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Abstract: This research aimed to investigate the mechanical and physical properties of Roller
Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement
for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC
mixtures with 200 kg/m3 of cement content and coarse natural aggregates in the concrete mixture.
Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%).
The compaction test, compressive strength, splitting tensile strength, flexural tensile strength,
and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze
the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA)
was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased
in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity,
but the same was not observed in the splitting tensile strength. All RCCs displayed compressive
strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile
strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards,
the RCA added to RCC could be used for base layers.

Keywords: roller compacted concrete; recycled concrete aggregate; pavement layer

1. Introduction

According to Balbo and Dornelas [1], Brazil has faced an annunciated transport crisis since the
1980s. There are two determining factors related to this crisis: Road network extension and pavement
quality. There is around 1,720,700 km of roads in the country, but just 12.4% are paved, 78.5% are
unpaved, and 9.1% are in the planning phase [2].

A considerable amount of materials is necessary to improve the Brazilian transport infrastructure,
just like any other country investing in paving projects. Nowadays, the extraction of natural materials
as aggregates requires several environmental permits because this procedure causes damage to the
environment, and highway construction consumes a finite resource on our planet. Therefore, it would
be interesting to verify the availability of utilizing solid waste as a material to mitigate the large-scale
uses of Natural Aggregates (NA). Improving the infrastructure of highways without causing severe
environmental damages, the use of Construction and Demolition Waste (CDW) could be an alternative
to reduce the volume of NA and concomitantly reduce illegally dumped waste in urban areas improper
for handling it, such as areas nearby creeks and roads [3,4].

Let us consider the case in Brazil: The production of CDW that represents 40% to 70% of
all urban solid waste. Considering the country has a yearly production yield of CDW equal to
500 kg/year per capita and comprehending that Brazil has a population around of 210 million of
inhabitants, the production of CDW is equal to 875,000,000 m3 (contemplating the specific mass of
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CDW = 1200 kg/m3). It represents a large-scale environmental problem, and one potential solution
would be to use this waste as aggregate for producing building materials [3,5,6].

Research studies on CDW recommend using this material for use for pavements layers [1,4,7].
One type of CDW is Recycled Concrete Aggregate (RCA), which could be an excellent option to use as
an aggregate for the pavement layer due to its physical properties. RCA was used in several types
of concretes; in some researches studies, it was used as an aggregate for Roller Compacted Concrete
(RCC) [8–11].

Using RCC mixed with Recycled Aggregate (RA) as RCA, for example, many countries can
reduce NA extractions and reduce some environmental impacts from construction new roads or
improving pavements, too. For example, Brazil can use RCC with RCA as a material for pavements
or sub-base pavements to mitigate problems from infrastructure highways [1,2]. On the other hand,
some recognized benefits of RCC in pavements are cost-effectiveness, faster construction, environmental
friendliness, and high-level performance [12–16]. RCC is a zero-slump concrete used for hydraulic and
paving construction sites in civil engineering. The main difference between conventional concrete and
RCC is the consistency of the material. Moreover, the percentage of aggregates in mixtures is around
80%. It proves that aggregates are vital for producing this type of concrete [12–18].

The RCC can be designed to achieve high mechanical properties such as compressive strength due
to compaction effort and aggregate interlock. To achieve a good compaction on the field, the RCC must
be mix-stiff enough to support the roller compactor and wet enough to permit adequate distribution
of material without segregation. The ingredients used for RCC are the same used for conventional
concrete but has different mixture proportions [12,14,15]. RCC could be used in different pavement
layers as a sub-base, base, and surface, modifying the cement content to achieve improved properties in
different layers. The use of RCC as a base layer can improve the pavement bearing strength, especially
the ability to withstand the tensile stress caused by bearing the traffic load [19,20].

Selecting materials is substantial in RCC to achieve excellent properties in pavement layer
applications. There are several methods for mixture proportioning for producing RCC. The maximum
dry density method is the most widely used mixture proportioning method for RCC pavements.
This method basically consists of choosing well-graded aggregates, selecting a cement content,
preparing a moisture–density relationship plot based on the Proctor test, and casting samples for
measuring compressive strength and calculating mixture proportions [14,18].

According to Portland Cement Association (PCA), the compressive strength of RCC ranges from
28–41 MPa at 28 days, and the flexural strength ranges from 3.5–7 MPa at 28 days [14]. According to
Boussetta et al. [21], RCC must display 20 MPa compressive strength at 28 days and 1.6 MPa splitting
tensile strength at 28 days. In Brazil, RCC must achieve values lower than those mentioned above by
varying the layer used as paving material. Table 1 displays these required RCC values to be employed
based on the paving layer.

Table 1. Roller Compacted Concrete (RCC) requirements in Brazil.

Layer fc (MPa) f r
(MPa)

Age
(days)

Thickness
(cm)

Cement Content
(kg/m3)

Reference

Sub-base ≥5.0 - 7 - 80–120
National Transport

Infrastructure
Department (DNIT). [22]

Base and Surface f c,est ≥ f c - 28 - ≥200
National Transport

Infrastructure
Department (DNIT). [23]

Base ≥15 ≥1.5 28 10–20 - São Paulo City Hall [24]

Note: f c is the compressive strength, f r is the flexural strength and f c,est is the estimated RCC compressive strength.

Considering that RCC consumes a considerable amount of NA for its production, the primary
purpose of this research study has been to evaluate the physical and mechanical properties of RCC
utilizing RCA and employing it as pavement base layer. The use of RCA as a coarse aggregate for RCC
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is based on other research studies conducted on RCC. It used different recycled aggregates in Brazil,
such as CDW [25] or Reclaimed Asphalt Pavement (RAP) [26,27]. RCA was used as a coarse recycled
aggregate in international research studies, and their results recommended the use of RCA added to
RCC due to its availability as a material for pavements [8–11].

2. Materials and Methods

2.1. Materials

The maximum dry density method was used to select the cement content, fractional proportions
of NA were chosen to achieve the suggested gradation range, and the Proctor test was carried out to
identify the Optimum Moisture Content (OMC).

Portland cement type CP-V-ARI-RS (Brazilian Association of Portland Cement) was used. This type
of cement provides high early strength and sulfate resistance. The chemical composition and physical
properties of cement are shown in Table 2. Two types of natural sand were used: River sand (RS) with
a maximum grain size of 2.4 mm and pit sand (PS) with a maximum grain size of 1.2 mm. Natural
coarse-grain gneiss coarse was used with two maximum sizes of 13 mm (NG13) and 19 mm (NG19).
The RCA was manufactured in a treatment plant company from Joinville (Brazil). The maximum
size of the RCA was 25 mm; thus, screening was utilized on particles above 19.1 mm because the
maximum size of Natural Gravel (NG) was 19 mm and intended to substitute fractional proportions of
NG for RCA. The particle-size distribution is shown in Figure 1, and their properties are summarized
in Table 3. The properties reported in Table 3 were defined by applying Brazilian standard test methods
on materials for highway engineering [28–30]. The RCA used in this research displayed 92.37% in the
volume composition of particles made up by mortar or particles of NG. The type of aggregate has been
proven to be a RCA and not a Recycled Masonry Aggregate (RMA) [31,32].

Table 2. Chemical composition and physical properties of CP-V-ARI-RS cement, according to
Souza et al. [33].

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Specific Gravity Blaine

55.40% 20.10% 4.80% 3.50% 5.60% 2.80% 1.00% 5.03 g/cm3 3.11 g/cm3

Sustainability 2019, 11, x FOR PEER REVIEW 3 of 17 

recycled aggregate in international research studies, and their results recommended the use of RCA 
added to RCC due to its availability as a material for pavements [8–11]. 

2. Materials and Methods 

2.1. Materials 

The maximum dry density method was used to select the cement content, fractional proportions 
of NA were chosen to achieve the suggested gradation range, and the Proctor test was carried out to 
identify the Optimum Moisture Content (OMC).  

Portland cement type CP-V-ARI-RS (Brazilian Association of Portland Cement) was used. This 
type of cement provides high early strength and sulfate resistance. The chemical composition and 
physical properties of cement are shown in Table 2. Two types of natural sand were used: River sand 
(RS) with a maximum grain size of 2.4 mm and pit sand (PS) with a maximum grain size of 1.2 mm. 
Natural coarse-grain gneiss coarse was used with two maximum sizes of 13 mm (NG13) and 19 mm 
(NG19). The RCA was manufactured in a treatment plant company from Joinville (Brazil). The 
maximum size of the RCA was 25 mm; thus, screening was utilized on particles above 19.1 mm 
because the maximum size of Natural Gravel (NG) was 19 mm and intended to substitute fractional 
proportions of NG for RCA. The particle-size distribution is shown in Figure 1, and their properties 
are summarized in Table 3. The properties reported in Table 3 were defined by applying Brazilian 
standard test methods on materials for highway engineering [28–30]. The RCA used in this research 
displayed 92.37% in the volume composition of particles made up by mortar or particles of NG. The 
type of aggregate has been proven to be a RCA and not a Recycled Masonry Aggregate (RMA) [31,32].  

Table 2. Chemical composition and physical properties of CP-V-ARI-RS cement, according to Souza 
et al. [33]. 

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Specific gravity Blaine 
55.40% 20.10% 4.80% 3.50% 5.60% 2.80% 1.00% 5.03 g/cm³ 3.11 g/cm³ 

 

Figure 1. The particle size distribution of aggregates. Note: PS is the pit sand; NG13 is the natural 
gravel 13 mm; RS is the river sand; NG19 is the natural gravel 19mm; and RCA is the recycled concrete 
aggregate. 

  

Figure 1. The particle size distribution of aggregates. Note: PS is the pit sand; NG13 is the natural
gravel 13 mm; RS is the river sand; NG19 is the natural gravel 19mm; and RCA is the recycled
concrete aggregate.
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Table 3. Properties of aggregates.

Properties RS PS NG13 NG19 RCA Reference

SSD density (g/cm3) 2.63 2.64 2.93 2.72 2.19

National Highways
Department (DNER) [29]

National Highways
Department (DNER) [30]

Water absorption (%) - - 0.27 0.20 7.63 National Highways
Department (DNER) [30]

Los Angeles abrasion
test (%) - - 14.15 12.83 32.00 National Highways

Department (DNER) [28]

Note: SSD density is based on the dry density of saturated surface.

2.2. Dosage and Mixing Process

The maximum dry density method was chosen for dosing RCC. A cement content of 200 kg/m3

was adopted as the Brazilian standard recommending this minimum cement content for RCC for base
and surface pavements [23]. The employed compaction energy was the intermediary Proctor energy
required by another Brazilian standard, which recommends this energy when recycled aggregates are
used in pavement layers [31]. RCA was chosen to replace NG, in the mass mixture, at three different
proportions: 5%, 15%, and 30%, then the mixtures were named RCC-0 (without RCA), RCC-5, RCC-15,
and RCC-30, corresponding to the replacement levels of the NG by RCA. The replacement percentage
was defined at these percent levels because the replacement of more than 40% of coarse NA is not
recommended in concrete as the mechanical properties could decrease when replacement is greater
than 40% [18]. Furthermore, the observed percentage levels adopted by Borré [27] were replaced by
10% and 30% of NG basalt by RAP, and the 10% RAP mixture provided higher mechanical properties
than the mixture with 30% RAP.

The adopted aggregate gradation range adopted in this research was proposed by Chhorn et al. [13]
as an optimized gradation range suggested by PCA [14]. Figure 2 displays the aggregate gradation of
RCC mixtures, and the similarity is evident among each aggregate gradation in each mixture.
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According to Trichês [34], Equation (1) was used to calculate the proportion of necessary materials
necessary to produce RCC, and the amounts of materials needed to produce 1 m3 of RCC are shown
in Table 4. This equation was suggested in 1993 as part of the Brazilian method for designing RCC.
This procedure is as also adopted in other Brazilian research studies on RCC [25–27]. The quantity
of aggregate was calculated based on units of cement (m) by Equation (1), moisture was adopted as
h = 6.5% because this value is common to OMC, and air void volume was Vv = 50 L [27,34].
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C =
1000−Vv

1
γc

+ m
γag

+
h×(1+m)

100

(1)

C is the cement content, kg/m3; Vv is the air void volume, L; γc is the cement density, g/cm3; γag is the
weighted average of the aggregate density, g/cm3; m is the total quantify of aggregates based on units
of cement, dimensionless; h is the moisture, %.

Table 4. Quantity of materials for producing 1 m3 of concrete.

Mixture Cement (kg) PS (kg) RS (kg) NG13 (kg) NG19 (kg) RCA (kg) Water (kg)

RCC-0 200.00 306.00 612.00 816.00 306.00 0.00 210.78
RCC-5 200.00 302.00 606.00 758.00 252.00 101.00 212.14

RCC-15 200.00 296.00 594.00 644.00 148.00 296.00 211.48
RCC-30 200.00 288.00 576.00 480.00 0.00 576.00 209.67

The intermediary Proctor test was carried out to identify the OMC and the maximum dry density
of each mixture. This test was performed according to the Brazilian standard [35]. The cylindrical
specimens (150 × 300 mm) were cast at intermediary Proctor energy in a mechanical compactor.

2.3. Specimen Preparation

After the compaction test, cylindrical and prismatic specimens were molded to verify the
properties of hardened RCC. The mixtures were prepared in an inclined axle concrete mixer according
to the methodology adopted by Borré [27]. All specimens were molded using a manual compactor.
The 68 cylindrical specimens (100 × 200 mm) were molded in three layers with 32 blows per layer.
The eight prismatic specimens (100 × 100 × 550 mm) were molded in two layers with 163 blows per
layer. Equation (2) was adopted to calculate the number of blows necessary for each type of specimen.

Ep =
W× h× nb × nl

V
(2)

Ep is the potential energy, kg.cm/cm3; W is the compactor weight, kg; h is the falling height of the
compactor, cm; nb is the number of blows per layer; nl is the number of layers, and V is the mold
volume, cm3.

The values adopted in Equation (2) were Ep = 12.3 kg.cm/cm3 corresponding to intermediary
Proctor energy, W = 4.536 kg and h = 45.7 cm, V and nl were dependent on the specimen type and nb

was achieved [27]. The wet curing was done for 7 and 28 days in a water tank using Calcium hydroxide.

2.4. Experimental Tests

The following tests were carried out to verify the physical and mechanical properties of hardened
RCC mixtures: Compressive strength [36], splitting tensile strength [37] (Figure 3a), flexural tensile
strength [38] (Figure 3b), modulus of elasticity [39] (Figure 3c), and dry density, water absorption,
and porosity [40].

Then, 120 Ω strain gages were glued using cyanoacrylate glue in cylindrical specimens to obtain
the modulus of elasticity. One strain gage was glued crosswise on the specimen, and another was
glued longitudinally. A stress versus strain graph was plotted, and a secant line was added to start at
origin of the graph until a point equal to 40% of rupture tension, according to Hooke’s law. Equation (3)
was used to estimate the value of the modulus of elasticity [18].

E =
σ40%

ε40%
(3)

E is the modulus of elasticity, GPa; σ40% is 40% of rupture stress, MPa; ε40% is the strain corresponding
to 40% of rupture stress, m/m.
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2.5. Statistical Analysis

The data obtained from physical and mechanical tests were statistically analyzed in the free
RStudio open source software. Analysis of Variance (ANOVA) was performed (one-way) for each
mechanical property to identify whether the percentage of RCA interferes in these RCC properties.
Moreover, linear regression analysis between the physical and the mechanical properties of RCC
were adjusted at 28 days. The correlation among RCC properties was performed to identify the
relation between two variables. In this case, the correlation considers one predictor and one dependent
variable. The correlation could indicate if any property was directly dependent on another property or
not [41,42].

The ANOVA was used to identify differences among means observed in each hardened property
of the RCC mixtures on the 7th and 28th day. A significance level of 0.05 was adopted for applying
this statistical test. The one-way ANOVA analysis defined the equal averages, and the alternative
hypothesis (H1) adopted was the null hypothesis (H0) where at least one mean was different from
others, according to the common hypothesis tests [41,42].

Employing the one-way ANOVA analysis is vital to verify whether samples are independent, the
residuals are distributed normally, and the variances are homogeneous. The RStudio software was
used for performing the normality test of residuals was estimated by Shapiro test: Where the p-value
was higher than 0.05, the assumption of normality was not violated. The Levene test was performed to
verify the homoscedasticity, so if the p-value was higher than 0.05, the variances were equal, and if
p-value was less than 0.05, the variances were different. These statistical tests were performed on all
properties, and therefore, ANOVA assumptions were not violated.

3. Results and Discussion

The values of Maximum Dry Density (MDD) and OMC in RCC mixtures are presented in Table 5.
Figure 4a presents the relationship between the RCC moisture content and dry density. The OMC is
above 9.0% in all moisture–density curves, which, according to Borré [27] and Trichês [34], is unusual
for RCC because this value must vary around 6.5%. However, high moisture contents were adopted by
other research studies, especially when recycled aggregates were included in the aggregate percentages.

The OMC varied from 7.50% to 8.40% for RCC mixtures mixed with RAP [26], 8.40% and 10.00%
for RCC mixed with CDW [25], and for RCC mixed with NA the OMC varied from 7.25% to 11.00% [43].
Our OMC values 9.41% and 9.89% abide by an acceptable limit of OMC as adopted in other research
studies [25,43].

There was a good correlation between MDD and the obtained OMC (Table 6) as the correlation
coefficient (R2) was 0.9202. When the percentage of RCA increases in a mixture, there were the MDD
reduces, and OMC increases (Figure 4b). The RCA added to RCC and NA added to RCC did not
display any significative difference among the mixtures of MDD. They varied 2.203–2.309 g/cm3.
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Lopez-Uceda et al. [8] observed the variation of MDD among mixture of NA added to RCC, and RCA
ranged from 2.19–2.34 g/cm3 for RCC with a cement content equal to 110, 175, 250, and 350 kg/m3.
Lopez-Uceda et al. [9] studied RCC with 150 and 250 kg/m3 of cement and 100% of RA, in comparison
to the reference RCC mixture mixed with RA, which displayed decreases in the MDD values as well.
Ricci and Balbo [25] observed MDD in RCC that showed decreasing CDW trends when the percent
of CDW increased. Due to the particularity of bitumen in particles, the RAP also tends to decrease
MDD in RCC and increases moisture content as its percentage in mixture increases [26,44]. Thus, these
results confirm the hypothesis on the increasing percentage of RA in mixtures, as the MDD decreases,
and then the moisture content increases.

Table 5. Compaction test results for RCC mixtures with 200 kg/m3 of cement.

Property of Mixtures RCC-0 RCC-5 RCC-15 RCC-30

Maximum dry density (g/cm3) 2.309 2.290 2.204 2.203
OMC (%) 9.41 9.56 9.71 9.89

Table 6. Summary of correlation between Maximum Dry Density (MDD) and Optimum Moisture
Content (OMC).

Correlation Equation No. of Points Df RSE R2 Adj. R2

MDD and
OMC MDD = −0.2507 ×

OMC + 4.6687
4 2 0.0268 0.8471 0.7707

Note: MDD is the maximum dry density; No. is number; Df is degrees of freedom; RSE is the residual standard
error; R2 is the correlation coefficient and Adj. R2 is the adjusted correlation coefficient.

The mechanical property averages of RCC mixtures are displayed in Table 7. The results of one-way
ANOVA are shown in Table 8. The modulus of elasticity, compressive strength at 7 days, and flexural
tensile strength at 7 and 28 days were observed at significance level of 0.05, and these mechanical
properties displayed differences among the averages. They tend to decrease as the percentage of RCA
increases. The compressive strength at 28 days did not display a 0.05 significance level of interference
as splitting tensile strength at any age.
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Some RCC mechanical properties did not show any statistical proof of interference as an RCA
percentage in mixtures at a significance level of 0.05 in one-way ANOVA. These properties are
compressive strength at 28 days and splitting tensile strength at 7 and 28 days. This was not expected
because all mechanical RCC properties with added RCA from other research studies displayed a
reduction when RCA percentages increased in the mixture [8,9,11]. It could be stated that the percentage
of RCA had not interfered in the RCC mechanical properties when just analyzing these properties.
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Although, when the compressive strength was analyzed at 7 days, modulus of elasticity at 28 days,
and flexural strength at 7 and 28 days, the interference of RCA percentage was evident in the mixture.
In other words, when the percentage of RCA increased, the values of mechanical properties decreased
in these properties. Lopez-Uceda et al. [8] also observed this behavior for their RCC mixtures, where the
compressive strength at 7, 28, and 90 days, splitting tensile strength, flexural strength, and modulus of
elasticity tended to decrease while RCA percentage increased in the mixture. The physical properties
of RCA strongly influencing the mechanical behavior of RCC was able to be confirmed, and, it could
be said that the RCA used in our research is inferior, in terms of particle composition or homogeneity,
compared to those used by Lopez-Uceda et al. [8,9].

Table 7. Mechanical properties of RCC mixtures.

Mixture
Compressive Strength

(MPa)
Splitting Strength

(MPa) Flexural Strength (MPa) Modulus of
Elasticity (GPa)

7 days 28 days 7 days 28 days 7 days 28 days 28 days

RCC-0 14.64 (0.15) 16.72 (1.28) 2.02 (0.17) 1.92 (0.14) 2.85 (0.02) 3.82 (0.04) 22.13
(0.74)

RCC-5 15.63 (0.81) 18.65 (0.31) 1.68 (0.08) 2.03 (0.15) 3.17 (0.04) 3.35 (0.06) 21.82
(0.65)

RCC-15 13.55 (0.44) 17.97 (0.43) 1.86 (0.15) 1.96 (0.16) 3.35 (0.02) 3.78 (0.02) 21.16
(0.77)

RCC-30 13.01 (0.34) 15.71 (0.41) 1.65 (0.22) 2.12 (0.11) 2.92 (0.06) 2.99 (0.06) 19.26
(0.37)

Note: Standard error is stated in parentheses.

Table 8. ANOVA tests for hardened RCC properties.

Property Treatment Df Sum of
Squares

Mean
Square F Value p-Value Significant

Level

Modulus of elasticity
RCA 3 14.892 4.964 4.104 0.0489

0.05Residuals 8 9.676 1.209
Total 11 24.568

Compressive strength
(7 days)

RCA 3 12.242 4.081 5.545 0.0235
0.05Residuals 8 5.888 0.736

Total 11 18.13

Compressive strength
(28 days)

RCA 3 15.44 5.146 3.301 0.0785 Not
significantResiduals 8 12.47 1.559

Total 11 27.91

Splitting tensile
strength (7 days)

RCA 3 0.2654 0.08845 1.109 0.401 Not
significantResiduals 8 0.6379 0.07974

Total 11 0.9033

Splitting tensile
strength (28 days)

RCA 3 0.0681 0.02269 0.391 0.763 Not
significantResiduals 8 0.4640 0.0580

Total 11 0.5321

Flexural strength (7
days)

RCA 3 0.4808 0.16027 24.89 0.000
0.05Residuals 8 0.0368 0.00459

Total 11 0.5176

Flexural strength (28
days)

RCA 3 1.3727 0.4576 61.06 0.000
0.05Residuals 8 0.0599 0.0075

Total 11 1.4326

Note: Df is degrees of freedom.

The type of cement is another factor that would interfere with the results of this research.
CP-V-ARI-RS is very strong soon after casting, but this type of cement was used in different research
studies on paving materials. There were two Brazilian research studies on RCC for this type of cement,
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and 200 kg/m3 cement content was adopted in the studies; modified Proctor energy was adopted a kind
of adopted energy, and the mechanical properties were measured only at seven days. Fedrigo et al. [43]
observed 12.37 MPa of compressive strength average with 2.007 MPa standard deviation and an average
of 1.40 MPa of splitting tensile strength with 0.193 MPa of standard deviation. Less compaction energy
and replacement of NA fractional proportions by RCA were observed in the mechanical properties at
seven days when comparing these results to our research averages (compressive strength and splitting
tensile strength) higher than the Fedrigo et al. [43] results.

Della Vecchia [45] adopted the same methodology and mixture proportions studied by
Fedrigo et al. [43] with added of 6 mm and 24 mm polypropylene fibers added at 0.25% and
0.50%. Figure 5 presents the comparison of average compressive strength averages at seven days
obtained by mixtures of RCC studied in these three research projects. The mixtures analyzed in our
research displayed higher average compressive strengths than the mixtures studied by Fedrigo et al. [43]
with NA or the mixtures with the addition of polypropylene fibers studied by Della Vecchia

Comparing the studies by Fedrigo et al. [43] and Della Vecchia [45] using RCA proved to be a
good option as an aggregate for RCC. However, when comparing splitting tensile strength at seven
days (Figure 6), the averages are very close among mixtures, which makes their comparison difficult.
However, the seven-day averages of splitting tensile strength for RCC with 100% of NA and without
displayed polypropylene fibers 1.40 MPa. In contrast, RCC-0 showed 2.02 MPa, which means our
average for RCC with NA is 144.29% of splitting tensile strength based on these research studies [43,45].
Therefore, when NA was replaced by RCA in our research, and Della Vecchia [45] added polypropylene
fibers in RCC, the splitting tensile strength averages were closer at seven days. Replacing NA by RCA
is not problematic as it is a contributing factor because some mechanical properties of RCC mixtures
with RCA achieved better results than RCC with NA or very close results compared to RCC with
polypropylene fibers. [45].
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The evolution of compressive strength in this research study is very similar to other research
studies based on their time frames. The compressive evolution ratio after seven days was 87.55%,
83.81%, 75.40%, and 82.81% for RCC-0, RCC-5, RCC-15, and RCC-30, respectively. Lopez-Uceda et al. [8]
and Meddah et al. [46] obtained a mean ratio of 85% for control mixtures while Lopez-Uceda et al. [9]
observed 78.3% for mixture with RCA as a coarse aggregate. It proves some similarities regarding
improved resistance compared to other research studies on RCC.

Furthermore, Table 9 displays the dry density results, porosity, and water absorption in hardened
RCC. The correlations between mechanical properties at 28 days of RCC mixtures are shown in Figure 7.
The correlations between physical properties and compressive strength at 28 days are plotted in
Figure 8. The summaries of correlations are presented in Table 10.
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Figure 7a suggests the correlation between compressive strength at 28 days and splitting tensile
strength at the same age, and it is weaker because correlation index is low (R2 = 0.1418). The correlation
index is low due to the higher scatter of these obtained property values. It is possible to observe
a negative correlation between these mechanical properties, unlike Lopez-Uceda et al. [8,9] and
Mardani-Aghabaglou and Ramyar [47] who studied RCC with a high volume of fly ash. Also, the
averages of splitting tensile strength observed by Mardani-Aghabaglou and Ramyar [47] and
Lopez-Uceda et al. [9] are around 10% compressive strength, which was not observed in our research
study. Chhorn et al. [48] performed a regression analysis on the relationship between RCC compressive
strength and splitting tensile strength, and the authors obtained a correlation with a correlation index
equal to 0.62 with a positive relationship between these mechanical properties.

Table 9. Mean values of RCC hardened physical properties.

Mixture Water Absorption (%) Porosity (%) Dry Density (g/cm3)

RCC-0 5.829 (0.865) 13.532 (1.675) 2.690 (0.014)
RCC-5 5.209 (0.174) 12.309 (0.430) 2.695 (0.017)

RCC-15 5.757 (0.305) 13.268 (0.671) 2.657 (0.014)
RCC-30 6.660 (0.197) 15.005 (0.419) 2.651 (0.008)

Note: Standard error is stated in parentheses.

The correlation between flexural tensile strength and compressive strength at 28 days (Figure 7b)
is weak; the correlation coefficient is low, too, at R2 = 0.1550. This correlation is not as effective as
the correlation between flexural tensile strength and splitting tensile strength as the values measured
resulted in higher scattering for compressive strength. However, there is a positive correlation between
these properties based on Lopez-Uceda et al. [8,9].

There is another weak correlation (R2 = 0.4375) between modulus of elasticity and compressive
strength as well (Figure 7c) due to the higher scattering of obtained compressive strength
values. The positive correlation indicates that these properties tend to increase simultaneously.
Lopez-Uceda et al. [8] observed the same linear correlation between compressive strength and modulus
of elasticity, and the obtained correlation index obtained was equal to 0.5465, which was not as good in
comparison with other mechanical property correlations.

The correlation between splitting tensile strength and flexural tensile strength (Figure 7d)
displays a strong correlation index (R2 = 0.9758). The same strong correlation was observed by
Lopez-Uceda et al. [8] with R2 = 0.9466 and Hashemi et al. [49] with R2 = 0.9117 who observed
a positive correlation between these properties in RCC with 9% and 12% cement content and NA.
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In addition, the adjusted correlation in this research study presented a negative trend, unlike the
correlations adjusted by Lopez-Uceda et al. [8] and Hashemi et al. [49].

Figure 7e displays a good correlation between modulus of elasticity and splitting tensile strength
with a correlation coefficient equal to 0.7024. In contrast, Figure 7f shows a medium correlation between
flexural tensile strength and modulus of elasticity with a R2 = 0.6022. The modulus of elasticity
tends to decrease as splitting tensile increases and increases when flexural tensile strength increases.
Furthermore, the correlation between modulus of elasticity and splitting tensile strength showed the
same negative trend as the correlation between compressive strength and splitting tensile strength.
The correlation between modulus of elasticity and flexural tensile strength showed the same positive
trend as the correlation between compressive strength and flexural tensile strength.
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A strong correlation was observed between MDD and dry density of hardened RCC (Figure 8a)
with a correlation index equal to 0.9380, the same as Lopez-Uceda et al. [8]. It proves the high
MDD values in dosage mixture steps tend to provide high dry density values in hardened RCC and,
consequently, to reduce the porosity of concrete. That is because there is a minimum correlation
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(R2 = 0.3200) between MDD and porosity of hardened RCC (Figure 8b), which was observed by
Lopez-Uceda et al. [8] too.

It is possible to conclude that the porosity tends to affect the RCC negatively while the dry
density tends to provide better values of compressive strength when it increases when comparing
the correlations between compressive strength and porosity (Figure 8c). It proves the importance of
material compaction for achieving better mechanical properties. These same relationships were also
observed by Lopez-Uceda et al. [8] and Shafigh et al. [50].

All RCC mixtures comply with Brazilian standards (Table 1) using RCC mixtures as material for
base or surface in the pavement, because they achieved compressive strength above 15 MPa at 28 days
and tensile strength above 1.5 MPa at 28 days [24].
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Table 10. Summary of correlations.

Correlation Equation N. of Points Df RSE R2 Adj. R2

fsp and fc fsp = −0.2526 × fc + 2.4435 4 2 0.0995 0.1418 −0.2873
fr and fc fr = 0.1185 × fc + 1.4387 4 2 0.4418 0.1559 −0.2662
E and fc E = 0.6509 × fc + 9.8564 4 2 1.1820 0.4375 0.1562

fr and fsp fr = −4.4225 × fsp + 12.3632 4 2 0.0748 0.9758 0.9637
E and fsp E = −12.3 × fsp + 45.781 4 2 0.8598 0.7024 0.5536
E and fr E = 2.543 × fr + 12.229 4 2 0.9941 0.6022 0.4033

MDD and ρr MDD = 2.414 × ρr − 4.201 4 2 0.0171 0.9380 0.9069
MDD and P MDD = −0.0284 × P + 2.6354 4 2 0.0565 0.3200 −0.0199

fc and P fc = −1.166 × P + 32.368 4 2 0.4866 0.9077 0.8615
fc and ρr fc = 29.18 × ρr − 60.73 4 2 1.386 0.2510 −0.1235

Note: fsp is the splitting tensile strength; fc is the compressive strength; fr is the flexural tensile strength; E is the
modulus of elasticity; MDD is the maximum dry density; ρr is the dry density of RCC; P is the porosity; Df is the
degrees of freedom, RSE is the residual standard error; R2 is the correlation coefficient; Adj. R2 is the adjusted
correlation coefficient.
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According to Harrington et al. [14], using RCC in the USA, the usual values of compressive
strength at 28 days range from 28 to 41 MPa, and the compressive strength of RCC in France must
be equal to or higher than 20 MPa at 28 days [21]. None of our RCC mixtures would meet these
minimum values. The splitting tensile strength at 28 days must be equal or higher than 1.6 MPa in
France, according to Boussetta et al. [21]; in this case, all RCC mixtures displayed averages higher than
1.6 MPa. The flexural tensile strength at 28 days in the USA usually ranges from 3.5 to 7 MPa [14].
In this case, just the RCC-0 and RCC-15 mixtures would adhere to the usual values of flexural tensile
strength. In addition, this comparison is proven in Brazilian standards (Table 1) that require lower
mechanical properties than other countries.

The Brazilian standards defined mechanical requirements for RCC lower than American or French
standards, where the RCC usually displays compressive strengths ranging from 28 MPa to 41 MPa at
28 days; whereas the minimum limit is almost twice the value required by Brazilian standards using
RCC as base pavement (15 MPa) [14,24].

These lower requirements for RCC mechanical properties indicate greater possibilities of using RA
as a replacement of NA, and yet they still meet Brazilian standards. This research study demonstrated
that replacing NA by up to 30% RCA can be employed in Brazilian paving layers. Perhaps higher
percentages of replacement may still meet regulations. However, the use of RCA over 40% of RCA to
replace NA is discouraged because the mechanical properties could be reduced [18]. Courard et al. [11]
studied RCC with 250 kg/m3 of cement content and 100% of RCA. The compressive strength at 28 days
was almost 40% compared to the compressive strength of RCC mixed with NA. Lopez-Uceda et al. [8]
observed progressive reductions of all mechanical properties when RCA was increased in the mixture,
for example RCC with 250 kg/m3 of cement content and the addition equal to 0%, 50%, and 100%
of RCA. They observed a reduction in compressive strength at 28 days equal to 23.5% and 35.2%
for RCC with 50% and 100% of RCA, respectively, compared to RCC with NA. The splitting tensile
strength reduced by 8.3% and 26.0% for RCC with 50% and 100% of RCA compared to RCC with
NA [8]. The flexural tensile strength reduced by 15.0% and 20.3% for RCC with 50% and 100% of RCA,
compared to RCC with NA [8]. The modulus of elasticity reduced by 21.6% and 29% for RCC with
50% and 100% of RCA, compared to RCC with NA [8]. Those results from Courard et al. [11] and
Lopez-Uceda et al. [8] proved that high percentages of RCA added in RCC mixtures tend to decrease
the mechanical properties of RCC. The recommend parameter to follow is using a 40% ratio added to
RCA in concrete when RCC dosage is desired.

Moreover, the use of RCA as an aggregate for RCC can mitigate some environmental trouble
occurring in big cities, such as the reduction of CDW and, consequently, a decrease of NA extraction,
as these are two benefits that would affect RCA when it is used as an aggregate for producing
building materials.

4. Conclusions

This research study presents the results of an investigation on RCA added to RCC with an
incorporation ratio of 0%, 5%, 15%, and 30%. The possible use was investigated to use these materials
in Brazilian pavement layers. The following conclusions were drawn considering the observed results:

RCA can be used as a coarse aggregate in producing RCC because it displays a minimal content
of fine particles, 2.19 g/cm3 specific gravity, 7.63% water absorption, and an LA coefficient equal to 32.
However, a large ratio is not recommended for replacing RCC because this type of RA tends to reduce
the mechanical properties of concrete. For example, the compressive strength is reduced by more
than 30% when the ratio of RCA is 100% [8,11]. If the ratio of RCA is 30%, the compressive strength
decreases just 6.0%, as observed in comparative results in RCC-0 and RCC-30.

The one-way ANOVA displayed some of the same properties as hardened RCC mixtures that
are significantly influenced by the increased percentage of RCA in concrete at a significance level
of 0.05. The compressive strength at 7 days, flexural strength at 7 and 28 days, and the modulus of
elasticity displayed statistical proof of interference as an RCA percentage in the RCC mixtures. Other
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mechanical properties such as compressive strength at 28 days and splitting tensile strength at 7 and
28 days did not present any statistical significance influence on RCC properties due to RCA percentage
in the RCC mixtures.

Compared with other Brazilian research studies on RCC, all RCC mixtures with RCA had
displayed equal to or better properties related to compressive strength and splitting tensile strength
of RCC mixtures mixed with NA [43] and RCC mixed with polypropylene fibers [45]. Furthermore,
these research studies employed higher compaction energy (modified Proctor energy) than ours
(intermediary Proctor energy). The RCC-30 presented the lowest average (13.01 MPa) of compressive
strength at seven days. However, this average was higher than the best average of those research
studies (12.37 MPa). The splitting tensile strength at seven days displayed closer averages because
RCA was added to RCC reducing these mechanical properties, and fibers were added to RCC [45],
increasing the values of splitting tensile strength.

Some correlations between mechanical properties at 28 days did not show a good correlation
index (R2), indicating a weak correlation. The correlations between compressive strength and splitting
tensile strength, the correlation between compressive strength and modulus of elasticity, and the
correlation between compressive strength and flexural tensile strength obtained a low correlation index
due to the higher scatter of measured compressive strength values. The correlation between splitting
tensile strength and flexural tensile strength achieved a high correlation index as in other research
studies [8,49].

All designed RCC mixtures met the minimum requirements of Brazilian standards such as the
minimum cement content as 200 kg/m3 for pavement’s bases or surfaces [23], compressive strength at
28 days equal or greater than 15 MPa [23,24], and tensile strength equal to or greater than 1.5 MPa at
28 days [24]. All RCC mixtures did not meet the minimum values of 28 MPa [14] and 20 MPa [21] at
28 days for compressive strength compared to requirements from USA and France, but the RCC-0
and RCC-15 mixtures had displayed flexural tensile strength above the minimum value (3.5 MPa) [14]
required for use RCC in American pavements while all mixtures achieved the minimum French amount
required for splitting tensile strength (1.6 MPa) [21].
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