2. The Difference of Model Parameter Transferability Method

The improved model parameter transferability method is based on the principles of DAP and
ASP, supported by the easy-to-obtain geographic features such as river basin elevation and channel
length so that the parameters of the donor catchment can be properly converted into the target
catchment model. Application results of IMPTM show that the accuracy of runoff simulation has
been significantly improved (Table 4 and Figure 8). In contrast, for the conventional approach, DAP
is the most straightforward approach of parameter transferring, which only considers the distance
between the donor catchment and the target catchment, and ignores the characteristics of the catchment
itself. ASP considers the similarity between the characteristics of the target catchment and the donor
catchment, and then the model parameters from similar donor watersheds will be directly implanted
into the target model. Even though the catchment attributes are similar, there are still some differences.
Cheng et al. [17] also confirmed that ASP is similar to DAP which is not capable of improving the
simulation accuracy in the target catchment.

The improved model parameter transferability method not only considers the distance and
characteristics between the target catchment and the donor catchments but also analyze the relationship
among the parameters and the characteristics of the catchment. Thereby, the five most sensitive
parameters of the donor catchment model are further localized in the target catchment model according
to the new transferring rules (Section 3.3.5). A large number of studies have also shown that TLAPS,
PLAPS, and SMFMX are highly correlated to catchment elevation [8,45,54]. CH_N2 is a coefficient
that comprehensively reflects the influence of a rough river on the runoff. Channel length and slope
potentially affect the channel CH_N2 coefficient [56,57], while CH_N2 has an effect on alpha to some
extent [58]. Based on the vast amount of calibrated model parameters and catchment attributes, some
statistical relationships are established to obtain the new model parameter transfer rules, which can be
universally applied for hydrological simulation in mountainous basins.

All sample catchments in this study have the common characteristics of high average altitude and
large altitude difference. Therefore, this method would have poor applicability to the plain catchments
in relatively low altitudes. The altitude difference of the plain catchment is small, and TLAPS or
PLAPS even may not be sensitive and become less important. In addition, low-altitude catchments in
tropical or subtropical climate regions are rarely covered with snow, and SMFMX will lose its effect in
those regions [59,60]. Therefore, the application of the new approach certainly has its limitations and
suitable environments.

6. Conclusions

In this study, we built the SWAT models of 46 river catchments with discharge gauging
stations in Xinjiang. Twenty-two river catchments were selected as the target catchments, and
the corresponding donor catchments of each individual target catchment were selected based on the
distance approximation principle and the attribute similarity principle. The parameter transfer rules
were obtained based on the relationship between model parameters and catchment characteristics.
Finally, a sample target catchment was selected to evaluate the applicability of the SWAT model with
newly implanted parameters. The results of this study show that (1) the parameters such as TLAPS,
PLAPS, SMFMX, CH_N2, and ALPHA-BF are more sensitive in high-altitude catchments. (2) It is not
ideal to directly transfer the model parameters either from the closest catchment or from the most
similar one. For instance, the target catchment (KU catchment) does not have acceptable simulation
results based on either the closest distance approach (parameters directly from KA catchment) or the
similarity approach (parameters directly from KL catchment), with NS and R2 less than 0.60. (3) The
new rules of parameter transfer achieved better performance on the target catchment (KU catchment),
with proper timing and value of flood peaks. Its NS coefficient can be increased from 0.36 to 0.69,
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and R2 from 0.65 to 0.85. Validation results of the SWAT model in high-altitude catchment present
the acceptable performance and confirm the adaptation of the IMPTM model. However, since the
IMPTM in this study only tested some parameters which are sensitive to the current study region,
the relations between other parameters and catchment properties are absent in this study. There is
still great potential for improving the simulation accuracy of the hydrological process in ungauged
mountainous catchments in further study.
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