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Abstract: Supply of resources, a growing population, and environmental pollution are some of
the main challenges facing the contemporary world. The rapid development of mining activities
has produced huge amounts of waste. This waste, found in abandoned mine sites, provides the
potential opportunity of extracting raw material. The current study, therefore, focuses on testing the
validation of a shared methodology to recover extractive waste from abandoned mines, and applies
this methodology to a case study in Gorno, northwest Italy. The methods focused on: (1) analyzing the
impact of tailings and fine fraction of waste rock (<2 mm) on plants (Cress - Lepidium Sativum) to assess
usability of both as soil additive, and (2) recovering raw materials from tailings and coarse fraction
(>2 mm) of waste rock, by means of dressing methods like wet shaking table and froth flotation.
The results indicated that the fine fraction of waste rock and tailings did not have detrimental effects
on seed germination; however, there was marked decrease in plant growth. As for the recovery of raw
materials, the coarse waste rock samples, crushed to <0.5 mm, produced a recovery of Cd, Ga, and
Zn—as much as 66%, 56%, and 64%, respectively—using the wet shaking table. The same samples
when crushed to 0.063–0.16 mm and used for froth flotation produced a recovery of Cd, Ga, and Zn
of up to 61%, 72%, and 47%, respectively. The flotation experiment on tailings showed a recovery of
Cd, Ga and Zn at pH 7 of 33%, 6% and 29% respectively. The present investigation highlights the
methodologies used for extracting raw materials from extractive waste.

Keywords: circular economy; resource supply; raw materials; triassic western southern Alps (Italy);
abandoned mines; extractive waste

1. Introduction

Raw materials are crucial for modern society. The evident growth and prosperity is based on
mineral reserves and fossil fuels. The United Nations’ Sustainable Development Goals, as well as
implementation of the Paris Agreement, resulted in vast utilization of a wide range of minerals for green
technologies, such as low-carbon applications [1]. This focus on growth, development, and increase
in population has led to the scarcity of raw materials (RM) [2]. Economic development depends on
the supply of RM [3–5]—in the European Union (EU) alone, 30 million jobs depend on access to raw
materials [6].
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In view of the recent developments, a list of 27 critical raw materials (CRM) was identified for
EU nations in 2017. The crucial dependency on raw materials is acknowledged by the European
Innovation Partnership on Raw Materials, which coordinates efforts across disciplines to tackle selected
“grand challenges”. One of the pillars of the EU Raw Materials Initiative focuses on the reuse and
recycling of raw materials [6]. Moreover, the need to find RM and CRM has pushed the EU to adopt
policies to promote the exploitation of waste from abandoned mining sites, termed as mining waste
(also called as extractive waste—EW); and from productive cycles [7–9]. The term “extractive waste”
is used in this paper. The use of extractive waste can result in recovery of RM and CRM, along with
reclamation of polluted areas and development of an economic system that aims at minimizing waste
and exploiting resources [10,11]. Indeed, using extractive waste for further extraction helps minimize
waste production and consumption of unexplored resources: the amount of existing EW can be reduced
by further exploiting the remaining valuable fractions, which in turn minimizes new waste generation
by reducing the need for extracting unexplored resources. Consequently, the present study focuses
on assessment of recovery of raw materials from EW and the effects of EW on plants, if used as an
additive to soil from abandoned mines of Gorno in northwest Italy.

Considering the shortage of RM, research efforts should be directed towards the use of previously
discarded EW [12]. This idea of reusing EW as integrative feeding materials for industrial processes is
closely linked to the circular economy’s perspectives, by integrating EW back into material cycles [13–19].
The potential for recovery of RM from extractive waste depends on several factors, such as their amount,
concentration, and mineralogy; re-processing technology (commercially available and economically
viable); and market demands [20].

Utilization of EW can offer both economic benefits and reduction in environmental impacts. Indeed,
environmental legacies of mining sites are related to the presence of reactive minerals, sometimes of
high economic value. Extractive waste can cause land degradation and contamination of water [21].
The reuse of EW may minimize the environmental impacts related to disposal; however, some reuse
measures may actually cause new environmental problems. Considering this, care should be taken to
perform life cycle assessment and cost-benefit analysis for handling waste on site [13].

1.1. Relevant Literature

The literature has shown that mineral waste streams can be reused and can be beneficial for
extracting RM. A recent study by van Zyl [22] estimated that approximately 75 major tailing re-mining
projects are taking place globally for the reclamation of copper, diamond, and gold. Another research
concluded that the topsoil generated from dredge mining for heavy minerals such as rutile, ilmenite, and
zircon in coastal dunes in Zululand, South Africa, since 1977 were used for the ecological restoration of
abandoned mine areas by spreading the salvaged topsoil on tailing dumps to initiate natural succession
and establishing dune forests [23]. Jiangang et al. [24] developed oil agglomeration flotation process
for recovering molybdenite from tailings in Zhejiang province, China, while Ghosh et al. [25] showed
recovery of Mn by bioleaching of ferro-manganese EW from Odisha, India, and Henne et al. [26]
demonstrated recovery of copper from Cu-sulfide inclusions minerals of waste rock (WR) by bioleaching
in the Salobo mine, Brazil. Another study in Pennsylvania, U.S.A reported rare earth elements and
yttrium concentrations and other geochemical data from Appalachian Basin coal mine discharges
and treatment precipitates collected from a variety of mine water and treatment environments [27].
In 2016, True North Gold Mine of Klondex Canada Limited in Manitoba, Canada, commenced a
tailings reprocessing project [28]. The physicochemical, mineralogical, and elemental characterization
of extractive waste from the exploitation of both iron ores and polymetallic minerals (Pb-Zn-Ag)
was done to evaluate the possibility of recovery of strategic elements, like Ga, In, Ge, and rare earth
elements (REE) in mining areas of México [29]. The recovery and upgradation of different REE from
minerals were ascertained, especially brannerite, florencite, and stetindite from the iron oxide–silicate
rich tailings (IST) generated at a South Australian mining operation using froth flotation [17]. Recently,
a French geological survey identified interesting old mining wastes to assesses the potential metal
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recovery of these deposits with emphasis on critical metals for industrial development compiled by the
European Commission in 2010. First, bioleaching tests conducted on tailing material from a lead–zinc
mine near Freiberg (Germany) achieved zinc and indium yields of up to 80% [30]. There are further
studies that has been undertaken to depict the economic benefits by reusing waste generated from
mines, for e.g., Pactwa et al. [31] presented economic and social benefits that can be obtained from
lignite mine waste in Poland.

However, the research on implementation of circular economy principles in Italian abandoned
mine sites is at the beginning stages and has still not been fully realized, despite the potential and
growing interest in making the Italian economy more and more circular [32]. Moreover, the reuse and
recovery of RM from waste depends on the type of the ore mined, waste typology, and geological
and geographical setting of the area. Therefore, mining districts with EW should be analyzed in a
site-specific manner to develop feasible reuse techniques.

1.2. Study Objectives

The present study, thus, focuses on preliminary assessment towards recovery of RM (such as
Zn, Cd, and Ga) from EW and the effects of EW as additive to soil from abandoned mines of Gorno
in northwest Italy. However, the methodologies (Figure 1) applied for site investigation, sampling
activities, extractive waste dressing activities to obtain raw materials and impact on plants can be
replicated in similar contexts (e.g., mining site for Zn-Pb exploitation). In a larger context, the approach
followed in this research also depicts that traditional barriers between disciplines and sectors, and a
holistic approach using knowledge of mining engineering, geology, separation and ore processing
engineering (dressing methods), and soil science can lead to “sustainable mining”.
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2. Methodology

The methodology followed (Figure 1) in this research consists of investigations, processes,
and characterization steps, which can be replicated in similar case studies (Zn-Pb mining sites,
but also extractive waste facilities at large). It can be considered an interdisciplinary approach to EW
management and recovery in the view of a landfill mining approach. In particular, the steps followed
during the research activity are:

1. Site description, which consists of collection of information about geology, mining, and processing
activities (Section 2.1) [33]

2. Site investigation and sampling strategy (Section 2.2), which includes planned field survey to
collect representative samples, define the investigating areas, evaluate waste characteristics, and
estimate EW volumes [33]

3. Preparation of sub sample to be tested for RM/CRM recovery (Section 2.3)
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4. Definition of the potential treatment and dressing activities to exploit RM/CRM and produce new
products from waste. The research is based on a preliminary separation into two main categories
(size cut off 2 mm), as described in Figure 2. In particular, the present paper presents two different
chances to recover EW:

a. For the production of additive to soil (Section 2.4), which can be considered as the first step
to produce substrate for rehabilitation and remediation purposes

b. For RM/CRM exploitation by means of common processing techniques as flotation and
shaking table (Section 2.5).
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2.1. Study Site

The Gorno mining site is located within the Seriana, Riso, and Brembana valleys (Lombardy,
northwestern Italy) (Figure 2). It belongs to the Alpine type zinc-lead-silver stratabound ore deposits,
associated with the middle Triassic carbonatic series. The mineralization (Zn-Pb ± Ag ± baryte ±
fluorite) mostly occurs within the “Metallifero” (i.e., “ore-bearing”) formation of upper Ladinic—lower
Carnian age [34–37]. Mining started in the Roman Age, but the beginning of industrial exploitation
started in the 1837 and continued until 1982.

Primary mineralization is composed of sphalerite (ZnS) and galena (PbS), alongwith minor
pyrite (FeS2), marcasite (FeS2), chalcopyrite (CuFeS2), and argentite (Ag2S). The dominant gangue
minerals are calcite, dolomite, and quartz (± ankerite). A secondary mineralization, composed of
oxidation products of sphalerite, i.e., Zn-rich carbonate and silicate, was historically preferred for
ore exploitation using underground mining activities. Consequently, the rocks with sphalerite and
galena were separated and placed outside the tunnels excavated to access the underground ore deposit,
forming several WR dumps across the whole district. However, the WR dumps in the Mount Arera
are the biggest and easier to access, and, thus, most important as the study site. For the treatment of
valuable ores, the flotation process was used (information from historic documents maintained by
the Municipal Corporation of Gorno), leading to generation of tailings deposited close to Riso creek.
Thus, the two types of EW present at the site are waste rock and tailings, produced due to primary
separation and ore processing, respectively, of resources at the site.
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2.2. Site Investigation and Sampling Strategy

The sampling was performed in dumps placed at Mount Arera (Figure 3) following site
investigation and sampling activities described in Dino et al. [33] and here briefly reported. The WR
dumps at Mount Arera are spread uniformly with thickness of c. 2 m. Waste rock material was
sampled using a hand shovel and/or a hammer. Each sample (8–10 kg) was collected by recovering
four subsamples from the vertices of a 2 m × 2 m square, and mixing these together after removing
organic residues. In total, 30 samples of waste rock were collected at the site in June 2016. Tailings
deposit was near the Riso creek and covered with thin layer of soil of 20–40 cm; hence, samples were
taken using hand drilling, with an increasing depth from the ground. In total, 18 tailings samples were
taken from four sampling points at the site.
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2.3. Preparation of Subsamples

Extractive waste subsamples were prepared as depicted in Figure 2. The waste rock samples from
the site were air dried and sieved to obtain the samples in two different fractions i.e., fine fraction
(size < 2 mm) and coarse fraction (size > 2 mm). The fine fractions from all samples were mixed to
obtain a homogeneous mixture of waste. This waste was further used for analysis of impacts on plants
to ascertain the possibility of its use as soil additive.

Similarly, the coarse fractions from the samples were mixed to obtain a homogeneous mix of WR
in size fraction >2 mm. The obtained mix of WR samples was crushed by means of a jaw crusher,
and sieved to obtain samples in size fraction 0–1 mm. The sample in 0–1 mm was used for all the
recovery experiments and quartered to obtain samples for dressing activities and chemical analysis
of feed. Tailings from the site were dried in an oven at temperature of 100 ◦C, for a period of 48 h to
remove moisture. The dried samples were mixed to obtain homogeneous mix of tailings. The obtained
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sample was then screened to remove any organic residue and quartered to obtain a sample for use
both as soil additive and dressing activities.

2.4. Use of Extractive Waste as Soil Additive

2.4.1. Aqua Regia Extracted Concentrations and Bioavailable Concentrations Analysis for Subsamples
Used as Plant Additive

The waste rock (<2 mm fraction) and tailings were treated for analyzing their impacts on
plants. The samples were analyzed for concentrations of chemical elements on the <2 mm fraction
using aqua regia U.S. EPA 3051 A, U.S. EPA 6050 C [38,39] and for bioavailable concentrations using
diethylenetriaminepentaacetic acid (DTPA), in order to determine the different % (v/v) of EW that
could be used [40]. The detailed methods can be found in Supplementary Material S.1.

2.4.2. Seed Germination and Plant Growth Experiments

The seed germination test and plant growth experiments were conducted using Cress (Lepidium
sativum) seeds [41,42]. The detailed methods can be found in Supplementary Material S.2. The results
after the germination test (Equation (1)) and the plant growth test (Equation (2)) were calculated in
terms of Germination Index and Plant Growth Index:

Ig =
Gc · Lc
Gt · Lt

100 (1)

Gm =
Bc
Bt

100 (2)

where Ig = Germination Index (in %); Gc = mean value of germinated seeds using test solution; Gt =

mean value of germinated seeds using control solution (double-distilled water); Lc = mean value of
length of roots of seeds using test solution; Lt = mean value of length of roots of seeds using control
solution; Gm = Plant Growth Index (in %); Bc = weight of biomass of plants obtained using EW in
sand and blond peat mixture; Bt = weight of biomass of plants obtained using only sand and blond
peat mixture.

2.5. Dressing Activities for Raw Materials Recovery

2.5.1. Total Concentrations Analysis and Mineralogical Analysis of Samples

Prior to dressing activities, the analysis of subsamples used as feed for experiments was performed
to ensure that extractive waste contained sufficient amounts of recoverable raw materials. The total
concentrations of elements present in waste rock and tailings subsamples were analyzed at Activation
Laboratories Ltd., Canada. The extraction solution for samples used hydrochloric, hydrofluoric, nitric,
and perchloric acids for digestion (code: ultratrace 6). The digested solution was analyzed for element
concentrations using inductively coupled plasma mass spectrometry and inductively coupled plasma
optical emission spectrometry (ICP-MS and ICP-OES). Precision of the results was determined through
the analysis of sample duplicates and blanks. Results of method blanks were always below detection
limits. The detailed Quality Control measurements are in Supplementary Material S.3.

The mineralogical analysis of feed was not performed in this study, as it has been conducted on
extractive waste from this site in a previous study by Dino et al. [33], which indicated the presence
of sphalerite in the WR. However, tailings contained minor amounts of Fe sulphate, Zn-silicate
(hemimorphite), Zn-carbonate (smithsonite and/or hydrozincite), and rare Cu-As-Sb ± Pb sulphosalt(s).
In the current study, therefore, mineralogical analysis of selected heavy (concentrate) samples from
shaking table experiments and float (concentrate) samples was performed to visualize and quantify
the minerals present. The mineralogical analysis was performed using Micro-X-ray fluorescence
(micro-XRF). X-ray maps of samples were acquired using a micro-XRF Eagle III-XPL spectrometer
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equipped with an EDS Si (Li) detector and with an EdaxVision32 micro-analytical system. The operating
conditions were 4 µs counting time, 40 kV accelerating voltage, and a probe current of 1000 µA.
Quantitative modal percentages of each mineral have been obtained by processing the micro-XRF
maps with the “Petromod” software [43].

2.5.2. Wet Shaking Table

The wet shaking table (also referred to as a shaking table in the present study) method was used
for the dressing activity [44]. The experiment was performed on feed weighing 1000 g (Figure 4). After
introducing the sample to the feed bar, a continuous flow of water was maintained on the table through
a water distributor. The inclination of table, flow of water, and constant shaking of table led to the
separation of feed into not-concentrate and concentrate tanks. Following the experiment, solutions
containing light and heavy samples were filtered separately using a vacuum filter and Whatman
filter papers of diameter 24 cm. These samples were dried in an oven at 80 ◦C for 6 h to 24 h to
remove moisture (until constant weight). The dried samples were weighed and quartered to obtain
representative samples for analysis. These representative samples were analyzed for the concentrations
of elements (geochemical analysis) and mineralogy (described in Section 2.5.1).
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2.5.3. Froth Flotation

Subsamples for Flotation

Froth flotation (also referred to as flotation in subsequent sections) is a complex separation process
that exploits the physicochemical surface properties of mineral particles to separate the valuable
minerals present in the feed [45]. Since flotation utilizes surface properties, flotation of metal sulfides
with dimensions >0.5 mm is not feasible; therefore, the WR subsamples were prepared to be below
0.5 mm for flotation experiments [46]. The fractions >0.5 mm were separated because at very high size
fractions, the solid phase (comprising of primary minerals) to be floated is not fully liberated from
other solid phases (consisting of gangue) in the mixture. The resultant composite particles can still be
floated, but the separation is not satisfactorily selective. This is due to the fact that the concentrate
obtained after flotation of very coarse size grains is unavoidably contaminated with the adjoining
gangue [47].

The subsamples preparation for flotation experiments also included the removal of particles with
size fractions <0.063 mm for waste rock samples, using wet sieving. This was done because at very low
sizes, gangue minerals are also finely grounded. These fine/ultrafine gangue particles not only affect
sub-flotation processes in recovering valuable minerals based on true flotation, but also lead to high
mechanical entrainment [48]. Mechanical entrainment is a transfer process by which mineral particles
suspended in water enter the flotation froth, move upwards, and finally leave the flotation cell with
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the mineral particles recovered by true flotation, as explained by [49] (Figure 5). Since entrainment
has a detrimental effect on the grade of the concentrate, it is advised to use the feeding with size
>50 µm [48]. To account for these factors, grain liberation size experiments should be performed, which
result in increased recovery of the minerals [48]. However, due to time limitations, these experiments
were not carried out, and minimum size and maximum size were considered in a more general form,
by crushing and sieving the coarse fraction of the WR in size fractions (0.063–0.16 mm and 0.16–0.5 mm).
Such subsample preparation was not possible for tailings, as the original size of tailings was from
0–0.063 mm. Consequently, tailings were used for dressing activities, without any crushing from
original size.
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Figure 5. Photo of the Denver Cell used for froth flotation and the schematic diagram of the
transportation of fully liberated mineral particles in a flotation cell (modified after [49]). The numbers
represent: (1) Transportation of valuable mineral particles to the froth from the pulp by true flotation,
(2) Transportation of valuable mineral particles to the concentrate from the froth by true flotation,
(3) Transfer of mineral particles to the froth from the pulp by entrainment, (4) Transfer of entrained
mineral particles to the concentrate from the froth by entrainment, and (5) Transfer of mineral particles
from the froth to the pulp due to the drainage of detached particles and entrained particles.

Chemical Reagents

The waste and water mixture was prepared after mixing 200 g of waste sample in water, reaching
up to a volume of 2600 mL. The reagent solution was prepared using 1% (w/v) of a commercially
available reagent, known as Aeropromoter No. 825 (a product of American Cynamide Co.) in 1000 ml
of distilled water. The reagent was an anionic, petroleum-based sulfonate promoter. During the process
of flotation, the collector is physically adsorbed on the surface of minerals by an electrostatic attraction.
Adsorption of the collector on individual minerals can be controlled by the adjustment of pH of the
system [50]. The experiments were thus conducted in slurry at pH of 7, 8.5, and 10, to understand the
effect of pH on the recovery of elements. The pH of the slurry was adjusted using 1 M NaOH instead
of lime, which is mainly used in industrial flotation to eliminate the effect of Ca2+ on flotation [51].

Experimental Procedure

The extractive waste samples were treated using a self-aerating flotation Denver cell (Figure 5).
During the experiments, the slurry was conditioned for two minutes. Following the addition of reagent
dosage, the slurry was conditioned again for a period of two minutes. 20 mL of the reagent solution
was added for size fraction (0.063–0.16 mm) of the sample weighing 200 g, thus reaching reagent
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dosage of 1 g/kg. The pH of the slurry was then adjusted to a desired value, followed by conditioning
of solution. Air was introduced into the slurry by the pumping action of an impeller. The air flow
rate was controlled by the inlet valve and was correlated to the impeller speed, which was kept at
1500 rpm. The froth developed at the surface of the flotation cell was removed by hand using a paddle.
The froth obtained was filtered to obtain a float sample, whilst the remaining slurry in the flotation cell
was filtered to obtain a sink sample. These samples were dried and quartered to obtain representative
samples, following the same process as in Section 2.5.2. The analysis was performed as explained in
Section 2.5.1.

For waste rock samples in size fraction (0.16–0.5 mm), the experimental conditions like air flow rate
and pH of the solution were maintained in a similar manner as that for fraction 0.063–0.16 mm. However,
reagent dosage was increased in comparison to reagent dosage used for fractions 0.063–0.16 mm,
to improve the flotation of particles (Figure 6). The reagent dosage was added in an incremental
manner. Flotation was carried out by adding 20 mL reagent solution (dosage: 1g of reagent for 1 kg of
sample) and then removing the froth developed at the surface of the flotation cell. The froth developed
at the surface of the flotation cell was removed by hand using a paddle. Another 20 mL of reagent was
added to the solution left i.e., sink, after conditioning of three minutes, and maintaining pH similar to
the pH of the starting solution. The float was separated again, followed by conditioning and addition
of 20 mL of the reagent. Thus, 60 mL of the reagent was used in total for the solution of fractions
(0.16–0.5 mm), taking the dosage to 3 g/kg in total. Each time, air was introduced into the slurry by the
pumping action of an impeller. The air flow rate was controlled by the inlet valve and was correlated
to the impeller speed, which was kept at 1500 rpm. The analytical measurements were performed on
all the three float samples from froth obtained due to addition of incremental reagent dosages and
one sink sample. The sample preparation followed for these samples was similar to that followed for
waste rock in size fraction (0.063–0.16 mm). The analysis was performed as explained in Section 2.5.1.
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Figure 6. Schematic diagram representing the procedure followed for froth flotation for waste rock in
size fraction 0.16–0.5 mm showing that after removing one set of float (concentrate), additional 20 mL
of reagent was added to the solution up to total reagent dosage of 3 g/kg.

2.5.4. Processing of Data

The heavy and light samples from shaking table experiments and sink and float samples from
flotation were analyzed for presence of elements using ICP-MS by the same methods described
in Section 2.5.1. The recovery for weight of concentrate and for elements was calculated using
Equations (3)–(5). In Equation (5), the weight of feed was taken as the sum of concentrate (i.e., heavy
sample for shaking table and float sample for flotation experiments) and not concentrate (i.e., light
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sample for shaking table and sink sample for flotation experiments) weights. The concentrate and
not concentrate weight were measured after the separation process and drying of samples, while the
total concentrations analysis of concentrate and not concentrate led to the concentration of elements
in mg/kg.

Thus, in Equation (5), the feed weight, concentrate weight and not concentrate weight
were available from the weight measurements before and after dressing activities. The values of
concentrations of metals were available for not concentrate and concentrate material from the chemical
analysis. Therefore, the only unknown value that was calculated using these parameters was the
concentration of elements in feed. Although the total concentrations’ analysis results presented in
Section 3.2.1 gave feed properties, this method based on mass balance was chosen to arrive at more
precise and accurate calculations [45]. The obtained value of Feed m was used for both Equations (3)
and (4).

Rw =
Cw
Fw

100 (3)

Rm =
Cm · Cw
Fm · Fw

100 (4)

Fm · Fw = Cm · Cw + Nm · Nw (5)

where, Cw = weight of concentrate (i.e., heavy sample for shaking table and float sample for flotation
experiments) after the dressing activities; Cm = concentration of a particular metal in concentrate
solution in mg/kg; Fw = weight of feed in g; Fm = concentration of metal in feed material in mg/kg;
Nw = weight of not concentrate (i.e., light sample for shaking table and sink sample for flotation
experiments) obtained after all reagent dosages; Nm = concentration of metal in not concentrate in
mg/kg; Rw = weight recovery (in %); Rm = metal recovery (in %).

As mentioned in Section 2.5.3, the flotation experiments on the WR in the size range fractions
0.16–0.5 mm were conducted using continuous addition of reagent dosage. After the addition of initial
dosage 1 g/kg, the overflowing float was separated and the remaining slurry treated with another
20 mL. In total, 3 g/kg of reagent dosage was used in the process. Therefore, the results of recovery
were calculated for every reagent dosage using Equations (6)–(10).

Ccw (i) =
i∑

i=1

Cw (i) (6)

Ccm (i) =

∑i
i=1 Cw (i) ·Cm (i)∑i

i=1 Cw (i)
(7)

Fw · Fm = Ccw (3) · Ccm (3) + Nw · Nm (8)

CRw (i) =
Ccw (i)

Fw
·100 (9)

CRm (i) =
Ccw (i)· Ccm (i)

Fw · Fm
·100 (10)

where, i = the step of flotation in which calculations are performed according to reagent dosage (for e.g.,
i = 1, for dosage of 1 g/kg; i = 2, for dosage of 2 g/kg); Ccw (i) = cumulative weight of float in g after
(i) stages of flotation; Ccm (i) = cumulative concentration of metal obtained in float in mg/kg after (i)
stages of flotation; Cw (i) = weight of float sample(s) after (i) stages of reagent addition in g; Cm (i) =

concentration of float after (i) stages of reagent addition in mg/kg; Fw = weight of feed in g; Fm =

concentration of metal in feed in mg/kg; Nw= weight of sink obtained after all reagent dosages in g
i.e., completion of flotation; Nm = concentration of metal in sink in mg/kg i.e., completion of flotation;
CRw (i)= Cumulative recovery of weight achieved after (i) stages of flotation; CRm (i) = cumulative
metal recovery obtained after (i) stages of flotation.
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3. Results and Discussion

3.1. Impact of Extractive Waste on Plants

3.1.1. Aqua Regia Extractable Concentrations and Bioavailable Concentrations Analysis on Fine
Fraction of Extractive waste

Aqua regia does not result in complete dissolution of elements bound or occluded into silicate
lattices [52], thus providing only a pseudo-total concentration. However, it is commonly used in
environmental studies for the assessment of extent of soil and EW contamination because this acid blend
usually addresses the most concerning chemical fraction for environment and human health [53,54].
The aqua regia extractable and bioavailable concentrations on the EW samples with size fraction <2 mm
are shown in Table 1. It should be noted that size fraction <2 mm was considered for these experiments,
following the Italian legislation about characterization of waste materials to evaluate impacts on
the environment [55]. Waste rock sample recorded the aqua regia extractable concentrations of As
as 143 mg/kg, Cu as 868 mg/kg, Ni as 1063 mg/kg, and Sb as77 mg/kg. The aqua regia extractable
concentrations of Cd (260 mg/kg) and Zn (147,367 mg/kg i.e., 148 g/kg) were found to be very high due
to the parent material. The results, therefore, showed that the aqua regia extractable concentrations of
As, Cd, Cu, Ni, Sb, and Zn were higher than the Italian permissible limits for soil for both industrial
uses and recreational and habitation uses [55]. However, not all the elements were bioavailable to
plants. The bioavailability analysis using DTPA showed that Cd and Zn were the only elements in
waste rock that showed very high bioavailable concentrations. This is due to the fact that availability
and bioavailability of metals, non-metals, and metalloids is low in materials from calcareous rocks due
to prevailing alkaline pH values [56].

Table 1. Aqua regia extractable concentrations and bioavailable concentrations (mg/kg) in waste rock
and tailings sample (<2 mm size fraction).

Sample pH As Be Cd Co Cr Cu Ni Pb Sb Tl V Zn

(H2O)
1:2.5 mg/kg

Limit A 20 2 2 20 150 120 120 100 10 1 90 150
Limit B 50 10 15 250 800 600 500 1000 20 10 250 1500

Waste
rock

Total
8.14

143 0 260 100 24 868 1063 101 77 0 76 147,367
Bio 0 0 9 0 0 1 0 0 0 0 0 733

Tailings Total
8.25

84 0 34 2 7 236 5 1919 163 0 29 10,338
Bio 0 0 1 0 0 110 0 41 0 0 0 507

Total: Concentration (mg/kg) of elements using aqua regia, Bio: Bioavailable concentration (mg/kg) using DTPA
extractions. Limit A denotes the permissible limits for recreational and habitation areas and Limit B represents the
permissible limits for industrial areas [55].

Samples of tailings recorded the aqua regia extractable concentration of As, Cd, and Cu as 84, 34,
and 236 mg/kg, respectively. The aqua regia extractable concentration of Pb and Zn were very high and
reached 1919 and 10,338 mg/kg, respectively. The concentration of As, Cd, Cu, Pb, and Zn obtained
using aqua regia were higher in tailings in comparison to Italian limit for recreational and habitation
uses. The results of bioavailability analysis showed that the bioavailable concentration of Cu and Zn
were high.

3.1.2. Seed Germination and Plant Growth

The results of the seed germination test (Figure 7a) indicated that 75% of the test solution from
extractive waste with double-distilled water led to a Germination Index of 95%, suggesting that there
was no major detrimental impact to seed germination. The results of plant growth test (Figure 7b)
showed that there was a decrease in plant growth with increase in WR and tailings content in the sand
and blond peat mixture (blond peat is a stick-free peat that allows suitable contact between seed and
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substrate, promoting uniform seed germination). The addition of 10%, 20%, and 30% of fine fraction
of WR during the pot experiments led to Plant Growth Index of 46%, 33%, and 40% respectively,
implying sharp decrease in plant growth even after addition of WR. This can be ascribed to: (1) Cd
and Zn toxicity to plants due to WR. Indeed, Cd tends to be toxic to plant growth even at very low
concentrations by interfering with the uptake, transport, and use of elements (e.g. Ca, Mg, P, and K) by
plants [57]; (2) Lesser availability of nutrients and organic matter due to the addition of WR.
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The results of plant growth for tailings recorded that the addition of 20%, 30%, and 40% of tailings
to the mixture led to Plant Growth Index of 71%, 56%, and 44% respectively, exhibiting that mixtures
prepared with addition of tailings was less harmful than mixture with WR. One of the major factors
contributing to this observation could be lesser aqua regia extractable and bioavailable concentrations
(as shown in Section 3.1.1) of elements in tailings compared to WR.

These results serve as an indication of the impact of extractive waste on plants so as to assess the
usability of extractive waste as soil additives. The results recorded that in the present form and without
the use of amendments and fertilizers, the extractive waste samples cannot be used for growing plants.
Further experiments to confirm the uses of waste rock as soil additive are required, which takes into
account the effect of WR on different kind of plants and the translocation of absorbed elements from
roots to aerial parts of the plant body. It should also be noted that plant growth could be increased by:
(a) addition of amendments, (b) selection of appropriate plant species, and (c) addition of fertilizers [58].
A study conducted by Dalmora et al. [59] demonstrated that the use of vesicular andesite powder as a
soil remineralizer in agriculture may be suitable for solving the problem of by-products deposited
outside the mines and to decrease the consumption of highly soluble fertilizers, which should also be
considered to use the extractive wastes as soil additive.

3.2. Dressing Activities

3.2.1. Feed Characteristics

The subsamples of coarse fraction (>2 mm) of WR crushed to size fractions of <0.5 mm and
0.5–1 mm were analyzed for total concentrations of elements prior to dressing activities. Similar
analysis was performed on tailings. In general, it was observed that concentrations of the elements
in the samples of WR in size fraction <0.5 mm were higher compared to samples in 0.5–1 mm size
fraction [60]. It could be due to the fact that concentration tends to be higher at smaller sizes, as smaller
sizes provide more specific area. The samples were found to contain very high zinc concentrations
reaching up to 100,000 mg/kg (i.e., 100 g/kg) for size fraction <0.5 mm and 84,000 mg/kg (i.e., 84
g/kg) for size fraction 0.5–1 mm of the total weight of samples. Tailings recorded total concentration
of Zn as 7640 mg/kg (i.e., 7.64 g/kg), as shown in Table 2. Concentration of Ga in waste rock with
size fraction <0.5 mm, WR with size fraction 0.5–1 mm and tailings were found to be 11.4, 15.4, and
2.1 mg/kg, respectively. Cadmium concentrations were also noticed to be high, ranging from 36 mg/kg
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in tailings to 316 mg/kg in WR. Considering high concentrations of Cd, Ga, and Zn in tailings and WR,
the calculations of weight recovery and metal recovery were performed on these elements. It was also
noticed that concentrations of many of the elements apart from Cu and Pb were higher in waste rock
compared to tailings.

Table 2. Total concentrations (mg/kg) analyzed using hydrochloric, hydrofluoric, nitric, and perchloric
acids for digestion. The analysis was performed on subsamples of waste rock and tailings.

Sample Be Cd Co Cr Cu Ga Ni Pb Sb Tl V Zn

Waste
rock

<0.5 mm 0.3 270 3 10 73 11.4 5.6 20.2 77 0.2 32 100,000
0.5–1 mm 0.3 316 1.1 9 77 15.4 3.4 40.8 0 0.2 31 84,000

Tailings <0.063 mm 0.7 36 1.7 9 261 2.1 3.1 1420 163 0.6 35 7640

3.2.2. Shaking Table

Figure 8a depicts that the weight recovery for WR for <0.5 mm and 0.5–1 mm was nearly similar.
However, the recovery of Cd, Ga, and Zn was found to be different in both the size fractions (Figure 8b).
The waste rock samples in the size fraction <0.5 mm recorded the recovery of Cd, Ga, and Zn as 66%,
56%, and 64% respectively. While, shaking table of WR samples in size fraction 0.5–1 mm led to the
recovery of Cd, Ga, and Zn as 39%, 39%, and 43% respectively. The possible reasons for the decrease in
recovery and separation efficiency with respect to increase in size could be that for some minerals,
coarse grains are nearly equi-dimensional, and the difference in specific gravity between those grains
is not sufficient, that it can lead to proper separation [61].

The shaking table experiments on tailings showed the weight recovery as 3.7%. The recovery of
Cd, Ga, and Zn was 2%, 7%, and 4%, respectively (Figure 8c). It was observed that tailings showed
lesser recovery than waste rock, which could be due to the fact that tailings in Gorno mining area were
generated after processing of original ores, leading to alteration of surface properties of minerals and
the material in a way that is not suitable for separation of minerals, while the WR tends to preserve the
characteristics of original rock formations.

The mineral maps of the heavy sample after shaking table for waste rock (<0.5 mm) showed that
sphalerite (83.6%) and calcite (13.7%) were the most abundant minerals. Minor minerals were pyrite,
quartz, and dolomite (Figure 9a). Mapping of heavy sample after shaking table for WR (0.5–1 mm)
depicted that abundant minerals obtained after shaking table were sphalerite (49.3%) and dolomite
(43.3%). The minor minerals were smithsonite (3.8%), calcite (2.9%), quartz (0.6%), and pyrite (0.15%)
(Figure 9b). The samples from WR in both size fractions show that the shaking table treatment of WR
can lead to beneficial recovery of Zn, present as sphalerite (ZnS) and subordinately in smithsonite
(ZnCO3). However, sphalerite was more in heavy samples obtained from WR in size fraction (<0.5 mm)
than that in size fraction (0.5–1 mm). This was also evident in recovery of metals summarized in
Figure 8. Mapping of a heavy sample of tailings demonstrated that abundant minerals were calcite
(88.5%) and pyrite (10.0%); and minor minerals were sphalerite, dolomite, and galena, with total
percentage of less than 5% (Figure 9c). These results reveal that the heavy samples from tailings did
not show any major presence of sphalerite, which can be exploited economically.
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Figure 8. Weight recovery and metal recovery obtained after shaking table experiments. (a) Weight
recovery of WR in size fraction <0.5 mm (WR_<0.5) and size fraction 0.5-1 mm (WR_0.5–1) and tailings;
(b) Recovery of Cd, Ga, and Zn using waste rock; (c) Recovery of Cd, Ga, and Zn using tailings during
shaking table experiments.
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Figure 9. Mineral maps of heavy samples obtained after shaking table experiments of (a) waste rock
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3.2.3. Flotation

Flotation experiments were conducted on waste rock in size fractions 0.063–0.16 mm and
0.16–0.5 mm. The recovery for WR and tailings samples using 1 g/kg of reagent dosage were calculated
using Equations (3)–(5), plotted in Figure 10. The weight recovery of WR samples in different size
fractions and tailings tends to increase with increase in pH. It was also noticed that recovery for
analyzed metals was lesser than 50% for extractive waste samples at reagent dosage of 1 g/kg at all
three pH conditions. For the WR in the size fraction 0.063-0.16 mm, at dosage of 1 g/kg, the weight
recovery was 37.3%, 44.6%, and 53.2%, respectively. The recovery of Cd at pH 7, 8.5, and 10 was
49%, 43%, and 36%, respectively. The recovery of Ga at different pH conditions was 45% (at pH 7),
38% (at pH 8.5), and 32% (at pH 10). The recovery of Zn at pH 7, 8.5, and 10 was 37%, 36%, and 36%,
respectively. Thus, the recovery for flotation followed the trend pH 7 > pH 8.5 ≥ pH 10.

For the WR (0.16–0.5 mm) at dosage of 1 g/kg, the weight recovery was found to vary from 8.8%
to 19.0% with increase in pH from 7 to 10. The recovery of Cd at pH 7, 8.5 and 10 was 9%, 7%, and 14%,
respectively. The recovery of Ga at different pH conditions was 8% (at pH 7), 6% (at pH 8.5), and 12%
(at pH 10). The recovery of Zn at pH 7, 8.5, and 10 was 2%, 2%, and 8%, respectively. Thus, the results
showed that by keeping all the experimental conditions constant, the recovery for flotation followed
the trend pH 10 > pH 7 > pH 8.5. The trend of recovery with respect to pH of slurry was different
for varying size fractions. These results lead to the conclusion that the pH of the slurry affects the
separation efficiency differently for different size fractions.

These results depicted that recovery of Cd, Ga, and Zn from WR samples at reagent dosage of
1 g/kg was higher for samples with size fraction 0.016–0.5 mm, compared to 0.063–0.16 mm. The
possible reason could be that the reagent dosage required to facilitate the flotation in higher size
fractions could be large, which has been evident in the latter part of this section, where the recovery
tends to increase with the increase in reagent dosage.

The flotation experiment on tailings showed that the recovery of Cd and Zn at pH 7 was 33%
and 29%, respectively. It was observed that with increase in pH, there was increase in recovery of
the elements as well, for e.g., at pH 8.5, the recovery of Cd and Zn was 40% and 35%, respectively.
With pH 10, the highest recovery was obtained. The metal recovery of tailings was not very high;
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the possible reason could be that the mechanical entrainment, which leads to transport of gangue
material with mineral particles increases with increase in percentage of fine particles [62]. It is more
likely to operate on fine particles, which are prone to be carried over in liquid due to relatively low
mass (refer to Figure 6 for entrainment explanation). The mechanical entrainment of gangue, therefore,
leads to low quality of the concentrate from flotation processes [48]. It should be noted that all the
recovery results presented here for flotation experiments include the particle recovery by true flotation
and mechanical entrainment.

Sustainability 2020, 11, x FOR PEER REVIEW 16 of 23 

Sustainability 2020, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sustainability 

16 
 

possible reason could be that the reagent dosage required to facilitate the flotation in higher size 

fractions could be large, which has been evident in the latter part of this section, where the recovery 

tends to increase with the increase in reagent dosage.  

The flotation experiment on tailings showed that the recovery of Cd and Zn at pH 7 was 33% 

and 29%, respectively. It was observed that with increase in pH, there was increase in recovery of the 

elements as well, for e.g., at pH 8.5, the recovery of Cd and Zn was 40% and 35%, respectively. With 

pH 10, the highest recovery was obtained. The metal recovery of tailings was not very high; the 

possible reason could be that the mechanical entrainment, which leads to transport of gangue 

material with mineral particles increases with increase in percentage of fine particles [62]. It is more 

likely to operate on fine particles, which are prone to be carried over in liquid due to relatively low 

mass (refer to Figure 6 for entrainment explanation). The mechanical entrainment of gangue, 

therefore, leads to low quality of the concentrate from flotation processes [48]. It should be noted that 

all the recovery results presented here for flotation experiments include the particle recovery by true 

flotation and mechanical entrainment. 

(a) 

 

(b) 

 

Sustainability 2020, 11, x FOR PEER REVIEW 17 of 23 

Sustainability 2020, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sustainability 

17 
 

(c) 

 

  

Figure 10. Weight recovery (a) and recovery of Cd, Ga, and Zn after treatment of waste rock (b) and 

tailings (c) at pH 7, 8.5, 10 and reagent dosage of 1 g/kg. 

The flotation experiments on the waste rock in the size range fractions 0.16–0.5 mm were 

conducted using continuous addition of reagent dosage (as shown in Figure 6). Consequently, the 

results were obtained using cumulative recovery using Equations 5–10. It was observed that the 

values of cumulative recovery in terms of weight (Figure 11a) varied from 9% to 83%. The weight 

recovery indicated that there was higher recovery obtained with subsequent addition of reagent in 

the slurry at all the three pH conditions. This has been found in agreement with the previous research 

done on recovery of zinc from tailings of Pb-Zn mines [63]. Similar trends were observed for variation 

of cumulative recovery of Cd, Ga, and Zn. The cumulative recovery of Zn varied from 2% to 43%, 2% 

to 84% and from 8% to 33% for pH 7, pH 8.5 and pH 10, respectively.  

The cumulative recovery at different conditions showed that different pH leads to different 

recovery (here pH 8.5 > pH 7 > pH 10). The possible reason for this could be that Zn2+ cations (due to 

ZnO, Zn (OH)2 species) exhibit a marked effect on the zeta potential if they are present on the 

sphalerite surface in the region (pH 8–9), making the sphalerite strongly negatively charged at pH 8–

9 [64]. This suggests that flotation experiments were highly affected by pH and reagent dosage. The 

other parameters that affect the recovery from any feeding material are the use of depressants, the 

use of controller, the use of different reagents, the pH conditions, the electrolytic conductivity of the 

slurry, the setting up of further beneficiation processes or dressing activities, etc. Thus, prior to setting 

up of the actual plant, it is necessary that these factors are analyzed on a laboratory scale along with 

analysis of EW present at the site. 

Figure 10. Weight recovery (a) and recovery of Cd, Ga, and Zn after treatment of waste rock (b) and
tailings (c) at pH 7, 8.5, 10 and reagent dosage of 1 g/kg.



Sustainability 2020, 12, 2471 17 of 22

The flotation experiments on the waste rock in the size range fractions 0.16–0.5 mm were conducted
using continuous addition of reagent dosage (as shown in Figure 6). Consequently, the results were
obtained using cumulative recovery using Equations (5)–(10). It was observed that the values of
cumulative recovery in terms of weight (Figure 11a) varied from 9% to 83%. The weight recovery
indicated that there was higher recovery obtained with subsequent addition of reagent in the slurry
at all the three pH conditions. This has been found in agreement with the previous research done
on recovery of zinc from tailings of Pb-Zn mines [63]. Similar trends were observed for variation of
cumulative recovery of Cd, Ga, and Zn. The cumulative recovery of Zn varied from 2% to 43%, 2% to
84% and from 8% to 33% for pH 7, pH 8.5 and pH 10, respectively.Sustainability 2020, 11, x FOR PEER REVIEW 18 of 23 
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Figure 11. Cumulative weight recovery (a) and cumulative recovery of Cd (b), Ga (c), and Zn (d), after
treatment of waste rock and tailings at pH 7, 8.5, 10 (calculated using Equations (6)–(10)).

The cumulative recovery at different conditions showed that different pH leads to different
recovery (here pH 8.5 > pH 7 > pH 10). The possible reason for this could be that Zn2+ cations (due to
ZnO, Zn (OH)2 species) exhibit a marked effect on the zeta potential if they are present on the sphalerite
surface in the region (pH 8–9), making the sphalerite strongly negatively charged at pH 8–9 [64].
This suggests that flotation experiments were highly affected by pH and reagent dosage. The other
parameters that affect the recovery from any feeding material are the use of depressants, the use of
controller, the use of different reagents, the pH conditions, the electrolytic conductivity of the slurry,
the setting up of further beneficiation processes or dressing activities, etc. Thus, prior to setting up of
the actual plant, it is necessary that these factors are analyzed on a laboratory scale along with analysis
of EW present at the site.

The mineral map of float sample after flotation of waste rock at pH 7 (<0.5 mm) is given in
Figure 12a. The analysis showed that calcite (57.2%) and smithsonite (27.0%) were the main minerals
and minor minerals were pyrite (9.3%) and sphalerite (6.5%). The analysis also showed that the
minerals were found to be dispersed as very small grains in the sample matrix.
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Figure 12. Mineral maps of float samples obtained after flotation at pH 7 of waste rock and tailings:
(a) waste rock (size fraction 0.063–0.16 mm, after reagent dosage of 1 g/kg), (b) waste rock (size fraction
0.16–0.5 mm, after reagent dosage of 3 g/kg), and (c) tailings (after reagent dose of 1 g/kg).

The mineral map of float sample obtained after flotation of WR (0.16–0.5 mm) using 3 g/kg reagent
dosage is represented in Figure 12b. It shows that abundant minerals obtained were calcite (47.6%)
and dolomite (24.2%) and minor minerals were sphalerite (27.1%) and subordinately smithsonite and
pyrite, suggesting that WR in size fraction (0.16–0.5 mm) can be used for recovery of raw materials
from sphalerite after using 3 g/kg of reagent dosage. This is also evident from increasing cumulative
recovery of Zn with reagent dosage in Figure 11d. Although grain liberation size experiments were
not conducted (Section 2.5.3.—Subsamples for Flotation), it should be noted that the results obtained
from both the elemental analysis and mineral mapping indicate that 0.16–0.5 mm showed higher
recovery of sphalerite at reagent dosage of 3 g/kg. Mineral map of float sample after flotation on tailings
demonstrated the main mineral to be calcite (88.6%) and minor minerals to be dolomite, sphalerite,
galena, and quartz with total percentage less than 15% (Figure 12c). These results show that the
concentrate from tailings did not show the presence of sphalerite, which can be exploited economically.

4. Conclusions

The present research investigated the reuse potential of the extractive waste present at the
abandoned mining site in Gorno (northwestern Italy). This study assessed the impact of fine fractions
coming from waste rocks and tailings on plants by using it as a soil additive. On the other hand,
the coarse waste rock samples (crushed to various size fractions) and tailings were also dressed using
shaking table and flotation. Tailings showed lower recoveries of analyzed elements compared to waste
rock in the shaking table experiments. The flotation experiments showed that the recovery for Cd,
Ga, and Zn was less than 50% for waste rock (in size fractions 0.063–0.16 mm and 0.16–0.5 mm) and
tailings samples at reagent dosage of 1 g/kg at. However, cumulative recovery was considerably
increased by increasing reagent dosage consecutively. On the basis of these experiments, it can be
proposed that tailings should be used as soil additive with the addition of fertilizers and amendments
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to soil. However, for the recovery of metals from waste rock samples of Gorno, flotation should be
used as the preferred separation method. The current research, thus, provides insights into recovery
potential present at the site using wet shaking table and froth flotation. It also lays the foundation
for future research, which should analyze other methods of dressing activities and recovery of RM
such as bioleaching, hydrometallurgy, oil agglomeration flotation, etc. that can be used on the basis of
economic and environmental feasibility, which were not applied in the present work.

Finally, the present investigation frames the opportunities for realizing a sustainable and resilient
circular economy for extractive waste management. It is an approach that integrates innovation across
geological, soil science, mineralogical, and technological domains. The transformation towards a
circular economy needs advancements in filling the knowledge gaps of the factors that affect the way
waste is managed. The present work highlights the opportunity to consider extractive waste facilities
as “ore bodies” to exploit. Recovery of raw materials can also lead to remediation of the investigated
area, decrementing the environmental impacts associated with extractive waste facilities [65]. Thus,
the recovery of RM and reclamation operations can be strategically integrated for the requalification
and future management of the damaged area [66]. By combining (future) valorization of materials
with land re-use, cost efficient resource recovery of extractive waste will potentially generate economic,
environmental, and social benefits [7].
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