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Abstract: A number of bridge infrastructures are rising significantly due to economic expansion
and growing numbers of railway and road infrastructures. Owing to the complexity of bridge
design, traditional design methods always create tedious and time-consuming construction processes.
In recent years, Building Information Modelling (BIM) has been developed rapidly to provide a
faster solution to generate and process the integration of information in a shared environment.
This paper aims to highlight an innovative 6D BIM approach for the lifecycle asset management of a
bridge infrastructure by using Donggou Bridge as a case study. This paper adopts 6D modelling,
incorporating 3D model information with time schedule, cost estimation, and carbon footprint analysis
across the lifecycle of the bridge project. The results of this paper reveal that raw materials contribute
the most embodied carbon emissions, and as the 6D BIM model was developed in the early stage of the
lifecycle, stakeholders can collaborate within the BIM environment to enhance a more sustainable and
cost-effective outcome in advance. This study also demonstrates the possibility of BIM applications
to bridge infrastructure projects throughout the whole lifecycle. The 6D BIM can save time by
transforming 2D information to 3D information and reducing errors during the pre-construction and
construction stages through better visualisation for staff training. Moreover, 6D BIM can promote
efficient asset and project management since it can be applied for various purposes simultaneously,
such as sustainability, lifecycle asset management and maintenance, condition monitoring and
real-time structural simulations. In addition, BIM can promote cooperation among working parties
and improve visualisation of the project for various stakeholders.

Keywords: building information modelling (BIM); 6D; bridges; planning and scheduling; cost; carbon
emission; life cycle

1. Introduction

Today, increasing amounts of investments are made in infrastructure and real estate due to
economic expansion, rising population, and rising numbers of railing infrastructure [1]. Yet, the
expansion of such construction is also increasing the severity of the climate change issue. In fact,
completion of infrastructure projects, such as mega-bridges, requires significant raw materials and
machinery, which will, in turn, create considerable volumes of greenhouse gas (GHG) emissions.
GHG emissions do not only happen during the manufacture stage, but also occur at other stages of
the construction process including construction, operations, maintenance, and the final renovation or
demolition stage [2].

Presently, it is widely accepted that lifecycle assessment (LCA) is a useful method to evaluate the
carbon footprint across the full lifecycle of a product, process or activity [3]. Performing the lifecycle
assessment of a building or an infrastructure requires the measurement of the carbon footprint and other
environmental effects. Nonetheless, conducting LCA in the Architecture–Engineering Construction
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(AEC) industry is more complicated compared to the manufacturing industry [4] because of the
variety of materials and energy sources, different suppliers, the number of stakeholders, and different
benchmarking protocols and standards [5].

The traditional construction method (the 2D drafting method) is one of the most complex
construction techniques without a standardised data exchange platform, which is one of the main
causes of project delays, cost overruns, and onerous man-hours [6]. Bridges are a typical example with
a high rework rate due to their complexities. However, Building Information Modelling (BIM) offers
the potential to decrease project costs, increase productivity, increase project quality, and reduce project
delivery time [7]. Also, in Section 2.29 of the comprehensive Construction Strategy published by the UK
Government in 2011 [8], BIM is mentioned as the way forward to achieving 20% efficiency savings in
the industry. With increasing construction of mega-bridge projects around the world, a well-designed
framework integrating the BIM technology and LCA needs to be applied to these projects to satisfy all
stakeholders and ensure a sustainable outcome.

This paper primarily focuses on the adoption of BIM technology and lifecycle analysis for Donggou
Bridge in Donggou, China to improve the sustainability of the bridge throughout its entire lifecycle.
Although this study is limited to information from the adoption of 6D modelling in the context of
Donggou Bridge, the methodology and the approach of the study will serve as a primary example
of the potential of BIM for mega-bridge construction. To transfer the traditional 2D design files of
the bridge to a 3D model containing the time schedule, cost schedule and GHG emissions, detailed
information about each important element, component and activities throughout the bridge’s life span
will be collected.

2. Background Information of the Bridge Infrastructure and Assumptions

The bridge infrastructure is located at Liangzi Lake District in Donggou town, Ezhou City, China.
Donggou Bridge is a double-lane concrete box-girder structure bridge with a total length of 140 m,
bridge deck width of 12 m and bridge height above the river of 8m. The bridge was designed to
withstand a 60 km/h traffic flow and have a 2% bridge deck slope on the two side spans. According to
the General Specifications for Design of Highway Bridges and Culverts (JTG D60-2015) [9] in China,
the design service life span of such a bridge is 100 years. However, the frequent high volume of traffic
and overloading of vehicles generate the assumption that the bridge would have a shorter lifecycle
of 30 years. It is also assumed that the bridge would undergo regular maintenance, such as bridge
inspection, bridge cleaning, and clearing of drainage areas, every five years at the cost of 10,000 Chinese
Yuan (CNY); and, maintenance, as well as rehabilitation, such as bridge repair and repainting every
fifteen years at the cost of 200,000 CNY. Lastly, since the bridge project was completed seven years ago
and information on the specific time schedule was unavailable, the authors generated an estimated
construction timeline based on previous experience on a similar length bridge project.

3. Literature Review

3.1. Building Information Modelling (BIM)

BIM is an approach for creating an intelligent 3D model and managing digital information during
the entire lifecycle of a project [10].

In recent years, many studies have identified that using BIM technology could provide huge
benefits for budget-saving and risk identification. Applying BIM can help to directly extract the
take-offs and management from the model [11]. In 2010, Sacks et al. presented a matrix framework
showing the interaction between lean construction and BIM and also its benefits [12]. Marzouk and
Hisham [13] mentioned the tremendous benefits of BIM for all project parties, regarding easing the
creation of different design alternatives within shorter periods and work required; reducing site errors;
and producing a final building information management model at the operation and maintenance
stage. Azhar [7] found that the average return on investment of the BIM projects examined reached
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634%, and also significant time saving and cost avoidance. Azhar et al. [14] presented an overview of
BIM technology within the project lifecycle. They advanced several benefits of using BIM, including
identification of potential hazards and the creation of a safety plan, the development of a detailed
operation sequence plan, continuous information updates which can later be used during operation
and maintenance, and the generation of a more efficient operation and maintenance plan to avoid
the loss of the lifecycle cost. In a nutshell, the future of BIM is promising for sharing detailed and
structured information and for the continuous information updates of projects. Doumbouya et al. [15]
maintained that the lifecycle stages of AEC projects encompass inception, briefing, design, production,
maintenance, and decomposition. BIM is central to the asset lifecycle [16]. It is an information platform
to generate and equally distribute required information among all stakeholders.

3.2. BIM Adoption for Bridge Projects

Chen and Shirolé [17] specified the benefits of using 3D bridge information modelling compared to
traditional 2D drafting. These benefits include the fact that tedious time-consuming error-prone manual
data re-entry can be avoided, and all product information is located within the same file for easier
information sharing during the whole lifecycle of the project. Marzouk and Hisham [18] presented the
application of BIM for the cost and time management of bridge infrastructure, with a five-dimensional
approach (3D plus time and cost) using the BIM software. Zou et al. [19] demonstrated the benefits
of using BIM in the risk management of bridge projects. They emphasised that 3D visualisation and
4D construction scheduling facilitate risk identification, risk analysis and communication between
different parties at an early stage. Further, they claimed that integrating an Risk Breakdown Structure
(RBS) and BIM can provide crucial information for risk management and decision making. Combining
BIM technology with the traditional bridge design method will improve the efficiency of bridge projects
to ensure that changes are easily affected in the case of construction conflicts. Also, the 5D information
generated from the BIM model will improve the accuracy of budget estimation at the design stage.

3.3. Lifecycle Assessment Application

According to the ISO 14040 [20] framework, four steps are required to generate a lifecycle
assessment, including goal and scope definition, Lifecycle Inventory (LCI), Lifecycle Impact Assessment
(LCIA) and interpretation. Hammervold et al. [21] presented a detailed environmental lifecycle
assessment comparison case study of three constructed bridges with three different structures. The LCA
results showed that the materials of the bridge structure constituted its main environmental impact
throughout the bridge’s lifecycle, whereas for a residential building, the operation stage comprised
the primary share [5]. However, simply applying low-energy materials will not reduce its overall
environmental impact. Blengini and Di Carlo [22] evaluated a low-energy building in Italy and
found that energy consumption during the operation stage was ten times lower than the standard,
while the total environmental impact only reduced by 2.1 to 1 (2.1: 1), which was not relatively high
when compared to the reduced energy consumption. They suggested that although the materials
chosen can reduce the energy requirement, they may increase the embodied energy. Means and
Guggemos [4] indicated that an LCA benchmark is needed for each building type to determine the
building’s environmental impact prior to construction and establish a standard value for comparison.
Hence, the current LCA tools can only offer limited functions in the AEC industry compared to full
functionality in the manufacturing industry.

3.4. BIM Adoption and Implementation with Lifecycle Assessment

It is difficult to perform the lifecycle assessment of a building because of the complex dataset
and data process. Blengini and Di Carlo [22] advanced that it is challenging to develop LCA for
buildings because of different materials and processes, the unique design or the purpose of users.
However, BIM technology can meet the need for varied information input at different lifecycle stages
within a single model. Presenting an LCA case study, Wang et al. [23] used BIM to construct the basic
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model of a university office building and extracted necessary information, such as material quantities.
This information was then imported into the Autodesk Ecotect to generate the LCA result and use it to
compare a lifecycle performance. Antón and Díaz [24] also introduced two approaches for integrating
LCA and BIM; the first involves extracting information from the BIM model created to calculate the
LCA performance, and the second requires inputting the environmental properties of the materials
into the BIM. The first approach is more accurate but more complex, whereas the second approach can
only have an effect in the early stages of a building’s lifecycle. Kaewunruen and Xu [25] conducted
a BIM-based sustainability evaluation of King’s Cross Station. The final 6D Model of King’s Cross
Station includes a 3D model of the railway station. Cost estimates and carbon footprint are analyzed.
The study provides reasonable guidance flor BIM adoption with LCA implementation.

4. Methodology

This section introduces the process of developing the Donggou Bridge information modelling.
A 3D model containing the digital information database was developed. All the data generated from
various sources can be used within the bridge’s entire lifecycle. For example, the design of the bridge
can be included in the model from the pre-construction stage, construction stage, and operation stage.
The methodology adopted in this study is based on the approaches proposed by Kaewunruen and
Xu [25] and Yang et al. [5]. However, they applied the approaches on residential buildings and railway
station buildings, which was fully supported by traditional software in the market, while the software
is not designed for bridge construction. Therefore, this study will adjust some parts of the software.

4.1. BIM Modelling

Based on 2D drawings of the Donggou Bridge, a lean 3D model simulation was created using the
Revit 2016 software. As Revit is often used for commercial buildings, this study established specific
families with the exact data of the 2D drafting obtained and organised all the components into a
project model. Then, the families were assembled and installed together; and the rebars of the main
components, the box girders, and the substructure were added to the main structure. Finally, the
coordinated information on the materials was added to the family model.

The fourth dimension was then included based on the 3D model developed using Revit 2016
and Navisworks 2016. The time schedule was generated by extracting the model information from
the Revit software and inputting this information into the Navisworks 2016 software. A construction
schedule was then added to the 3D based model using the procedure and guidance online.

Further, a fifth dimension comprised the 4D model and the cost data. The cost data was mainly
divided into two categories—the raw materials cost data based on the market price of the raw material
types and other cost data describing, mainly, the cost of the machinery. The sum of these two categories
generates the rough budget estimation of the bridge project.

4.2. BIM-Based Data Extraction for the LCA

In this section, a method is presented to extract the data needed for the LCA, illustrated by
the project scope order. Also, the method to evaluate the greenhouse gas (GHG) emissions were
based on the UK Government GHG Conversion Factors (See Table 1) [26]. The carbon footprint was
estimated using a general carbon emissions equation proposed in the Department for Business Energy
& Industrial Strategy (BEIS) [26]:

GHG emissions = activity data × emission conversion factor. (1)
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Table 1. Greenhouse gas (GHG) factors for electricity and diesel [26].

Activity Country Unit Year kg CO2e kg CO2

Electricity generated UK Kwh 2018 0.28307 0.28088
Diesel (100% mineral diesel) UK Litres 2018 2.68779 2.6502
Fuel oil UK Litres 2018 3.17799 3.16633

4.2.1. Planning and Design Stage

In this stage, the main environmental factor was fossil fuel consumption during the early field
investigation trips. The GHG emissions will be calculated based on the investigation trip counts and
fuel consumption per trip.

4.2.2. Pre-Construction Stage

In this stage, the GHG emissions were mainly from the embodied energy of the raw materials
during the production and manufacture stage of the materials. The embodied emissions factors (see
Table 2) were obtained from Hammond and Jones [27].

Table 2. The embodied CO2e factors [27].

Material Unit Kg CO2e

Concrete C30 m3 316.8
Concrete C55 m3 362.4
Rebar kg 1.86

4.2.3. Material Transportation Stage

The GHG emissions in this stage were mainly from transportation, including trucks used for
delivering the rebars before the construction stage, concrete delivery during the construction stage and
waste evacuation after the construction stage. Since the material factory, construction site, concrete
plant, and the disposal site are all located in Ezhou City, the distances from the material factory, concrete
plant, and disposal site to the construction site were assumed to be 50, 10, and 40km, respectively.

4.2.4. Construction Stage

The GHG emissions were mainly from the machinery used at the construction stage, including
the drilling machine, welder, bar straightening and cutting machine, and crane trucks.

4.2.5. Operation and Maintenance Stage

Unlike commercial or other operational infrastructures such as railway stations, the cost of bridge
infrastructure during operation can be neglected, as there is no significant cost involved at the operation
stage. For periodic maintenance, the cost was estimated based on the types of activities.

4.2.6. Demolition Stage

Li and Liu claimed that 80% of the demolition materials from the construction site are treated as
disposable materials, and 20% are treated as recyclable materials [28]. Based on their study, the GHG
emission was calculated using the following equation:

GHG emission in demolition stage = GHG emission in construction stage × 8.95%. (2)

5. Results

A 6D BIM model comprising the 3D model of the Donggou Bridge, the time schedule, cost schedule,
and carbon footprint evaluation was generated. With all the information collected and generated by
the Revit and Navisworks, the results are presented below.
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5.1. Bridge 3D Model

Based on 2D drafting of the bridge infrastructure, a 3D simulation model containing the 2D
information in Level of Development (LOD) 300 [29] can be created. Figure 1 shows the LOD 300 3D BIM
model simulation. Each component with its unique information was generated using Revit, and this
software can also help designers or constructors to visualise the complex structure by examining
individual components separated from the whole structure (see Figure 2).

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 13 

5.1. Bridge 3D Model  

Based on 2D drafting of the bridge infrastructure, a 3D simulation model containing the 2D 

information in Level of Development (LOD) 300 [29] can be created. Figure 1 shows the LOD 300 3D 

BIM model simulation. Each component with its unique information was generated using Revit, and 

this software can also help designers or constructors to visualise the complex structure by examining 

individual components separated from the whole structure (see Figure 2). 

 

Figure 1. Complete 3D model of Donggou Bridge. 

 

Figure 2. Individual component 3D view. 

5.2 Donggou Bridge Construction Schedule and the 4D Model  

After the model of Donggou Bridge was generated, a new dimension was added to the 3D 

model. The time factor, as the fourth dimension, is suggested to generate and evaluate the overall 

constructability [30]. Adding the information on time as the fourth dimension to the 3D BIM model 

can help to identify possible mistakes or conflicts in the early stages of the project’s lifecycle and help 

associated stakeholders to optimise the construction as much as possible [31]. After extraction of the 

3D model information from Revit 2016, the 4D simulation was completed using the Navisworks 

software. The construction status was visualised in Navisworks following the preparation of the 

construction schedule in the early stages, and by editing the actual start and end data in Navisworks 

during the construction stage, the constructor can adjust the construction progress to delay or 

proceed with the proposed construction schedule. Figure 3 and Figure 4 show the estimated 

construction schedule. 

Figure 1. Complete 3D model of Donggou Bridge.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 13 

5.1. Bridge 3D Model  

Based on 2D drafting of the bridge infrastructure, a 3D simulation model containing the 2D 

information in Level of Development (LOD) 300 [29] can be created. Figure 1 shows the LOD 300 3D 

BIM model simulation. Each component with its unique information was generated using Revit, and 

this software can also help designers or constructors to visualise the complex structure by examining 

individual components separated from the whole structure (see Figure 2). 

 

Figure 1. Complete 3D model of Donggou Bridge. 

 

Figure 2. Individual component 3D view. 

5.2 Donggou Bridge Construction Schedule and the 4D Model  

After the model of Donggou Bridge was generated, a new dimension was added to the 3D 

model. The time factor, as the fourth dimension, is suggested to generate and evaluate the overall 

constructability [30]. Adding the information on time as the fourth dimension to the 3D BIM model 

can help to identify possible mistakes or conflicts in the early stages of the project’s lifecycle and help 

associated stakeholders to optimise the construction as much as possible [31]. After extraction of the 

3D model information from Revit 2016, the 4D simulation was completed using the Navisworks 

software. The construction status was visualised in Navisworks following the preparation of the 

construction schedule in the early stages, and by editing the actual start and end data in Navisworks 

during the construction stage, the constructor can adjust the construction progress to delay or 

proceed with the proposed construction schedule. Figure 3 and Figure 4 show the estimated 

construction schedule. 

Figure 2. Individual component 3D view.

5.2. Donggou Bridge Construction Schedule and the 4D Model

After the model of Donggou Bridge was generated, a new dimension was added to the 3D
model. The time factor, as the fourth dimension, is suggested to generate and evaluate the overall
constructability [30]. Adding the information on time as the fourth dimension to the 3D BIM model
can help to identify possible mistakes or conflicts in the early stages of the project’s lifecycle and help
associated stakeholders to optimise the construction as much as possible [31]. After extraction of the 3D
model information from Revit 2016, the 4D simulation was completed using the Navisworks software.
The construction status was visualised in Navisworks following the preparation of the construction
schedule in the early stages, and by editing the actual start and end data in Navisworks during the
construction stage, the constructor can adjust the construction progress to delay or proceed with the
proposed construction schedule. Figures 3 and 4 show the estimated construction schedule.
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5.3. Generating the Cost Schedule of Donggou Bridge and the 5D Model

For a bridge infrastructure design, most of the cost was from the raw materials and rented
machinery involved in the pre-construction and construction stages. Since the cost was mostly
unassociated with the operation of the bridge, the cost from the operation and maintenance stages
was mainly the maintenance cost. Figures 5–7 illustrate the cost schedule based on the raw materials
generated from the BIM 5D model. Using 5D modelling in the Revit software to generate the cost
schedule, the cost estimation for each raw material is ¥943,500 for C30 concrete, ¥902,436 for C55
concrete and ¥903,459 for rebar materials. The concrete constituted 67.1% of raw material costs
(see Figure 8). As there is no budgeted amount for demolition cost, it is assumed to be 20% of the
construction cost. Lastly, adding other costs, such as the maintenance fees, transportation costs in other
stages, and the cost at different stages of the bridge infrastructure, is shown in Figure 9. The Figure
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shows that most of the total cost/budget at 77% for the bridge infrastructure design was expended at
the construction stage.
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5.4. Generating the Carbon Emission with the 6D BIM Model

The sixth-dimensional information is the carbon emission throughout the lifecycle of the bridge
infrastructure. The carbon emission in the bridge project will mainly be divided into two categories: the
embodied carbon emission of the raw materials and the carbon emission generated from the machinery.
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5.4.1. Assessment of Embodied Carbon Emissions from the Raw Materials

The embodied equivalent CO2 emission from the raw materials was calculated based on the CO2e
factors from Hammond and Jones [27]. The CO2 emission results obtained from the BIM 6D Model
were 645.55t embodied carbon emission from C30 concrete, 589.41t embodied carbon emission from
C50 concrete, and 424.55t embodied carbon emission from rebar materials (see Figures 5–7).

5.4.2. Assessment of Embodied Carbon Emission from the Machinery

Based on the researchers’ previous experience on a similar bridge project, Table 3 shows the
types and numbers of machines used during the entire lifecycle of the bridge project. The energy
consumption of each machine was generated by reviewing the specifications of common machine
models, and the detailed energy consumptions include 29 litres diesel/hour from the drilling machine,
3.823 kW/h from the welder, 7.5 kW/h from the bar straightening and cutting machine, 76 litres
diesel/hour from a 25t crane truck, 105 litres diesel/h from a 200t crane truck, 0.37 litres diesel/km from
one concrete mixer truck of 12 m3 capacity and 0.071 litres fuel/km from the staff vehicle.

Table 3. Type and number of machines involved in the lifecycle of the bridge infrastructure.

Machines Planning and
Designing Pre-Construction Construction Operation and

Maintenance Demolition

Office facilities 1 1
Staff vehicles 1 1 3 1 1
Plant facilities 1
Drilling machine 4
Welder 4
Bar straightening machine 1
Bar cutting machine 1
25t crane truck 2
200t crane truck 2
Concrete mixer truck 6

By using the generated coefficient factor [26,28–30], carbon emission figures from 6D BIM
modelling throughout the lifecycle of the bridge project are shown below (Figure 10). The figure
shows that the pre-construction, material transportation, and construction stage had the most carbon
emissions. With the 6D BIM modelling created in the early stages, the designer and owners can easily
develop a more sustainable plan without time-consuming work in the late stages, considering both the
cost and carbon emissions.
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shows that the pre-construction, material transportation, and construction stage had the most carbon 

emissions. With the 6D BIM modelling created in the early stages, the designer and owners can easily 

develop a more sustainable plan without time-consuming work in the late stages, considering both 

the cost and carbon emissions. 

Table 3. Type and number of machines involved in the lifecycle of the bridge infrastructure. 

Machines 
Planning and 

Designing 

Pre-

Construction 
Construction 

Operation and 

Maintenance 
Demolition 

Office facilities 1  1   

Staff vehicles 1 1 3 1 1 

Plant facilities   1   

Drilling machine   4   

Welder   4   

Bar straightening 

machine 
  1   

Bar cutting 

machine 
  1   

25t crane truck   2   

200t crane truck   2   

Concrete mixer 

truck 
  6   

 

Figure 10. Carbon emission fractions in different stages. Figure 10. Carbon emission fractions in different stages.
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6. Discussion

Although BIM originated in the 1970s, projects began to implement the approach from the
mid-2000s [14]. Concerning bridge infrastructure, BIM can be used to develop an information platform
for further analysis like the 4D, 5D and 6D models and even to nD, as shown above, and in several
studies. From the results of this study, most of the costs and carbon emissions take place during the
construction and operation stages. To improve cost efficiency, BIM can be used to manage the cost of
the project during construction. At the same time, BIM can help to reduce the rework amount, which
plays an important role in cost management. However, it should be noted that BIM application also
has the cost of complexity and implementation, because BIM can add to the complexity of the work
and staff in various projects need to learn about BIM [32–37]. This is consistent with the study by
Fanning et al. [38] and Liu et al. [39]. To reduce carbon emission, low-carbon material can be used to
construct the project [40]. Using clean energy or renewable energy instead of fossil fuel will help to
reduce carbon emissions, such as the use of machines with fuel cells or electric machines. BIM can
also serve as an information platform to create a beneficial environment for different stakeholders to
exchange information and collaborate to fix a potential risk or develop a better plan for the project in
the early stages. Adopting BIM technology with LCA can help to achieve a satisfying outcome for all
stakeholders. Nevertheless, research on bridge infrastructure with BIM adoption and LCA remains
limited. This study only proposed a primary approach to generating the LCA of a bridge project using
6D BIM methods.

In a nutshell, the 6D BIM approach can be beneficial for avoiding the errors of manual re-entry,
reducing the time spent on complex designs, identifying the risk in advance, reducing the cost of
capital and carbon emissions, and generating a better information exchange platform.

7. Conclusions

This research developed the first 6D BIM approach for bridge infrastructure. Although
investigations were limited to the Donggou Bridge, the study indicated a path to adopting BIM
technology on constructed or proposed bridge infrastructures. Evidently, the 6D BIM approach can
potentially release the bridge designer from tedious and time-consuming work, such as extracting
information from countless 2D drafts and preventing data errors in the early stages of the bridge’s
lifecycle. Adopting the BIM technique on bridge projects will also help stakeholders, particularly
designers and owners, to visualise the bridge structure before construction. Regarding bridge project
modelling, however, BIM is limited, as the software is more compatible with a standard building
environment. BIM software needs further development to improve its compatibility with complex
bridge modelling, such the ability to automatically detect the complex beam family and create a
faster approach for connecting rebars to the bridge structure, instead of attaching them individually.
Nonetheless, BIM modelling is a new technique which requires further investigation to discover its
real potential for all stakeholders, and it is expected that it will start a revolution in digital design for
the AEC industry.
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