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Abstract: Electricity disparity in sub-Saharan Africa is a multi-dimensional challenge that has significant
implications on the current socio-economic predicament of the region. Strategic implementation of
demand response (DR) programs and renewable energy (RE) integration can provide efficient solutions
with several benefits such as peak load reduction, grid congestion mitigation, load profile modification,
and greenhouse gas emissions reduction. In this research, an incentive and price-based DR programs
model using the price elasticity concepts is proposed. Economic analysis of the customer benefit, utility
revenue, load factor, and load profile modification are optimally carried out using Freetown (Sierra
Leone) peak load demand. The strategic selection index is employed to prioritize relevant DR programs
that are techno-economically beneficial for the independent power producers (IPPs) and participating
customers. Moreover, optimally designed hybridized grid-connected RE was incorporated using the
Genetic Algorithm (GA) to meet the deficit after DR implementation. GA is used to get the optimal
solution in terms of the required PV area and the number of BESS to match the net load demand after
implementing the DR schemes. The results show credible enhancement in the load profile in terms
of peak period reduction as measured using the effective load factor. Moreover, customer benefit and
utility revenues are significantly improved using the proposed approach. Furthermore, the inclusion of
the hybrid RE supply proves to be an efficient approach to meet the load demand during low peak and
valley periods and can also mitigate greenhouse gas emissions.

Keywords: demand response; price elasticity; strategic selection index; renewable energy; load
profile

1. Introduction

Access to a sustainable, affordable, and reliable source of energy is key to the socio-economic
advancement of Africa. The electricity access rate for sub-Saharan Africa reported as 62.5%, in 2017,
with millions remaining connected to unreliable networks that cannot satisfy their electricity needs.
A significant portion of this region has electricity access rates estimated at 20%, and two out of three
people lack access to modernized energy services [1,2]. The electricity access rate in sub-Saharan Africa
improved from 43% in 2016 and it is estimated that it will improve by 59% in 2030. Nonetheless, a
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significant amount of the populace is without access to electricity. Of the 674 million people that will be
without access to electricity in 2030, 90% are in sub-Saharan Africa [3]. Sub-Saharan Africa is plagued
with the problem of deficiency in electricity supply and excessive demand in both grid-connected and
off-grid regions; often, consumers are connected to an unreliable grid that does not satisfy their daily
energy service needs. Despite being connected, some consumers cannot afford to consume electricity
due to high energy bills. Moreover, the levels of service interruption are appalling, with no option
but to hinge on diesel generators with a high cost of operation. Meeting the electricity disparities in
sub-Saharan Africa is a multi-dimensional challenge with significant implications on how to frame the
region’s energy predicament.

1.1. Sierra Leone’s Energy Sector Situation

Sierra Leone, located on the coast of West Africa, flanked by Liberia, Guinea, and with an estimated
population of 7 million, has experienced significant economic growth in recent years. The disastrous
outcome of the civil war, crippling effects of dwindling global demand of iron ore and the outbreak of
the Ebola epidemic are still present. The energy requirement of the country is immensely under-served,
with 20.3% having access to electricity, with the capital city of Freetown accounting for a significant
amount of the demand [4,5]. In [6], the authors highlighted the current state-owned installed generation
capacity of 130 MW across the country and the projected load demand for the industries, commercial,
and residential consumers. Inadequate motivations for investment in large-scale renewable energy
technologies is highlighted as a significant obstacle to Sierra Leone’s sustainable energy development.

In order to mitigate the immediate power challenges in the capital Freetown and to ensure
affordable and sustainable power supply, the government recently renegotiated the electricity tariffs
of a 30 MW offshore floating power plant, with an independent power producer (IPP) (karpower)
from USc$19.596/kWh to 16.4 USc/kWh resulting in an estimated US$9 million annual savings [7].
The electricity sector in Sierra Leone is severely challenged with the problem of low network capacity,
coupled with high system losses (commercial and technical) estimated at 35% in the distribution
network. Heavy fuel oil thermal generating plants are required to supplement the current generation
as a result of seasonal variations in hydropower generation, which often results in an imbalance
between generation and load demand. The scale of the imbalance is highly seasonal, being far less in
the raining season as the main hydropower provides 40 MW to the capital, Freetown, compared to less
than 10 MW in the dry season. The mismatch in generation capacity and load demand has forced grid
operators to issue emergency notifications for voluntary conservation response and load shedding,
especially in the capital city of Freetown, which, in turn, has resulted in a substantial financial loss
estimated at 15% (of annual sale) to the distribution authority [8,9]. Moreover, according to [9], in
2017, 32.6% of firms identified the country’s inadequate electricity generation to match with high
load demand as a significant challenge in doing business in the country. In order to enhance the
country’s energy demands, several intervention approaches are being explored. Notable among these
is the unbundling in 2011 of the power sector by an act of parliament into two state-owned entities,
namely, the Electricity Distribution and Supply authority (EDSA) and the Electricity Generation and
Transmission Company (EGTC) [10]. Both have paved the way for IPPs and other Public-Private
Partnerships (PPPs) to partner with the energy market in Sierra Leone.

However, the country’s energy sector remains severely challenged and requires more sustainable
solutions. Modification to the Freetown load profile has long been recognized by policymakers at
EDSA as an efficient technique to reduce the need for peak power generation units beneficially while
meeting load demand in a planned transition to a carbon-constrained. The utilization of sustainable
and reliable techniques such as the use of demand-side management (DSM) and RE injection scheme
methodologies in order to meet the exponential growth in load demand of electricity in the country,
is essential, especially in urban settlements. In [11], the authors evaluate various access techniques to
electricity for Sierra Leoneans not connected to the grid in rural communities, and also highlighted
set indicators in developing rural electrification approach and proposed the implementation of
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mini-grids for rural electrification as opposed to standalone systems and expansion of the existing
grid. To reduce the mismatch in the load demand and generation in the capital city of Freetown, [12]
proposed optimum sizing of a ground-based energy storage system and rooftop solar photovoltaic
(PV) panels for government buildings. However, the authors did not consider, implementation of DSM
methodology. Moreover, [13] assessed enhancing domestic energy services for pre-urban and rural
off-grid communities in Sierra Leone and analyzed various PV systems on their cost-effectiveness in
achieving improved energy services. One of the primary responsibilities of IPPs is to match generation
and load demand economically and sustainably. A mismatch in load demand and generation capacity
will jeopardize system performance. Promotion and execution of DR programs in the capital city of
Freetown are one of the most feasible solutions to meet the growth in load demand requirements for
the industries and domestic consumers.

1.2. Relevant Country-Wide Reports on DSM Implementation

In recent years, researchers have given prominent attention to various strategies and
methodologies towards harmonizing the mismatch in load demand and generation reliability and
sustainability. Some recent studies discussed micro-grid control schemes, smart microgrids security
and overhead cranes using several theoretical models [14–19]. Demand response methodologies for
economically reliable operation of a smart microgrid are gaining prominence in recent times. Demand
response is a potential technique applied to achieve the demand and supply balance by having the
consumers rather than suppliers control the amount of power supply needed. According to [20], the
contribution of DR program in the US electricity markets improved by approximately 3% to a total of
27,541 MW in 2017 compared to 2016. Furthermore, as a result of the drop in peak load demand levels
in 2017, the execution of DR to matching peak load demand also increased considerably from 5.3% in
2016 to 5.6% in 2017. The author in [21] proposed DR economic model, which illustrates the change
in consumption pattern of individual consumers to maximize consumer utility constrained through
periodic consumption or budget. Demand-side load management methodology that is efficient in
controlling residential household load at minimum cost, such that consumer satisfaction is maximized
is presented in [22] also in [23], Davide Caprino et al. exemplifies an approach to the peak load shaving,
management, and modelling of household appliances using real-time scheduling algorithm analysis.
The scheduling method realizes a load reduction by up to 46%. DR programs have been applied in
some European countries, [24–26], and execution DR have proven their potential benefits. In Norway,
distinct DR programs have been executed, with the aspirations of deferring the grid capacity expansion
leading to a 10% decrease in peak demand achieved for the Oslo area. After the implementation of the
DR, pilot studies confirmed that the execution of the DR programs reduced the peak load by 4.5 MW,
which brought about 15% energy savings for commercial consumers [27]. Reference [28] highlights
the execution of interruptible load DR program in Italy for large industries that resulted in 6.5% in
peak load shedding during a system emergency. H.A. Aalami et al. in [29] proposed the execution
of an interruptible load DR scheme for the Iranian load curve to alter the peak load to the valley and
off-peak period using price elasticity concepts. The proposed methodology will enhance independent
system (ISO) to apply suitable DR program which enhances the load profile and can also be welcomed
by customers.

Moreover, similar work proposed [30] for the introduction of automatic interruptible load DR
scheme for residential buildings in Singapore that enhanced DR management load curtailments.
In [31], the authors evaluate the economic and the technical DSM potential in Nigeria for its various
industrialization strata. According to the authors, the implementation of DSM could generate 7 billion
USD cumulative savings with interruptible DR programs for more significant industrial consumers.
Reference [32], proposed and developed an hourly model of electricity demand for 14 countries in West
Africa; from 2016-2030 and takes into account the electrification rate, occupancy patterns, household
appliances, climatic condition, amongst others. Seasonal electricity demand for non-residential,
electricity access rates for rural and urban was considered in the forecast model. The results show a
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seasonal disparity in demand, notably higher during the dry season compared to the rainy season.
Moreover, energy in West Africa is estimated to be five times in 2030 to that of 2016. Proper planning and
execution of DR approaches could be a vital tool in closing the demand and supply gap. The literature
in [33] reviews the electricity sector demand-side in Ghana. The author examined significant hypotheses;
in essence, “the deregulation of the electricity process does not advance energy conservation.” Using
the Stock and Watson dynamic, the author demonstrated that deregulating electricity prices in Ghana
had influenced practices that are more harmonious with energy conservation enhancements. Moreover,
in [33], simulation results demonstrated that more economic enhancement would likely jeopardize
energy conservation, notably in the industrialized sector than the domestic sector. Additionally, the
studies in [28,34–37] examined the significant implementation of DR scheme, RE integrations, and
smart grid advanced metering infrastructure amongst others for electricity market.

1.3. Motivation for Research and Research Contribution

Power sector policymakers in several countries, especially developing countries like Sierra Leone,
are faced with severe financial constraints to improve electricity access rate sustainably and reliably.
Prioritizing and execution of the DR programs and incorporating RE technologies to match the constant
peak load demand at a low-cost is becoming an increasingly widespread methodology, as reported
in the literature. Furthermore, the implementation of DR technique for load curve levelling has been
verified has a proactive approach to get energy consumers engaged in preventing detrimental power
system scenarios that can jeopardize network reliability. Moreover, it could contribute to energy
security and environmental sustainability while providing a secure pathway to a sustainable economy.
In this research, a two-stage approach that involves the strategic combinations of several DR models,
alongside the introduction of RE sources, towards modifying the customers’ demand profile is
investigated for Freetown, Sierra Leone electricity market. The research objective is directed towards
minimizing the disparity between the system load demand and the total available generation with
minimum need for additional generation and also control the usage patterns of maximum energy
demand users, which consumed the bulk of the generated power economically. The performance of
the proposed model is analyzed based on the effects on the reliability and cost-effectiveness of the
power system using the Freetown (Sierra Leone) distribution network. The proposed approach is an
extension of the authors’ earlier work [38]; in stage-I, time-based, incentive-based, and the combination
of incentive and time-based DR programs are executed using the price elasticity concept to meet
the peak load demand and the modification to the load profile characteristics. Consequently, the
strategic selection index (SSI) is employed to prioritize and implement relevant DR response program
that is efficient from the IPPs and customer perspective and also for the most effective load profile
modification. In stage II, hybridized RE technologies are included to meet the load deficit after the
execution of the DR menu. Genetic Algorithm (GA) is utilized for hybridized RE infusion into the
generation mix with the reduction in maintenance and operational cost as the objective function
concurrently with greenhouse gas emission reduction. The overall significance of this study is to assist
in implementing technical and economic evaluation to policymakers for the implementation of DSM
programs and the introduction of hybrid RE technologies into the generation mix for Sierra Leone’s
capital city (Freetown).

2. STAGE I: Implementation of Demand-Side Management (DSM)

DSM is a powerful energy-efficient technique that reduces or modifies the overall consumption
and energy usage pattern. In the capital city Freetown, disruptions in the power supply are recurrent
and leads to constant challenges to the grid and system reliability, especially during the dry season due
to the considerable drop in the hydropower generation capacity. Matching the demand and supply is a
massive challenge to the distribution authority. DSM is employed to reduce the mismatch in demand
and supply, thereby facilitating further sustainable and less expensive funding situations. As a result
of the complex characteristics of various consumers, each having their electricity usage, execution of
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pertinent DSM programs is highly beneficial and can be deployed to harmonize the supply and thus
enhance the grid network capacity efficiently [39]. DSM strategies such as DR enable the modification
of load profiles by getting end-users to modify their consumption patterns during system constraints
in order to match the generation supply. The United States Federal Energy Regulatory Commission
(FERC) staff report [20] categorized DR programs regarding their operational mechanism into two
broad categories (time-based and incentive-based DR programs). In the time-based program (TBP),
the price of electricity in different periods are varied. Penalty or incentives are not considered for
these programs. In this research, TBP considered include, Time of Use (ToU), real-time pricing (RTP),
and critical peak pricing (CPP). In the incentive-based program (IBP), incentive prices are structured
by the utility provider, and the customer is notified [40]. If the customers find the offered incentives
prices lucrative, they will react or contrarily ignore the incentive given by the utility. IBP considered
in this research include: Interruptible load (IC), load as capacity resource, direct load control (DLC),
and emergency demand response (EDRP). Additional details on demand response can be found
in [20,41,42].

2.1. Overview of the Proposed DSM Scheme and Analytical Modelling

Customers participating in the incentive-based DR program are required to predetermined load
curtailment level when notified by the utility through advance smart metering notification whenever
the system reliability is compromised. The successful execution of these programs depends on the
infiltration level of the advanced smart meter system. Penalties will then be employed, for customers
who failed to comply with the contractual agreement with the utility provider within a maximum
annual interruption recurrence of 100 h. In this research, the IBP is considered suitable for maximum
demand users (MDI). In this research, the formulation and modelling of pertinent incentive-based and
time base DR programs and the impact on the Freetown load profile are outlined below. Penalties,
incentives, and customer benefits are also investigated in system formulation. This research is an
augmentation of earlier work presented in [38].

2.1.1. Dr Elasticity Model

According to economic principles, keeping other factors constant, a surge in energy prices will
decrease its demand. Furthermore, economic principles described consumers’ responsiveness to price
changes as a measure of price elasticity [43]. Elasticity can be defined as the responsiveness in demand
for variation in price [43,44].

E =
(

∂h
h

/
∂p
p

)
(1)

where, E = coefficient of elasticity, p = electricity price and h = load demand.
The consumers’ response to variations in the price of electricity is constrained to time considered.

For instance, an increment in the price of electricity will reduce the demand in period i but may
increase the demand in another period j. A negative “self-elasticity” is applied to represent the first
effect and a positive “cross-elasticity” the second [45].

Eii =
(

∂h
h

/
∂p
p

)
≤ 0

Eij =
(

∂h
h

/
∂p
p

)
≥ 0

(2)

where Eii is the coefficient of self-elasticity, Eij is the coefficient of cross-elasticity.

2.1.2. Modelling of Proposed Single and Multi-Period Elastic Load

Customer benefits, penalty, and incentive remuneration are crucial motivating factors for the
customers to modify or curtail their initial consumption h0i value to the modified demand hi at period
i, based on the predetermined contract with the utility provider [29,38].
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4hi = hi − h0i (3)

Incentive revenue for consumers participating in this DR program during the period i is as defined
by Equation (4).

mn(4hi) = ki .(hi − h0i) (4)

where the incentive rate ($/kWh) = ki, incentive payment ($)= mn (4hi)
In a scenario whereby the participating customer fails to comply with the provision of the contract

agreement, the customer must make the imposed penalty payments.

Zn(4hi) = gi · (P(i)− [hi − h0i]) (5)

where Zn is the imposed customer penalty cost ($), gi is the penalty rate ($/kWh) and P(i) is DR
program level of contract agreement (kWh) during the same period i. Hence, the benefit of customer
Cb for period i is as shown in Equation (6) below.

Cb = B(hi)− h(i) · p(i) + mn(4h(i)− Zn(4h(i)) (6)

where p(i) and B(hi) are the electricity price ($/kWh) and customer income ($) in i period, respectively.
Assuming the customers prefer demand level hi to maximize their benefits after the execution of DR
program then, ∂Cb

∂hi
= 0 is equated to zero thereby maximizing customer benefit.

∂Cb
∂hi

=
∂B(hi)

∂hi
− ρo(i) +

∂mn
∂hi
− ∂Zn

∂hi
= 0 (7)

So,
∂B(hi)

∂hi
= p(i) + ki + gi (8)

The benefit function is a quadratic function as shown below;

B(hi) = B0(i) + ρo(i)[hi − h0i]
{

1 +
hi − h0i
2Ei .h0i

}
(9)

where B0(i) = benefit price at nominal value, ρo(i) = electricity prices at nominal value. Differentiating
Equation (9) then solving for ∂B

∂hi
and substitute into Equation (8) gives;

ρ(i) + ki + gi = ρo(i)(i)
{

1 +
hi − h0i
Ei .h0i

}
(10)

Customer’s utilization is as expressed below;

hi = h0i

{
1 + Eii .

ρ(i)− ρo(i) + ki + gi
ρo(i)

}
(11)

From Equation (11), hi and h0i remain the same if the electricity cost prevails the equivalent
without considering incentive and the penalty after the execution of the DR program.

2.1.3. Multi-Period Load Program Modelling

The cross elasticity Eij, in the multi-period is calculated, for the ith period in considering all other
periods applying the linearity assumption shown below [29,38];

∂hi
∂pj

: constant for i, j = 1, 2, 3, 4....24 (12)
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Moreover, a linear correlation in demand and price;

hi = h0i +
24

∑
i=1
i 6=j

Eij.
h0i

ρo(j)
. {ρ(j)− ρo(j) } constant for i, j = 1, 2, 3, 4....24 (13)

It follows that the multi-period including penalty and incentive model can be expressed as given
below;

hi = h0i

1 +
24

∑
i=1
i 6=j

Eij

[
ρ(j)− ρo(j) + k j + gj

]
ρo(j)

 (14)

Merging Equations (11) and (14) will result in a responsive and economic load model as
shown below;

hi = h0i

1 + Eii .
ρ(i)− ρo(i) + ki + gi

ρo(i)
+

24

∑
i=1
i 6=j

Eij

[
ρ(j)− ρo(j) + k j + gj

]
ρo(j)

 (15)

Equation (15) shows the customer maximum benefit in the 24 h period while signed to this
DR program.

2.2. Demand Response Attribute Selection

Execution of DR programs enhances grid reliability. Various DR programs will have distinctive
impacts on load profile attributes and market efficiency. However, it is imperative for IPPs’ system
operators to choose and execute related DR program, which yields an efficient market value. However,
in achieving the objectives, IPP analyses different strategies such as load factor enhancement, energy
consumption, peak to valley reduction, customer benefits, utility revenue, incentives, etc. On this
premise, IPP prioritizes these situations by employing the Strategy Index (SI) and Strategy Success
Index (SSI), as shown in the equations below [46,47].

SI =
24

∑
i=1
{St1(i)y1 St2(i)y2 ...Stm(i)ym} (16)

SI =
∑z

i=1 SI(i)
∑z

i=1 SI(i)(max)
(17)

In Equation (16), Stm(i) designates the performance value mth attribute for each alternative in the
ith and z denotes the period under study. Equation (16), ym depicts the weight of the mth attribute.

SSI in Equation (17), denotes the normalized value of the SI factor. The higher the SSI coefficient,
the better the execution of DR programs. On this background, the IPPs prioritize distinct DR programs
due to their preferences. In this research, the effectiveness of different DR programs and indices are
being evaluated in Tables 1 and 2.

Table 1. Self and cross elasticity for various periods.

Period Low Peak (00:00–7:00) Valley (8:00–14:00) Peak Load (15:00–22:00)

Low Peak (00:00–7:00) −0.1 0.01 0.012
Valley (8:00–14:00) 0.01 −0.1 0.016

Peak Load (15:00–22:00) 0.012 0.016 −0.1
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Table 2. Demand response programs parameters.

Program no. Program parameters Electricity Price
USc/kWh

Penalty
USc/kWh

Incentive
USc/kWh

0 Initial load(Base Scenario) 18.76 0 0
A Incentive Base programs(IBP)

1 Direct load Control (DLC) 18.76 0 22.79

2
Emmergency Demand

Response Program (EDRP) 18.76 0 28.49

3 Capacity Market Program (CAP) 18.76 5.8625 11.725
4 Interruptible/Curtaible (IC) 18.76 11.725 22.79

B Time Base programs(IBP)
5 Time of use (ToU) 7.28(Valley), 18.76(Low peak), 28.14(Peak) 0 0
6 Critical Price Peaking (CPP) 93.8 (20:00–22:00),18.76(Other hours) 0 0

7 Real Time Pricing (RTP)

7.28 (00:00–03:00),3.64 (04:00–07:00),18.76(08:00–11:00),
23.45(12:00–15:00)

18.76(16:00-18:00),58.625(19:00–21:00),
18.76(22:00-23:00)

0 0

8
ToU & CPP 7.28(Valley), 18.76(Low peak), 28.14(Peak) 93.8(20:00–22:00)Hrs 0 0

C Incentive & Time Base programs(IBP)
9 ToU & DLC 7.28(Valley), 18.76(Low peak), 28.14(Peak) 0 11.395

10 ToU & EDRP 7.28(Valley), 18.76(Low peak), 28.14(Peak) 0 22.79
11 ToU & CAP 7.28(Valley), 18.76(Low peak), 28.14(Peak) 5.8625 11.725
12 ToU & IC 7.28(Valley), 18.76(Low peak), 28.14(Peak) 11.395 22.79

3. Stage-Ii: Assessment of Renewable Energy (RE) Introduction

Power system resiliency centers on averting interruption in electricity supply whiles meeting
the load demand and, in the event of an outage, restoring power supply as quickly as possible while
mitigating the consequences of the outage. Network resiliency and supply reliability are of high
priority for IPPs as a result of experiencing substantial financial loss due to power interruptions.
The conventional approach for providing power backup during system downtime is diesel generators.
However, in recent times, several RE technologies have started to gain significant roles in energy
resiliency as a result of their zero-greenhouse gas emission intensity. There is an extensive backing
for the use of hybridize grid-connected RE technologies, notably the solar Photovoltaic (PV) and
battery energy storage systems (BESS); this provides electricity without producing any greenhouse gas
emissions. RE sources have significant potential to meet current electricity demands [48]. Harnessing
these to meet load demand relies on the cost and effectiveness of the technology, which is continually
improving. Hence there is a continuously decreasing costs per peak kilowatt and per kWh of RE
technology at the source.

In this study, the DSM approach employed when the diesel generating units in the network fails
to match the required load demand after a pertinent DR program has been executed, and the RE
technology has been injected. Figure 1 shows the system configuration for STAGE II analysis. Energy
from the solar generators or grid power may be stored when there is a surplus generated PV power
or when the cost of electricity from the grid is efficient. It is worthy to note that RE sources are being
utilized in the low peak and valley periods.
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Figure 1. system configuration with renewable energy integration.

Output of Pv Array

The output power in the low peak and valley by the PV panel during period i presented as follows;

PVout = ηPV .APV .R(i) (18)

where PVout depicts the output power of PV, ηPV = PV panels efficiency, APV = area occupied by PV
panels in m2 and K(i) = solar radiation during period i in kW/m2.

Battery Energy Storage System (Bess) Dynamics

Thermal generating unit aggregated power Pz and that of PV panel output in period i is as follows;

Px(i) = Ppv(i) + Pz(i) (19)

where Px is the summation of the generated power. From Equation (17) earlier, if the sum generated
power fails to match the load demand h at a given period i, it signifies that the battery state of charge
(SoC) at period i with the efficiency of the inverter ηinv is:

Px(i) ≥ h(i)
ηinv

(20)

At any given period, i when there is an excess generation from the thermal and PV, BESS can be
charged. The state of charge is calculated as follows [38];

SoC(i) = SoC(i− 1)(1− β) +
(

Px(i)− h(i)
ηinv

)
ηbat (21)

The SoCs(i), at the end of the period i, as a function of its state of charge at the preceding period
of the charging or discharging that took place during the period i.
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where SoC(i) is the state of charge, β is the self-hourly discharge rate and ηbat battery charging efficiency.

SoC(i) ≤ SoCmax (22)

where SoCmax is 80% of the overall capacity of the battery bank. In situations wherein Px(i) ≤ h(i)
ηinv

,
hence there is inadequate generation capacity from, i.e., thermal and PV, the load demand will be
satisfied by the BESS. Throughout the discharging period, the SoC is as shown below;

SOC(i) = SOC(i− 1)(1− β) +

(
h(i)
ηinv
− Px

)
ηdis

(23)

where ηdis is the battery discharge efficiency
The state of charge must be above the minimum SoCmin

SoC(i) ≥ SoCmin (24)

Hence the minimum state of charge is 20% of the cumulative capacity of the battery bank and in
Table 3.

Table 3. Solar irradiance.

Time Solar Radiation w/m2 Time Solar Radiation w/m2

0:00 0 12:00 531
1:00 0 13:00 873
2:00 0 14:00 543
3:00 0 15:00 587
4:00 0 16:00 646
5:00 0 17:00 347
6:00 0 18:00 0
7:00 0 19:00 0
8:00 0 20:00 0
9:00 50 21:00 0
10:00 60 22:00 0
11:00 66 23:00 0

4. Case Study, Simulation Results, and Discussion

In order to assess the impact of incentive and time-based DR model, the proposed scheme is
applied to Freetown load network demand for December 2017, as shown in Figure 2. The average
electricity price retailed by EDSA and the Ministry of Energy (MoE) in 2018 was 18.76 USc/kWh [7,49].
The load curve is segmented in intervals depending on the nature of the demand: Low peak
(00:00–7:00), valley (8:00–14:00), and peak load (15:00–22:00).

4.1. Stage I: Implementation of DSM

DR program is executed to decrease the demand in peak load periods. Data was obtained
through key informant interviews, sector policymakers, desk research, discussion with senior engineers
at EGTC and EDSA. In this research, the implementation of the proposed scheme during system
contingency is a 10% modification of the total load of the participating customer. Moreover, incentive
and time-based DR programs are analyzed in this study. The incentive-based programs (group A)
comprise; DLC, EDRP, CAP, and IC. Time-based programs (group B) comprise; ToU, CPP, RTP, and
combination of ToU and CPP. Furthermore, in group C, the combination of incentive and time base
programs are investigated. The price elasticity designated for customers who signed up for this
program and incentive and penalty values are shown in Tables 1 [38] and 2, respectively. Table 2
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data was formulated by authors through key interviews of policymakers at EDSA, EGTC, Ministry of
Energy, and the customers.

1. Initial load (base case): The peak load curve considered without the implementation of the
proposed DR program in Figure 2 as shown in Table 5 and Figure 3, the peak load is 96.5 MW,
the energy consumption of 2085.7 MWh, a load factor of 87%, which depicts the lowest after
the execution of the proposed scheme with a maximum peak to valley reduction of 22.500 MW
observed. These four indices improved after implementation of the proposed DR model, as
subsequently illustrated in the following subsections. Moreover, in Table 4, customer bill and
utility revenue of $377,050 are achieved concurrently.

2. Program 1: In this case, the DLC program is implemented. From Table 2, the incentive and
penalty are given as 22.79 Us/kWh and 0 Us/kWh, respectively. In this program, IPPs reward
consumers for modification in their load profile with zero penalties for load curtailment failure.
From Tables 4 and 5 and comparing the results to the baseload; peak reduction of 90.73 MW
(5.98% peak reduction) is achieved. Moreover, as shown in Figure 3, the load profile characteristics
enhanced the customer’s benefit to $42,052 with a peak to valley and energy reduction by 25.6%
(16.73 MW) and 3.37%, respectively.

3. Program 2: In this case, EDPR is executed, from Table 2 with incentive value of 22.79 Usc/kWh
for load modification, with 0 Usc/kWh as the penalty, which implies that IPPs do not penalize
customers for the violation if customers fail to modify the load agreed in the contract level. From
the simulation results shown in Tables 4 and 5, peak load reduction of 94.70 MW (1.86%), energy
reduction of 0.50%, peak to valley reduction of 20.70 MW (8%), customer benefit of $3835 attained
relative to the base case.

4. Program 3: In this program, CAP is implemented, and it assumed that 11.725 Usc/kWh is the
penalty fee if customers fail to modify their load profile to a predetermined level during system
contingency, and 5.8625 Usc/kWh as incentive fee for load profile alteration is employed by
the IPPs. The result of executing this program is as shown in Figure 3. From the simulation
results, shown in Tables 4 and 5, 2066.60 MWh reduction in energy consumption, 0.92 % of energy
reduction, 19.21 MW (14.6%) peak to valley reduction is observed as compared to the base case.
Moreover, the load factor of 92 % and customer benefit of $6316 achieved.

5. Program 4: For this program, the IC program is implemented, as shown in Figure 3. The penalty
and incentive values set as 11.725 Usc/kWh and 22.79 Usc/kWh, respectively. Enhancement in
the load profile characteristic with customer benefit of $51,303, is shown in Table 4. Furthermore,
91.62 MW (5.06%) of peak load reduction, 5.19% energy reduction, and 17.620 MW (21.69%) peak
to valley reduction were achieved as compared to the base case shown in Table 5 with an achieved
load factor increment of 90%.

6. Program 5: As shown in Tables 4 and 5 and Figure 4, the ToU program is implemented, with a
reduction of 91.18 MW (5.51%) peak load, 0.48% energy reduction, 2075.6 MWh energy consumption,
peak-to-valley by 17.18 MW (23.65%) as compared to the base case. Moreover, the customer benefit
of $8835 was achieved.

7. Program 6: In this case, the CPP program implemented at 19, 20, and 21 h, respectively, as shown
in Table 2. The results obtained after the execution of the program in Tables 4 and 5, Figure 4,
shows enhancement in the load profile with customer benefits of $ 25419. This program has the
highest customers’ bills, and a peak load reduction of 2.09%, in correlation with other programs
due to the high electricity price. Moreover, an increase in energy reduction to 0.03% is observed.

8. Program 7: As shown in Figure 4, the load profile characteristic is enhanced after the implementation
of the RTP program. As shown in Tables 4 and 5, the peak reduction of 93.02 MW (3.61%) and peak
to valley reduction of 18.764 MW (16.6%) is realised in correlation with the base case. Moreover,
there is an upsurge in the energy reduction of 0.17% and the load factor of 94%, which is the
second-highest after the execution of the program as compared with the base case, with customer
benefit of $11,079.
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9. Program 8: In this program, the ToU and CPP are executed concurrently, as shown in Figure 4.
From the simulation result shown in Tables 4 and 5, a load factor of 94% and 19.53 MW (13.12%)
peak to valley reduction achieved, which is the maximum. Moreover, the customer benefit
increased to $27,460, and the energy consumption reduced by 2102.3 MWh (0.8%) in assessment
with the base case.

10. Program 9: In this program, ToU and DLC are executed concurrently, as shown in Figure 5
with enhanced load profile characteristics. From the simulation results shown in Tables 4 and 5,
90.20 MW (6.54%) peak load reduction, 16.20 MW reduction in peak to valley, 2.16% in energy
reduction in comparison with the base case. Moreover, 94% load factor, which is the highest after
the execution of this program and customer benefit of $29,409, was attained.

11. Program 10: In this program, ToU and EDRP are executed concurrently, enhancement in the load
profile characteristics is obtained, as shown in Figure 5. Moreover, an increase in the customer
benefit of $60,025, peak load reduction, and peak to valley load reduction is accomplished, as
shown in Tables 4 and 5.

12. Program 11: In this program, ToU and CAP executed simultaneously. As shown in Figure 5, the
attributes of the load profiles are enhanced. As shown in Tables 4 and 5, a peak load reduction
of 90.67 MW (6.05%), reduction in energy consumption by 3.09% (2023.20 MWh), peak to valley
reduction by 16.166 MW (28.1%) was achieved, while customer’s benefit increased by $29,901
was attained in comparison with the base case.

13. Program 12: The ToU with IC executed concurrently. The load attribute of the load profile
improved. From the simulation results shown in Tables 4 and 5, 4.74% (91.93 MW) peak load
reduction, energy reduction by 5.68%, and peak load to valley reduction of 0.3 % (22.45 MW) in
comparison with the base case. Moreover, this increased customer benefit to $70,048, which is the
maximum in the execution of this program was achieved.

Figure 2. Freetown demand curve.
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Figure 3. Impact of incentive base program.

Figure 4. Impact of time base program.
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Figure 5. Impact of time and incentive base program.

Table 4. Economic analysis of demand response profile.

Program No. Program
Parameters

Incentive
($)

Penalty
$

Customer Bill
($)

Customer Benefit
($)

Utility Revenue
($)

0 Initial load(Base Scenario) 0 0 377,050 0 377,050
1 DLC 20,083 0 355,080 42052 334,990
2 EDRP 471 0 373,680 3835 373,210
3 CAP 1414 1256 37,090 6316 370,730
4 IC 30,416 12,385 343,770 51,303 325,740
5 ToU 0 0 368,210 8835 368,210
6 CPP 0 0 578,600 25,419 578,600
7 RTP 0 0 422,560 11,079 422,560
8 ToU & CPP 0 0 535,730 27,460 535,730
9 ToU & DLC 9589 0 357,230 29,409 347,640

10 ToU & EDRP 29,220 0 346,240 60,025 317,020
11 ToU & CAP 12,675 8563 351,260 29,901 347,150
12 ToU & IC 39,262 11,003 335,260 70,048 307,000

Table 5. Technical analysis of demand response load profiles.

Program No. Program
Parameters Peak (MW) Peak

Reduction (%)
Energy

Consumption (MWh)
Energy

Reduction (%)
Load

Factor (%)
Peak to

Valley (MW)

0 Base Scenario 96.50 0.00 2085.70 0.00 87 22.50
1 DLC 90.73 5.98 2017.70 3.37 93 16.73
2 EDRP 94.70 1.86 2075.30 0.50 91 20.70
3 CAP 93.21 3.40 2066.60 0.92 92 19.21
4 IC 91.62 5.06 1982.80 5.19 90 17.62
5 TOU 91.18 5.51 2075.60 0.48 95 17.18
6 CPP 94.48 2.09 2086.30 −0.03 92 19.06
7 RTP 93.02 3.61 2089.20 −0.17 94 18.76
8 ToU&CPP 93.34 3.28 2102.30 −0.79 94 19.53
9 ToU&DLC 90.20 6.53 2041.70 2.16 94 16.20

10 ToU&EDRP 91.06 5.64 2007.70 3.89 92 17.06
11 ToU&CAP 90.67 6.05 2023.20 3.09 93 16.67
12 ToU&IC 91.93 4.74 1973.70 5.68 89 22.45

4.2. Prioritizing DR Program for IPPs and Customer Perspective Using SSI Analysis

In this study the strategic selection index, as shown in Equations (16) and (17) are used to prioritize
and select appropriate DR programs, as shown in Table 6 and Figures 6–8 from the IPPs and customer
perspective. In addition to the revenue, the load factor has significant relevance to the IPPs evaluation,
while the customer benefit is an essential motivating factor to the customer, as shown in Table 6.
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Usually, when constraints exist for execution of a specific program with higher demand, the IPPs can
select distinct programs with a cost-effective requirement.

Figure 6. Customer benefit strategic selection index (SSI).

Figure 7. IPP revenue SSI.

Figure 8. Load factor SSI.
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Table 6. Prioritizing demand response (DR) programs using strategic selection index.

Program Priority
Order CUSTOMER BENEFIT IPPs REVENUE LOAD FACTOR

Demand Response
Program SSI% Demand Response

Program SSI% Demand Response
Program SSI%

1 ToU&IC 100.00 CPP 100.00 ToU 100.00
2 IC 73.24 ToU&CPP 92.59 ToU & DLC 99.44
3 ToU&EDRP 64.45 RTP 73.03 ToU & CPP 98.95
4 EDRP 54.36 BASE CASE 65.17 CAP 98.87
5 ToU&CAP 48.14 ToU 63.64 RTP 98.67
6 ToU&CPP 39.22 CAP 62.72 ToU & CAP 98.03
7 DLC 36.50 ToU&DLC 61.67 DLC 97.69
8 CPP 36.29 DLC 60.75 CPP 97.01
9 ToU&DLC 28.91 ToU&CAP 59.33 ToU & EDRP 96.86

10 CAP 20.20 EDRP 58.58 EDRP 96.42
11 RTP 15.82 ToU&EDRP 57.36 IC 95.07
12 ToU 12.61 IC 56.30 ToU & IC 94.32
13 BASE CASE 0.00 ToU&IC 53.06 BASE CASE 91.43

Table 6 shows the highest priority attained by simultaneous execution of time-based and
incentive-based DR programs for both the IPPs’ and customers’ point of view. Evaluating the
performance value of the different scenarios considering the customer benefits, IPPs revenue, and the
load factor, using the SSI coefficient is considered to be 100% for the most effective program, as shown
in Table 6 and Figures 6–8. From the analysis shown in Table 6, the ToU/IC, CPP, and ToU proved to
be most effective from the customer and IPPs’ perspective considering customer bills, IPPs revenue,
and load factor, respectively.

Stage Ii: Introduction of Renewable Energy

Figure 9 exhibits the injection of RE technologies in the generation mix after the implementation
of the DR scheme. The proposed model is assessed by utilizing a Genetic Algorithm (GA). GA is
an approach to solve both unconstrained and constrained optimization problems based on natural
selection. A key stage in GA applications is the definition of the objective (fitness) function, which is
the function to enhance. In this instance, the fitness functions are the summation of the net disparity
between the load and the generation, i.e., for peak load, valley, and low peak periods. Equation (25)
below shows the fitness function (Fnx).

Fnx = min
N

∑
i=1
| {gen− load} | (25)

In this study, BESS and PV are injected to compensate for the mismatch in the present generation
capacity from the thermal units primarily during peak and valley periods prominently throughout
the dry season, when the main hydropower supply to the capital city decreased to more than its
designed capacity due to climatic conditions. Table 3 shows the solar irradiance [50]. The synchronized
execution of ToU and IC selected for the penetration of BESS and PV due to its load factor index is
shown in Table 6 after the execution of DR. It represents the lowest load factor index. Moreover, an
extensive mismatch in the load profile characteristic is observed and should be covered in the valley
and peak interval. From the simulation results shown in Figure 9, within the hours 00:00–10:00 where
we have inadequate solar radiation, the BESS can be seen discharging it stored energy covering the
deficiency for the PV power. From 11:00–14:00, we observed an increase in solar irradiance. During
this period, the PV will be providing power supply while the BESS is charging as we reach the peak
load period. The state of discharge and charging is, as shown in Figure 9.
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Figure 9. Renewable energy injection.

5. Conclusions

In this research, a two-stage DR program-curtailed optimal integration of hybridized RE source
has been implemented to meet the daily load demand for Freetown, Sierra Leone. In Stage-I, time-based,
incentive-based, and the combination of incentive and time-based DR programs are executed using the
price elasticity concept to meet the peak load demand. From the simulation results analysis, for CAP
and the simultaneous execution of ToU with DLC 6.5% and 6.39 % peak load reduction are attained,
respectively. Both yielded the highest benefits of the executed proposed DR programs scheme; The
reduction of energy consumption of 2041.7 MWh was achieved with CAP and 2033.2 MWh as achieved
with ToU-DLC. Both scenarios enhance peak load reduction with significant modifications to the
customers’ load characteristics. The SSI analysis is employed to prioritize and implement relevant DR
response programs that are efficient from both the IPPs’ and customers’ perspective. From the results
obtained, the CPP and concurrent execution of ToU and IC DR programs prove to be economically
efficient from the IPPs and customer perspective. Moreover, considering the load factor based on the
SSI analysis, the ToU program is found to be more productive. Conclusively, Stage II of this study
involved the optimal introduction of hybridized RE technologies to satisfy the new load profile after
the execution of the relevant DR programs. Genetic Algorithm (GA) was utilized for the optimal
RE infusion into the generation mix with the reduction in maintenance and operational cost as the
objective function, alongside greenhouse gas emissions reduction. The results show the ability of the
proposed control scheme to match the increased load demand in off-peak and valley periods that
shifted from peak periods due to utilizing the DR approach. In the future, the research will be extended
towards investigating the possibilities of a very high renewable energy fraction using appropriate
demand-side management approach and generation extension planning.
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