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Abstract: Earthquake is one of the most hazardous natural calamity. Many algorithms have been
proposed for earthquake prediction using expert systems (ES). We aim to identify and compare
methods, models, frameworks, and tools used to forecast earthquakes using different parameters.
We have conducted a systematic mapping study based upon 70 systematically selected high quality
peer reviewed research articles involving ES for earthquake prediction, published between January
2010 and January 2020.To the best of our knowledge, there is no recent study that provides
a comprehensive survey of this research area. The analysis shows that most of the proposed
models have attempted long term predictions about time, intensity, and location of future earthquakes.
The article discusses different variants of rule-based, fuzzy, and machine learning based expert
systems for earthquake prediction. Moreover, the discussion covers regional and global seismic data
sets used, tools employed, to predict earth quake for different geographical regions. Bibliometric and
meta-information based analysis has been performed by classifying the articles according to research
type, empirical type, approach, target area, and system specific parameters. Lastly, it also presents
a taxonomy of earthquake prediction approaches, and research evolution during the last decade.

Keywords: Expert systems; Systematic Mapping Study (SMS), earthquake prediction; seismic data;
Early-warning systems

1. Introduction

Earthquakes have been one of the most hazardous but least predictable natural disaster [1,2].
The occurrence of catastrophic earthquakes results in casualties, massive damage to the infrastructure,
the vanquishing of societies in a flash and a sudden downfall in the country’s economy [3,4]. There are
many geographical factors that may cause an earthquake, including ground motion, heavy rainfall,
rock bed material, regional tectonics and altitude [5]. There is a tremendous pressure on geologists and
seismologists for the prediction of the time, place and strength of earthquakes [6]. Many researchers
have claimed to predict earthquakes by observing multiple precursors such as recording the behavior
of animals, observing an increase in temperature, emission of radon gas, and observing the change
in seismicity patterns of the region, etc. References [7,8]. However, it is very hard to generalize and
standardize these prediction algorithms as the precursors do not necessarily appear before every
earthquake [9].

Earthquake prediction is a highly complicated task and many investigators have used different
approaches for making forecasts. Among these different approaches the methods and algorithms that
are based on a variety of expert systems (ES)have exhibited promising results in this area. The literature
survey reveals that different approaches of expert systems including fuzzy, rule-based, neuro-fuzzyand
machine/deep learning methods have been used to forecast future earthquake from historic and
instrumental data. In practice, ES have also been efficiently used for risk analysis and assessment in
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multiple areas such as, information technology (IT) [10], engineering [11], economics, healthcare [12],
and civil engineering [13–15]. The motivation behind applying expert system technique for earthquake
prediction lies in its noticeable effectiveness and reliability [16] of such approaches in other disciplines.

This research presents a systematic mapping study to facilitate the researchers and practitioners
in understanding the fundamentals of earthquake prediction systems; evolution of research in this
area, and prominent research directions in this area of research. To these ends, it presents an analysis
of eighty four articles while presenting a classification scheme showing multiple aspects covered in
the literature addressing earthquake prediction. The study presents a summary of various aspects
of the expert systems given in multiple articles for earthquake prediction. It also determines the
most frequently used variants of ES for the prediction of earthquake while highlighting the accuracy
in prediction results claimed in multiple articles. It is pertinent to mention that to the best of our
knowledge, no mapping study has been found about using ES for earthquake prediction. Furthermore,
this mapping study not only covers the bibliometric aspects of the selected research articles, but also
presents a taxonomy of approaches, variants of ES, their strengths and comparative analysis of their
effectiveness in prediction accuracy, and the widely used seismic data sets. Lastly, the open research
areas and future directions in this area have also been presented to the researchers working in this area.

There are certain limitations of this survey. These limitations relate to the selection of primary
studies [17]. In order to ensure that as many relevant publications as possible have been included,
we have identified search terms in several iterations. Terms related to ES and earthquake prediction
were used in the search string. However, the list might not have been complete, and additional or
alternative terms might have altered the final list of papers found [18]. The search was performed
by using the Elsevier Scopus Digital Library. According to the statistics of the publications retrieved,
we believe that most of the research on earthquake can be found in this electronic library. However,
certain papers may have been overlooked due to the subscription limitations. Another threat is related
to the handling of duplications, which might have slightly changed our results. Kappa measure has been
used for making decisions about possible duplications. The data has been extracted from the primary
studies and classified to generate the final results. The decision about which data to collect and how to
classify the papers therefore depended on the judgement of the authors conducting the systematic
mapping study [19]. The Kappa coefficient has resulted in 0.95 which indicated an agreement among
the authors about data inclusion. Data extraction from prose could also result in a misclassification,
but this problem was addressed by developing a classification scheme on the basis of widely accepted
guidelines [17] and terminology proposed for use in [20]. It would, therefore, only have a minor
influence on the classification scheme developed in this mapping study. Validity limitation refers to
the missing studies, incorrect data extraction [21] and determining the incorrect relationship among
multiple facets. To overcome this threat, we have clearly described the activities involved in publication
selection and data extraction in multiple sections. The traceability between the data extracted and
the conclusion drawn has been presented through bubble plots and frequency plots. The quality
assessment problem is concerned with the quality of study selection [5,22,23]. The systematic mapping
results were considered in regard to the seismic domain, and the validity of the conclusions drawn
concerns the earthquake prediction context only. To focus on state of the art methods, we have applied
time restriction in searching for published studies and have included the papers published during
January 2010 till January 2020. The search string and the classification scheme presented in this paper
may serve as a starting point for researchers working on the problem of earthquake prediction, and they
can search for and categorize additional papers accordingly.

The rest of the article has been structured in the following manner. Section 2 presents the
background of this study, while the research methodology of this study has been presented in Section 3.
The analysis of all the selected and reviewed articles has been presented in Section 4. The analysis
about the findings of the literature review has been discussed in Section 5. Lastly, the article has been
concluded in Section 6.
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2. Background

In this section, we have presented the general outline of the research work about using expert
system for earthquake prediction. Multiple approaches, including rule-based, fuzzy, neuro-fuzzy and
machine / deep learning methods have been used for earthquake prediction.

2.1. Fuzzy Expert System (FES)

The concepts of fuzzy set and fuzzy logic were introduced in 1965 by [20]. Fuzzy expert system
accepts input as crisp variables and converts it into fuzzy variables. Fuzzy inference engine applies
the rules suggested by an expert to formulate the knowledge base. Fuzzy variables combined with
linguistic variables to generate membership functions. Techniques based on Fuzzy logic have the
benefits over multiple procedures due to their ability to combine with linguistic variables. These fuzzy
variables would be converted back into the crisp variable to generate output through the process called
defuzzification. Fuzzy logic is more suitable in the situations where a greater number of uncertainties
have been involved, such as, earthquake prediction and in the scenarios where an approximate
but quick solution is required. Fuzzy logic is not a logic that is fuzzy itself, but a logic that can be
used to demonstrate fuzziness [21]. The vagueness of fuzzy logic has been highlighted in [10] by
examining the events that cannot be recorded statistically such as crack in the undergroundfault, etc.
A new attenuation relationship has been proposed in [8] using three fuzzy input sets including
epicentral distance, earthquake magnitude and intensity using earthquake data set of Taiwan and
United states of America (USA). A normalized fuzzy ground motion model has been demonstrated
using a rational design tool through a combination of natural language with seismic data statistics to
quantify response frequency. The earthquake pattern in the Zagros range has been examined in [9]
using fuzzy rule-based ES model for some earthquakes. The proposed model has been evaluated using
the Molchan statistical procedure by comparing complicated reasoning procedure of the forecasting
model with knowledge simulation provided by human experts using the datasets of Iran. A rock burst
forecasting model has been presented in [13] by studying the seismic features of coal mining in
China. In this study, Gaussian shaped membership function has been combined with the exponential
distribution function using reliability theory. The comprehensive forecasting result was obtained
by integrating the maximum membership degree principle (MMDP) and the variable fuzzy pattern
recognition (VFPR) method. The performance of the proposed model has been evaluated using seismic
data collected over the period of four months. The proposed model has been able to forecast the rock
burst incident in the coal mine of China. Multiple algorithms have been combined for development of
the hybrid prediction model [24,25]. Ionospheric disturbance has been examined in [26] and a fuzzy
logic-based gradient descent method has been proposed to forecast the ionospheric change parameters.
The gradient descent estimated values were used to tune the membership function. The satisfactory
performance has been observed during evaluated of the proposed model using data collected from
two geomagnetic storms on the low latitude. Reference [1] has claimedearthquake prediction on the
bases of the classification of seismicsignals.

2.2. Rule Based Expert System (RBES)

In RBES domain knowledge is represented by a set of rules and the current situation is presented
with the set of facts stored in the database. An inference engine is responsible to match the rule with the
fact. The fired rule may change the set of facts and add new facts. Many researchers have used rule based
expert system for earthquake prediction. A belief rule based expert system has been presented in [27]
to predict the earthquake under uncertainty. Specific animal behavior in response to environmental
and chemical changes has been examined for earthquake prediction. Reference [20] developed rules
from historical earthquake data using predicate logic. These rules have been mathematically validated
on real time data. Prediction is performed through RBES that takes current earthquake attributes for
prediction of future earthquake.
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2.3. Neuro Fuzzy Expert System (NFES)

Fuzzy logic is combined with neural networks to develop expert systems. Fuzzy logic provided
a high level reasoning procedure by including domain information from the domain expert and
neural network has been used to develop low level computational structures. The Neuro fuzzy
expert system has been used in many articles to analyze multiple aspects of data for earthquake
predictions. Reference [28] combined grid partition, subtractive clustering and fuzzy C-means (FCM)
for the development of models using NFES structure. Reference [5] applied NFES to compute land
sliding susceptibility using statistical index (WI). Reference [22] collected geographical information
to pass through six different membership functions for measuring land sliding susceptibility using
NFES. Many researchers have analysed combination of artificial neural network and fuzzy inference
system [29–32]. Earthquake attribute such as magnitude, depth, longitude and latitude has been
studied in [33] to provide input to NFES for computation of the future earthquake.

2.4. Machine Learning (Ml)

Machine Learning has been widely used for making earthquake predictions due to their ability
to improve over time. With the huge amount of earthquake instrumental data, machine learning
approaches are capable enough to improve efficiency and accuracy in earthquake prediction. Multiple
machine learning methods including, Artificial Neural Network (ANN), Support Vector machine
(SVM), K-nearest neighbour (KNN), Native Bayes (NB) and random forest algorithms have been
exercised for earthquake prediction. Reference [34] applied Artificial Neural Networks, Support
Vector Machines and Random Forests to perform temporal investigations on earthquake catalogue
of Cyprus region and calculated sixty seismic indictors for making short term earthquake prediction.
Reference [35] applied different machine learning algorithms namely support vector machine (SVM),
K-nearest neighbor (KNN), random forest (RF), and Naïve Bayes (NB) algorithms in R programming
language for earthquake prediction using seismic dataset of India. Reference [36] studied the thermal
anomalies that happened before the earthquake occurred in Imphal, India, in 2016 and investigated
multiple seismic facts through satellite data using machine learning algorithms for an earthquake.
Reference [37] collected records of aftershocks of the Kermanshah (Iran) Earthquake and applied
different machine learning (ML) algorithms, including Naive Bayes, k-nearest neighbors, a support
vector machine, and random forests to predict future earthquakes by observing aftershock patterns.
Reference [38] exercised neural networks for earthquake signal detection. Reference [39] listed the
detailed description of the monitoring techniques used for earthquake prediction. References [40,41]
presented a comprehensive review of machine learning methods used for earthquake prediction.
Reference [42] made seismic hazards forecasts by using two different machine learning based methods
for both spatial and space-time prediction of strong earthquakes. Reference [43] determined the
significance of shallow land slide triggers in making earthquake forecasts using machine learning
methods. Reference [44] improved the conventional waveform correlation method and presented a
new method for detection of seismic signals for monitoring the false alarms using machine learning.
Reference [45] identified, classified and reviewed the prominent machine/deep learning models used in
energy systems. Reference [46] discussed multiple artificial intelligent models utilized for hydrologic
model prediction in past decade. Reference [47] highlighted the opportunities and challenges presented
by big data for informed decision-making. Reference [48] developed a food forecast model using
multiple optimization methods.

3. Research Methodology

The objective of systematic mapping study is to present an overview of the research area and
quantify the results presented by the selected studies. We intend to determine the research trends by
mapping the frequency of publications over time. For this purpose, we have adopted the methodologies
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of [45,46] and performed a number of activities as shown in the Figure 1. Our main goal is to provide
deep inside of expert system based solutions proposed for earthquake prediction in literature.
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3.1. Defining Research Questions

We have addressed three research questions in this mapping study. These research questions
have served as a guide for the classification of research articles. A set of research questions has been
described in Table 1.

Table 1. Set of research questions (RQs) and their motivation.

Research Question (RQ) RQ Statement Motivation

RQ 1 What are the bibliometric key facts of expert systems (ES) based earthquake prediction publications?

RQ 1.1 How many studies have been contributed from
January 2010 to January 2020?

The intentions of this research question is to find out
the number of publications that have been

contributed in the selected time period and the main
venues where the studies have been published.RQ 1.2 What are the venues where these studies

have been published?

RQ 2 Which research type facets do the identified publications address?

RQ 2.1 What is the type of research conducted in
the publication?

The main intention is to categorize the selected
publications through the schema established

by [17,49]. Therefore, we use the research type facets
given by Zhang et al. [49]. Based on these type facets,

we wanted to find out multiple research contexts,
including the type of the research, empirical type of
the research, approaches used in the research and

areas targeted by the researchers for data extraction.

RQ 2.2 What is the empirical type of the research
conducted in the publication?

RQ 2.3 What approach has been used
by the researcher?

RQ 2.4 Which area has been targeted by the research
for data collection?

RQ 3 What is the type and other key aspects of proposed Expert System (ES) in the classified publications?

RQ 3.1 What type of expert system has been proposed
in the selected studies?

The main aim is to determine the types of proposed
ES used for earthquake prediction in the articles

published during January 2010 till January 2020. This
question is helpful in highlighting the other

parameters of the proposed ES like input domain,
number of input attributes passed, type of the input
attributes, prediction logic, the tools and techniques

used in the articles have been categorized.

RQ 3.2 Which input domain does the
proposed ES address?

RQ 3.3 How many input attributes are passed to the
proposed ES?

RQ 3.4 What is the type of the input attributes passed
to the proposed ES?

RQ 3.5 Which type of prediction logic has been used by
the proposed ES?

RQ 3.6 Which tool or technique has been used to
develop the proposed ES?

3.2. Search and Selection Strategy

After defining research questions, next activity was to select the sources from where the articles
would be retrieved. For this purpose, we have adopted the searching strategy given in [47,48] and
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have developed a comprehensive search string based on the key terms given in Table 2. Articles have
been collected from Elsevier Scopus digital library (www.scopus.com).The terms stated in Table 2 have
been used to develop the search string for searching articles from the given sources.

Table 2. Distinct key terms used in developing the search strings.

AND Terms OR Terms

Earthquake
Rule based, Fuzzy, Frame based

Machine Learning, Deep learning, Expert system
Seismic, Tremor

Indicator Precursor, Feature
Prediction Predict* (* means wildcard)

(“Rule based” OR “*Fuzzy” OR “Frame based” OR “neural” OR “machine learning” OR “deep learning” OR
“Expert system”) AND (“Earthquake” OR “Seismic” OR “Tremor”) AND (“Predict*”) AND (“Indicat*” OR “Precursor”
OR “features”)

3.2.1. Identification of Search String

The primary keywords were selected as key identifiers of work in the field of earthquake prediction
using expert system. A set of distinct keywords is listed in Table 2.

This mapping study has been conducted to examine the literature about earthquake prediction
using expert systems. We have used multiple key terms like fuzzy, frame based and rule based methods
for extracting such articles that describe the use of expert systems for earthquake prediction, but does
not necessarily have an expert system explicitly written in their titles. In the same way, earthquake has
been presented as a seismic event or a tremor in some studies, so we have also included these keywords.
The change in the behaviour of precursors has been studied in many articles for earthquake prediction.
Therefore, we have also included a few keywords describing the indicators of future earthquakes.
Search string has been developed after defining key terms. The following search string has been used
to search articles from Elsevier Scopus digital library. We have included the articles published from
January 2010 till January 2020.

3.2.2. Screening and Selection Criteria

Screening of the articles has been performed after retrieval. The main purpose is to select most
relevant articles. Every paper was retrieved and evaluated by considering title, abstract, keywords,
introduction and conclusion. The inclusion and exclusion criteria given in Table 3 have been used for
article selection. We have included only those articles that satisfy the inclusion criteria given in Table 3.
We have excluded those papers which have been retrieved from multiple sources or representing
different stages of the same project. For inclusion of the articles that have identical abstracts we have
calculated Kappa coefficient. The papers that are not written in the English language have also not
been included. The thesis has also been excluded because they normally cover multiple aspects of
the problem. Papers with unclear methodology and not satisfying our quality criteria have also
been excluded.

Table 3. Inclusion and Exclusion Criteria.

Inclusion Criteria
(IC)

Criteria Description

IC1 Articles in which an expert system has been developed for earthquake prediction
IC2 Articles in which earthquake precursors have been analyzed
IC3 Articles presenting unique and new ideas
IC4 Literature published as book chapter and technical reports for earthquake prediction
IC5 Articles with identical abstracts (on the basis of Kappa coefficient)

Exclusion Criteria
(EC)

EC1 Duplicates and identical titles
EC2 Papers not in English language
EC3 Thesis (cover several different aspects)
EC4 Papers with unclear methodology
EC5 Papers not satisfying quality criteria

www.scopus.com
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We have taken a good care of article quality selection in the article selection process. To ensure
high quality in article selection, criteria given in [19] have been adopted and elaborated in Table 4.

Table 4. Quality Criteria.

Quality Ranking

Sr. Criteria Type Weight

a. Study Presents contribution
Yes 1
No 0

Partially 0.5

b. Study presents solution
Yes 1
No 0

Partially 0.5

c. The study presents empirically validated results
Yes 1
No 0

Partially 0.5

Search Process resulted in the retrieval of 2137 articles that passed through multiple phases. In the
first phase, our search string has retrieved 2137 research articles. After passing through multiple
screening phases of selection criteria seventy articles have been considered original, non-duplicate,
with clear methodology and satisfying our quality criteria. The coefficient has been calculated to
determine the relevance among the articles. In every screening phase, two authors of this mapping
study have been asked to make judgement about the relevance of the article by selecting any choice from
“accept”, “reject” or “differ” options. In case of difference in the opinion of both judges, comprehensive
discussion has been carried out to a decision point has been reached in the form of acceptance
or rejection.

3.3. Data Extraction and Synthesis

It is based on providing a set of answers to the research questions. Table 5 represents the data that
we intend to extract by asking research questions prescribed in Table 1.

Table 5. Data extracted through each research question.

Research Questions (RQs) Data Extracted

RQ 1 RQ 1.1 Number of publications contributed in the given time period has been determined.

RQ 1.2 A main venue where the study has been published has been noted.

RQ 2

RQ 2.1 Research type (solution, evaluation, experience) has been determined.

RQ 2.2 Empirical type (Experiment, survey, case study) has been determined.

RQ 2.3 The approach used (model, method, guideline, framework, tool) has been noted.

RQ 2.4 Seismic zone (global, regional) focused by the study has been determined.

RQ 3

RQ 3.1 Type of the proposed expert system (Fuzzy expert system, rule based expert system, Neuro fuzzy expert system) has been noted.

RQ 3.2 Identification of the input domain i.e., quake or precursive

RQ 3.3 Number of input attributes, i.e., single or multiple that have been passed to the proposed ES for earthquake prediction.

RQ 3.4 Type of the input attributes (numeric or discrete) has been determined.

RQ 3.5 Prediction logic (inductive or deductive) used by the proposed expert system has been noted.

RQ 3.6 Tools and techniques used to develop the proposed expert system given in the studies have been categorized.

RQ1 extracts bibliometric facts, including a number of publications contributed in the period of
ten years from January 2010 till January 2020 and the main venue where the publication has been
submitted e.g., journal, conference, book chapter, etc. RQ1 highlights the trend of the researchers
regarding article submission in the last ten years.

RQ2 deals with various research type facets of the articles, including research type, empirical type,
approach and the targeted area. Type of the research determined that the article has presented a novel
solution or illustrated an extension of already existing technique. Evaluation research examined the
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techniques used in the articles have passed through an evaluation process before its implementation.
Experience papers presented the personal experiences of the author explaining how something has
been done in practice. Empirical type illustrated that an experiment, survey, or case study has been
performed in the selected article. We have also collected the information regarding focused seismic
zone through RQ2. Detailed type facets of the proposed ES for prediction of earthquake have been
listed in the classification Table 6. We have provided a set of distinct keywords in Figure 2 to explain the
contents of Table 6. The relationship between number of publications and the type facets determined
through RQ2 has been shown in Figure 3.
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Table 6. Classification Table.

Ref.

Bibliometric
Facts Type Facets System Specific Information Quality Ranking

Publication
Channel

Publication
Year

Research
Type

Empirical
Type Approach Target Area Proposed ES

type
Input

Domain
Input

Attribute
Input

Attribute type Data Type Prediction
Logic

Tools and
Techniques (a) (b) (c) Score

[1] Journal 2014 Eva CS Mod RL FES PR ML DV Dis IN SW 1 0.5 0.5 2.0

[2] Journal 2017 Eva Ext Met RL FES QE SL DV Num IN AM 1 0.5 1 2.5

[3] Journal 2017 Eva Ext Mod RL Other QE ML DV Num DD SW 1 0.5 1 2.5

[5] Journal 2016 Eva CS Met RL NFES PR SL DV Dis IN AM 1 0.5 0.5 2.0

[6] Journal 2018 Eva Ext Met RL FES QE ML DV Num IN SW 1 0.5 1 2.5

[7] Journal 2015 Eva Ext Mod RL FES QE ML PE Num IN AM 1 0.5 1 2.5

[8] Confe 2012 Sol Ext Met RL FES PR ML DV Dis IN Oth 0.5 1 1 2.5

[9] Journal 2014 Eva Ext Mod RL FES PR ML DV Dis IN SW 1 0.5 1 2.5

[10] Journal 2017 Eva CS Met RL Other QE ML DV Num IN SW 1 0.5 1 2.5

[11] Journal 2017 Eva CS Mod RL FES PR SL DV Dis IN SW 1 0.5 0.5 2.0

[12] Journal 2017 Eva CS Mod RL FES QE ML DV Num IN SW 1 0.5 0.5 2.0

[13] Journal 2018 Sol Ext Mod RL FES QE SL DV Num IN SW 0.5 1 1 2.5

[14] Book 2017 Eva CS Met RL FES PR SL DV Dis IN SW 1 0.5 0.5 2.0

[15] Journal 2017 Exp Sur Met RL FES QE ML PE Dis IN Oth 0.5 0.5 0 1.0

[16] Journal 2013 Exp Sur Mod GL RBES PR SL PE Dis DD SW 0.5 0.5 0 1.0

[17] Journal 2013 Eva Ext Mod RL RBES PR ML PE Dis IN Oth 1 0.5 1 2.5

[18] Journal 2016 Eva Sur Met RL FES QE ML PE Num DD AM 1 0.5 0 1.5

[19] Confe 2015 Eva Ext Mod GL RBES QE ML DV Dis IN SW 1 0.5 1 2.5

[20] Journal 2014 Eva Ext Mod GL RBES QE ML PE Dis IN SW 1 0.5 1 2.5

[21] Journal 2018 Eva Ext Met GL FES QE ML DV Dis DD AM 1 0.5 1 2.5

[22] Journal 2018 Eva Ext Met RL NFES QE ML DV Dis IN SW 1 0.5 1 2.5

[23] Journal 2015 Exp CS Met RL FES QE SL PE Dis IN Oth 0.5 0.5 0.5 1.5

[24] Confe 2016 Exp CS Met RL FES QE ML DV Dis IN Oth 0.5 0.5 0.5 1.5

[25] Confe 2010 Eva Ext Met RL Other PR SL PE Num DD AM 1 0.5 1 2.5

[26] Journal 2017 Sol CS Mod RL FES PR SL PE Dis IN SW 0.5 1 0.5 2.0

[27] Journal 2018 Eva Ext Mod GL RBES PR SL PE Dis IN AM 1 0.5 1 2.5

[28] Journal 2012 Sol Sur Mod GL FES PR ML PE Num IN AM 0.5 1 0 1.5

[30] Journal 2015 Exp Sur Gle GL NFES PR ML PE Num IN SW 0.5 0.5 0 1.0

[31] Journal 2015 Eva Ext Mod RL FES QE ML PE Num IN AM 1 0.5 1 2.5

[32] Journal 2018 Eva CS Mod RL NFES PR SL DV Dis IN SW 1 0.5 0.5 2.0

[33] Journal 2014 Exp Sur Gle GL NFES QE ML DV Num DD SW 0.5 0.5 0 1.0
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Table 6. Cont.

Ref.

Bibliometric
Facts Type Facets System Specific Information Quality Ranking

Publication
Channel

Publication
Year

Research
Type

Empirical
Type Approach Target Area Proposed ES

type
Input

Domain
Input

Attribute
Input

Attribute type Data Type Prediction
Logic

Tools and
Techniques (a) (b) (c) Score

[34] Journal 2020 Eva Ext FW RL Ml QE ML PE Num DD AM 1 0.5 1 2.5

[35] Confe 2020 Eva Ext Mod RL Ml QE ML DV Num DD AM 1 0.5 1 2.5

[36] Journal 2020 Exp CS Met RL Ml PR SL DV Dis DD SW 0.5 0.5 0 1

[37] Journal 2019 Exp Ext Met RL Ml QE ML PE Num IN AM 0.5 0.5 1 2

[38] Confe 2019 Exp Ext Met GL Ml PR SL PE Dis DD SW 0.5 0.5 1 2

[39] Confe 2019 Sol Ext Mod GL Ml QE ML PE Num DD AM 0.5 1 1 2.5

[40] Confe 2019 Exp Sur Gle GL Ml PR ML DV Dis IN AM 0.5 0.5 0 1

[41] Confe 2019 Exp Sur Gle GL Ml PR ML PE Dis DD AM 0.5 0.5 0 1

[42] Journal 2019 Eva Ext Met RL Ml QE ML DV Num DD AM 1 0.5 1 2.5

[43] Confe 2019 Eva Ext Mod GL Ml PR ML DV Dis DD AM 1 0.5 1 2.5

[44] Journal 2018 Sol Ext Met GL Ml QE ML DV Num IN AM 0.5 1 1 2.5

[49] Journal 2019 Eva Ext Met RL NFES PR ML DV Num DD AM 1 0.5 1 2.5

[50] Journal 2013 Exp Ext Met RL FES PR ML PE Num IN Oth 0.5 0.5 1 2.0

[51] Confe 2010 Sol CS Mod RL FES PR SL DV Dis DD AM 0.5 1 0.5 2.0

[52] Journal 2018 Eva Ext Mod RL FES PR ML PE Dis IN Oth 1 0.5 1 2.5

[53] Journal 2011 Sol Sur Mod RL Other QE SL DV Num DD AM 0.5 1 0 1.5

[54] Journal 2019 Exp CS Gle RL Other PR SL PE Num DD AM 0.5 0.5 0.5 1.5

[55] Confe 2010 Sol Ext Met RL FES PR SL DV Dis IN Oth 0.5 1 1 2.5

[56] Confe 2018 Exp Ext FW GL NN QE ML DV Num DD AM 0.5 0.5 1 2

[57] Confe 2018 Exp Sur Met GL Ml PR ML PE Num IN AM 0.5 0.5 0 1

[58] Journal 2018 Exp Ext Met RL NN QE ML PE Num DD AM 0.5 0.5 1 2

[59] Journal 2018 Sol CS Met RL Ml QE ML PE Num DD SW 0.5 1 0.5 2

[60] Journal 2018 Eva Ext Met GL Ml QE ML DV Num IN SW 1 0.5 1 2.5

[61] Confe 2018 Sol Ext Met RL Ml QE ML PE Num DD SW 0.5 1 1 2.5

[62] Journal 2017 Eva CS Mod RL Ml QE ML PE Num DD SW 1 0.5 0.5 2

[63] Confe 2017 Exp Ext Mod GL Ml PR SL PE Dis IN AW 0.5 0.5 1 2

[64] Journal 2017 Sol CS Mod RL NN PR ML DV Num IN SW 0.5 1 0.5 2

[65] Journal 2017 Eva CS Met RL Ml QE ML DV Num DD AW 1 0.5 0.5 2

[66] Journal 2017 Sol CS Met RL Ml PR SL PE Dis IN SW 0.5 1 0.5 2

[67] Journal 2017 Eva CS Met RL NN PR ML DV Num DD AW 1 0.5 0.5 2
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Table 6. Cont.

Ref.

Bibliometric
Facts Type Facets System Specific Information Quality Ranking

Publication
Channel

Publication
Year

Research
Type

Empirical
Type Approach Target Area Proposed ES

type
Input

Domain
Input

Attribute
Input

Attribute type Data Type Prediction
Logic

Tools and
Techniques (a) (b) (c) Score

[68] Confe 2017 Eva CS Mod RL Ml QE ML PE Num IN SW 1 0.5 0.5 2

[69] Confe 2015 Eva CS Met RL Ml QE ML DV Num IN SW 1 0.5 0.5 2

[70] Journal 2015 Eva Ext Mod GL Ml QE ML PE Num IN SW 1 0.5 1 2.5

[71] Journal 2013 Eva CS Mod RL Ml PR ML DV Dis DD SW 1 0.5 0.5 2

[72] Journal 2013 Eva CS Met RL Ml QE ML DV Num DD SW 1 0.5 0.5 2

[73] Journal 2012 Exp CS Met RL Ml PR SL DV Dis DD SW 0.5 0.5 0.5 1.5

[74] Journal 2016 Sol Ext Met GL Ml QE ML DV Num IN SW 0.5 1 1 2.5

Notes: Publication Channel: Confe = Conference; Research Type: Eva: Evaluation, Exp: experience, Sol: Solution; Emperical Type: CS: Case study, Ext: Experiment, Sur: Survey;
Approach: Mod: Model, Met: Method, Gle: Guideline, FW: Framework; Target Area: RL: Regional, GL: Global; Proposed ES type: Ml: Machine learning, FES: Fuzzy expert system, NFES:
Nuero fuzzy expert system, RBES: Rulebased expert system; Input Attribute: ML: Multiple, SL: Single; Input Attribute Type: PE: Primitive, DV:Derived; Data Type: Num: Numeric, Dis:
Discrete; Input domain: QE: Quake, PR: Precursive; Prediction Logic: IN: Inductive, DD:Deductive; Tools and Techniques: SW:Software, Alg:Algorithm.
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We have collected information about the type of ES such as FES, RBES and NFES proposed
for earthquake prediction in the selected articles through RQ3. The key aspects of the proposed ES
including input domain, number of input attributes, type of input attributes, data type, prediction
logic, tools and techniques used for prediction of earthquake have been discussed in Figure 4.
Input domain describes the input variables taken by the system to predict an earthquake. It can be
either ‘Quake variables’ like latitude, longitude, magnitude, primary wave (P-Wave) attributes, etc.
or ‘Precursors variables’ like ionosphere readings, earth’s thermal variations via satellites etc. Input
attributes can be single or multiple. Some systems predict using single quake or precursor variable.
Many articles used multiple input variables for earthquake prediction. Input attributes type can be
primitive or derived. Some techniques directly consume an input parameter and others manipulate
(derive) before use. The proposed ES uses variables in primitive form or transforms it into some other
form before consuming it. The data type can be numerical or discrete. Prediction logic can be inductive
or deductive. Inductive logic has no absolute proof from premises to conclusions, e.g., fuzzy sets.
Deductive prediction logic determined an absolute proof from premises to conclusions
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Figure 4. Relationship between number of studies and system specific parameters of ES.

Classification of Articles

We have classified the articles to determine multiple parameters summarized in Table 6 presenting
the bibliographic values, research type facets, type of the expert system used and other key aspects of
the ES proposed in these articles for earthquake prediction. Quality criteria defined in Table 4 have
also been applied to categorize the articles accordingly. Classification Table 6 had been developed on
the basis of research questions given in Table 1 and the quality criteria prescribed in Table 4.

4. Analysis

The results obtained from the research questions (as given in Table 1) have been presented in
Table 6. All articles have been selected to illustrate their relevance and contribution in the earthquake
prediction process by providing an answer to every research question.

4.1. Basic Analysis

After deep investigationeighty four articles have been selected and main approaches for
earthquake prediction including machine learning, neuro-fuzzy, fuzzy and rule-based approaches
have been reviewed.
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These articles were thoroughly analyzed to answer the research questions (RQs) given in Table 1.
We have summarized the results obtained from RQs in Table 6. A set of distinct keywords to explain
the contents of Table 6 has been given in Figure 2.

Table 6 describes the list of the selected articles and classifies them by extracting bibliometric facts,
type facets, system specific information and quality ranking. Quality scores obtained by every article
have been summed up to find the total score. According to Table 6, the average scores obtained by the
articles are 1.5. The publications having scored greater than 1.5 are above average and the publications
having scores below 1.5 are considered below average. Detailed description of classified results after
application of quality criteria has been given in Table 6.

Table 7 illustrates the trend of researcher regarding article submission in multiple sources.
It lists down multiple sources, publication channels, and the frequency of articles in each source.

Table 7. Article submission trend of the researchers.

Source Channel Reference

International Conference on Natural Computation (ICNC) Conference [75]
Pure and Applied Geophysic Journal [76]

Expert Systems with Applications Journal [1,9]
IEEEACCESS Journal [49]

International Journal of Computer Applications Journal [77]
Proceedings of Indian National Science Academy Journal [78]

Earth Science Informatics Journal [65,79]
Journal of Indian Society of Remote Sensing Journal [80]

Bulletin of Engineering Geology and Environment Journal [23,60,81,82]
Natural Hazards Journal [2,4,12,22,28,51,83]

Knowledge Based Systems Journal [17,19]
Journal of Environmental Radioactivity Journal [54]
International Journal of Coal Geology Journal [53]

Computer-Aided Civil and Infrastructure Engineering Journal [15]
Applied Sciences Journal [10]

International Journal of Disaster Risk Reduction Journal [11]
Tunnelling and Underground Space Technology Journal [13]

PLoS ONE Journal [18,58]
Environmental Earth Sciences Journal [5,52,84–86]

International Journal of Fuzzy Systems Journal [32]
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications Journal [27]

Applied Soft Computing Journal [87]
Journal of Intelligent Information Systems Journal [20]

Geodesy and Geodynamics Journal [26]
Environmental Monitoring Assessment Journal [21]

Earth Science Informatics Journal [65,79]
International Journal of Computer Information Systems and Industrial Management Applications Journal [30]

Biostatistics and Biometrics Journal [6]
International Journal of Engineering Research & Technology Journal [24]

Journal Geological Society of India Journal [50]
Journal of Sustainability Science and Management Journal [16]
Journal of Chemical and Pharmaceutical Sciences Journal [33]

Acta Geophysica Journal [3]
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) Conference [25,55,88]
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems Journal [7,71]

International Conference on Information Management, Innovation Management and Industrial Engineering Conference [51]
Analysis & Computation Specialty Conference Conference [8]

Soil Dynamics and earthquake engineering Journal [34,64,69]
Lecture notes on electrical engineering Conference [35]

Advances in intelligent system and computing Journal [36]
ISPR- International Journal of geo information Journal [37]

Seismological Research Letter Conference [38,40]
Geophysical Research Letter Conference [39,63]
CEUR workshop procedings Conference [41]

Geosciences Journal [42,59]
Proceedings of SPIE-the international society of optical engineering Conference [43]

Bulletin of seismological society of America Journal [44]
Neural processing letter Conference [56]

Proceedings-IEEE 4th International conference on big data, computing services and applications Conference [57]
Lecture notes on computer science Conference [61]

Geomagnatics, Natural hazards and risks Journal [62]
International Journal of SWARM intelligence research Journal [66]

Neural computing and application Journal [67]
Proceedings- 14th international conference on frontiers of information technology Conference [68]

Proceedings- 9th international conference on application of information and commucation technology Conference [70]
Bollettino deGesfisica Teorica ed applicata Journal [71]

Applied soft computing journal Journal [73]
Journal of King Saud University Journal [74]
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Two dimensional studies (as described in Table 8) have been conducted to highlight seismically
active zones of the world. In the first dimension, researchers have evaluated the data of specific regions,
whereas in the second dimension, researchers have analyzed overall earthquake data of the world in
their articles. Table 8 presented the zones (regional or global) with their geographical dimension and
their location on the tectonic plates. Table 8 will facilitate the researchers in determining that which
tectonic zone is being mostly explored and analyzed by the practitioners.

Table 8. Target area representing the Geographic dimensions.

Target Area Geographic dimension Ref.

Worldwide Global [7,16,19–21,27,30,33,38–41,43,44,
56,57,60,63,70,74,77,79]

Japan North American plate+Pacific plate+Pphilipine sea plate [61,85]

California North American plate+Pacific plate [10,31,42,58,59,64,87]

China Eurasian plate+Indian plate+Philipine sea plate [2,12,13,23,25,49,51,55,75,88]

Taiwan Eurasian plate + Philipine sea plate [8]

Pakistan Eurasian plate + Indian plate [3,51,53,54,68,89]

Italy, Turkey Eurasian plate+African plate [15,32,70,76]

Greece, Azarbaijan Eurasian plate+Arabian plate [86]
[69]

Morocco African plate [1]

Nepal, Israel Indian plate+African plate [18,50]

India, Indian plate [24,26,35,36,78]

Iran Iranian plate [5,6,9,22,28,37,71,82,83]

Saudi Arabia Arabian plate [52]

Ethiopia Arabian plate+Somali plate+Nubian plate [86]

Caraga Philipine sea plate [14]

Vietnam, Malaysia Somali plate [80,84]

Chile Nazca plate [10,17,58,71,72]

Republic of Croatia Apulian Plate [65]

Cyprus African plate+Eurasian Plate +Arabian plate [34]

The researchers of the selected articles have evaluated their work using various tools and
techniques including software, algorithms and other such as index normalization etc. These tools and
techniques have been summarized in Table 9.

Table 9. Tools and Techniques applied in the literature for ES development.

Tools and Techniques % Reference

MATrix Laboratory (MATLAB) 41 [1,3,6,7,9–14,16,19,22,26,30,32,33,76,79,81,84,87]

Database Index normalization 4 [23,55]

Generalized Langevin equation (GLE) 1.8 [51]

Subsidence Coefficient calculator 1.8 [75]

Predicate (PRED) in C++ 1.8 [88]

Annealing, Sparsespike 1.8 [25]

Classification and regression trees(CART) 1.8 [49]

Fuzzy C-mean 4 [28,77]

Upgraded IF THEN ELSE 4 [27,83]

Normalized fuzzy peak ground acceleration (FPGA) 1.8 [8]



Sustainability 2020, 12, 2420 15 of 32

Table 9. Cont.

Tools and Techniques % Reference

Predicate Logic 7 [17,24,50,86]

Mean absolute error(MAE), Root mean square error(RMSE) 1.8 [54]

Earth resources data analysis system (ERDAS) model maker 1.8 [51]

3Dimensional seismic tomography 1.8 [78]

Mean square error(MSE) 4 [31,53]

Rapid miner software, frequency, pattern growth algorithm 1.8 [20]

Adobe 1.8 [89]

Geological carbon storage (GCS) analyzer- Monecarle 1.8 [85]

Fuzzy probablistic seismic hazard analyzer (FPSHA) 1.8 [2]

FURIA 1.8 [80]

AriGIS 1.8 [81]

Saga 1.8 [83]

Aeronautical reconnaissance coverage Geographic information
system (ARC/INFO GIS) 1.8 [84]

Geographic information system (GIS), Multi criteria decision
analysis (MCDA) 4 [15,82]

Multilayer Preceptron -Rule Based (MLP-RB) 1.8 [21]

Nearest neighbor Invariant Riemannian metric (AIRM) 1.8 [52]

WI (Weighted index) 1.8 [5]

Knowledge extraction based on evolutionary learning (KEEL) 1.8 [10]

Particle SWARM Optimization (PSO) 1.8 [56]

Apache SPARK 1.8 [59]

Kernal Fisher Discriminant Algoritthm (KFDA) 1.8 [60]

Novel earthquake early warning system (NEEWS) 1.8 [64]

Accuracy of results obtained through the proposed expert system for making earthquake
predictions using a training set (TS) or independent test set (ITS) has been listed in Table 10.

4.2. Key Facts of Expert System Based Earthquake Prediction Publications

Different publication channels, and frequency of publications per source have been presented
in Table 7. Number of articles published per year from January 2010 to January 2020 along with the
primary source where the article has been submitted is determined. Different publication channels
have been identified, including conferences, journals, technical report and book chapters. Around
75 % of the selected papers have been published in peer reviewed journals, 24 % have presented at
conferences, workshops, and symposia. 4% technical reports and book chapters have also included in
this systematic mapping study.

4.3. ResearchType Facets Addressed by the Identified Publications

For deep investigation, we have listed down the type of facets addressed by the selected
publications given in Table 6. Type of research presented in the paper, its empirical type, the approach
used and focused area has been inquired through RQ2 and listed in Table 6. As identified earlier,
the research could be of evaluation type, solution type or experience type. In this mapping study, 23%
of the research has presented a solution proposal to illustrate the novelty of the proposed solution for
a problem or as an extension of an existing technique. 42% studies belonged to an evaluation type
which represents the techniques has passed through the evaluation stages prior to its implementation or
solutions have been evaluated after implementation. 22% of the mapping study presented experience
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papers which showed the personal experience of the author about earthquake prediction techniques to
be used in practice.

Table 10. Accuracy claimed in multiple articles.

Reference Number of Records (EQ) Accuracy Magnitude Range Data Set

[6] 60 78% 5.2–7.7 TS

[9] 343 seismograms 99.71% ≥5.0 TS

[10] 47 93.54 ≥5.5 TS

[13] 12 indices 91% ≥4.5 TS

[18] 9531 69.8% ≥2.0 ITS

[20] 677245 87.85 3.6–9.1 TS

[21] 12690 50.14% ≥3.0 ITS

[22] 522 95.8% ≥4.0 TS

[23] 1773 85.73% ≥3.5 TS

[24] 337 63% ≥3.0 ITS

[38] 1000 80.1% < 5.5 TS

[43] 227 70% <5.0 TS

[50] 77 80.11% ≥5.0 TS

[55] 26481 78% 2.5–7.5 TS

[63] 10567 40% 0.1–5.9 ITS

[76] 100 99.99% 5.5–7.7 TS

[86] 476 87.2% ≥5.0 TS

[80] 248 84% ≥5.5 TS

[83] 78 88% ≥5.0 TS

[84] 1059846 86.28% ≥1.5 TS

Empirically, the studies included in this systematic mapping study have been categorized into
the survey, experiment and case study. 13% of the researchers have conducted surveys to study the
already presented prediction models. 39% have conducted experiments on earthquake data retrieved
from multiple seismic zones to make earthquake predictions and 32% have presented the case studies
in which earthquake prediction task has been worked out using the data of specific areas. In this
mapping study, the next type facet is the prediction approach which has been further categorized into
model, method, guideline, framework and tool. 40% of the included researches have computational
model for making earthquake predictions, 40%, researchers have proposed a method for earthquake
prediction, 13% have given the guidelines for earthquake prediction, only 2% of the included studies
have presented a framework for the earthquake prediction and analyzed earthquake prediction tools.

Last type facet of this mapping study is the target area that has been classified as regional and
global. 75% of the included researches have been focused to a certain specific regional area where as
24% of the researchers have used global data to forecast earthquake. Figure 3 shows the number of
publications (n) according to the type facets given in RQ2.

4.4. ES type and System Specific Key Aspects of Proposed ES

Three types of the proposed ES have been identified by RQ3 and presented in Figure 4. Fuzzy expert
system (FES) has been proposed for making earthquake predictions by 29% of the studies. Neuro-Fuzzy
expert system for making an earthquake prediction has been proposed by 11% of the studies. The rule
based expert system has been proposed by 7% of the included studies. 36% of the articles have used
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machine learning for earthquake prediction and 12% of the studies have used other computational
approaches like index development or classifier calculation for earthquake prediction. In this mapping
study RQ3 also deals with exploring other key aspects of the proposed ESs like input domain,
input attributes and their types, data type, prediction logic and the prediction technique covering the
use of computational supporting software or algorithm for performing earthquake prediction task.
Input domain can be the earthquake parameters like magnitude, b-value, etc. or precursors calculated
from real time earthquake data. In this mapping study, 51% researches have directly consumed
earthquake parameters (listed as quake variables in Table 6) whereas 38% have studied precursors that
serve as indicators for an upcoming devastating earthquake event.

Further, we have explored the type of above stated input attributes to analyze that whether
predictions have been made by consuming single input attribute or combination of multiple attributes
has been used for earthquake predictions. In this mapping study, 27%, researchers have made
predictions on the basis of a single attribute where as 68% studies have used a combination of multiple
input attributes for earthquake predictions. Through data type we have worked to find that input
variables passed to the proposed ES are quantitative type (numeric form like magnitude, slope, etc.) or
qualitative type (discrete form like water elevation, emission of radon gas etc.). It has been observed
that 57% of researchers have used numeric inputs for earthquake forecast whereas 43% of the studies
have performed the earthquake prediction task using a discrete type of input. This mapping study has
also captured the data regarding prediction logic and prediction methodology. Through prediction
logic, we have determined that the article have used the inductive or deductive logic for making
earthquake predictions. Inductive logic has been used by 62% of the studies, whereas deductive
logic has been presented in 32% of the included studies for giving absolute results. Next we have
worked to determine the predictive methodology to describethe use of any software or an algorithm
for evaluation of the proposed system. 42% of the studies have used multiple algorithms for evaluation
of their predictions, 48% have used the MATLAB software for evaluation of the proposed ES and 10%
have adopted other evaluation mechanisms.

4.5. Quality Assessment

The quality assessment score obtained by each paper has been presented in Table 6. These articles
have been collected in three distinct categories and presented in Table 11 according to the scores
obtained by every article given Table 6. By observing the quality scores, 74% of the papers included in
the mapping study had obtained above average score, 11% of the studies had obtained average score
and 15% of the studies remained below average. This quality assessment may facilitate researchers in
the selection of articles for their work.

Table 11. Scores.

Reference Score
Average =1.5 Total %

[1–14,17,19–22,25–27,31,32,34,35,37–39,42–44,49–52,55,56,58–72,74] Above average 55 79

[18,23,24,28,53,54,73] Average 7 10

[15,16,30,33,36,40,41,57] Below average 8 11

5. Discussion

In this mapping study, main techniques used for earthquake prediction including rule-based, fuzzy,
neuro-fuzzy and machine learning have been explored. Expert systems based approaches have been
used for seismic risk assessment for landslide susceptibility through seismic hazard analysis [50–52] and
soil classification [53]. ES have also been applied in earthquake engineering for seismic hazard analysis
and assessment of bridges and buildings under multiple hazards [24,54,55]. The expert systems have
been used to analyze multiple aspects of earthquake prediction, but due to the non-existence of the
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time-dependent global earthquake forecasting model, the regional earthquake likelihood models have
been popular [87]. On the other hand, some initial research has been conducted to design earthquake
early-warning systems that work globally [32,49].

A detailed discussion regarding the history and theory of accelerating seismic release and
preparedness for an earthquake has been conducted in [90,91]. Extended earthquake sequences with
stable features have been observed over long time periods and explained accelerated seismicity before
the occurrence of devastating earthquakes with in time. The aftershock decay models proposed in
the articles from 1894 till 2014 about accelerating seismology, has been analyzed in [92] and valuable
information about multiple scientific process including earthquake cascaded events have been collected.
Multiple anomalies have been investigated in [93] to formulate the criteria for identification of the
genuine precursors from a preliminary list of identifying precursors, methods or case studies.

A collection of one hundred articles related to accelerating seismology has been studied in [94]
to classify the precursor into two types including critical processes such as cascading triggering of
earthquake events or normal processes such as pressure on main fault. Many other studies investigated
earthquake precursors like [95] examined multiple parameters collected from anomalies present in
geophysical fields such as ionospheric disorder for short term earthquake prediction. Genetic algorithm
(GA) has been used to optimize the hybrid artificial neural network model for the prediction of peak
particle velocity in [96]. An artificial neural network has been applied to predict shear wave velocity
in [97]. A seismic data-driven tool has been proposed for seismic fracture identification using large
post-stack seismic dataset in [98]. The dynamic response of geogrid machine foundation bed has
been studied in [99]. Rockfall hazard assessment using artificial neural network has been performed
in [100]. The properties of the lower ionosphere have been examined in [101] using random matrix
theory for the prediction of earthquakes. Both spatial and spatio temporal earthquake predictions have
been made in [102] using machine learning methodologies. Reference [103] presented a natural time
analysis of seismic-electric signal emerged before two earthquake events for the prediction of next
expected earthquake events.The density of foreshocks and aftershocks has been analysed in [72] for
prediction of future earthquakes that may occur in the selected seismically active regions.

Reference [56] examined the impact of deep learning algorithms for classification of earthquake
precursors for extraction of seismic patterns and unique features from big data. Reference [57]
distinguished between seismic signals and non seismic signals using logistic regression method on the
data collected from National Seismological Network of Colombia. Reference [58] applied Support Vector
regression and Hybrid neural Network for earthquake prediction in Hindukush, Chile and Southern
California regions with prediction accuracy rate of 82.7%, 84.9%, 90.6% respectively. Reference [59]
analyzed earthquake magnitude prediction on the basis of regression algorithms and cloud based
big data infrastructure. Reference [60] used grid-search method to construct support vector machine
(SVM) based model for earthquake prediction. Reference [61] launched a web based platform for
automatic calculation of seismic hazard fields to predict earthquakes. Reference [62] highlighted the
vital role of temporal strong ground motion parameters in earthquake engineering and risk assessment
using machine learning methods. Reference [63] used gradient boosted trees algorithm of machine
learning to perform fivefold cross validation on training data set from earthquake catalogs to make
earthquake predictions.

References [64] developed an earthquake early warning system using image recognition techniques.
Reference [65] studies multiple machine learning methods including random forest, artificial neural
network, recurrent neural network, Naïve Bayesian and regression for earthquake prediction.
Reference [66] examined the efficiency of bio-inspired algorithms for supervised classification of on real
datasets to handle emergencies. Reference [67] discussed the emerging Regional Earthquake likelihood
models in making earthquake predictions with improved accuracy. Reference [68] used tree-based
ensemble methodologies for earthquake prediction within time period of 15 days and calculated
seismic features of Hindukush region applying machine learning methods for macro earthquake
prediction. Reference [69] proposed a multi-step prediction method for short-term prediction of strong
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earthquake with relatively high accuracy. Reference [70] proposed a monitoring system for preparing
machine learning data-sets for earthquake prediction based on seismic-acoustic signals from stations
in Azerbaijan.

Reference [71] estimated the magnitudes of earthquake events recorded on daily bases using
artificial neural network (ANN) to prove that training set of global data is more effective in earthquake
prediction than making earthquake prediction using local data. References [72,73] studied the
importance of machine learning methods in earthquake prediction and highlighted the impact
of accurate prediction on country’s economy. Reference [74] presented a scheme for large earthquake
prediction based on radial basis function (RBF) neural network (NN) models.

This section summarizes and discusses the results of the systematic mapping study. Taxonomy of
earthquake prediction is given in Figure 5.
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Figure 5. Taxonomy of earthquake prediction approaches.

There are two distinct types of earthquake prediction approaches presented in Figure 5,
i.e., deterministic forecasts and probabilistic forecasts. Deterministic forecasts are made on the
base of earthquake characteristics like rupture length, modified Mercalli and return period where as
probabilistic forecasts deals with precursors, implications of earthquake physics and elastic rebound.
Table 12 clusters the articles according to the taxonomy given in Figure 5.

From Table 12 it is clear that multiple approaches have been used for eathquake prediction including
Rule based, Fuzzy and Neuro-fuzzy and machine learning. For deterministic estimations, earthquakes
have been grouped according to their magnitude range by applying classification, clustering and
machine learning techiques. For probablistic forcasts, multiple artificial intelligence methods have
been exercised for making earthquake predictions. Comparitive studies have been conducted [13],
systematic methods of predicate logic have also been applied to analyze the precursor that may have
vital importance for earthquake prediction [9,27,32,57,65]. To estimate the mutual relationship of
precursors, regression line has been calculated [26]. Machine learnining approaches have shown greater
improvement in prediction accuracy presented in Table 10. Multi criteria decision making (MCDM)
approaches including Technique for order of preference by similarity of ideal solutions (TOPSIS) and
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Aggrigated indices randomization (AIRM) have also been applied for earthquake prediction. Multiple
precursors may occur before catastrophic earthquakes which have been analyzed through MCDM
methods by assigning weightage to every precurssor for the prediction of expected earthquake events.
Pattern recognition techniques have also been exercised to analyse the seismic patterns generated by
the energy released in previous earthquakes and radon emission recorded before an earthquake.

Table 12. Approaches used to predict particular seismic phenomena.

Deterministic

Domains Seismic Phenomena Approach Reference

Characteristic
earthquake

Rupture length
Modified Mercalli

Return Period

Classification,
Clustering,

Machine Learning (ML),
Neural network (NN)

[2,6,8,10,16–20,28,33–35,37,39,42,44,
58–62,65,69,70,72,74,80,86]

Probabilistic

Precursor

Animal behavior

Predicate Logic,
Aggregated Indices

Randomization
Method(AIRM),

Regression,
Comparison, Clustering, ML, NN

[27,66]
Seismic velocity [9,32,57]

Seismic resistivity [84]
Topography uplift [5,10,14,15,22,23,50,52,77]

Radon emission [13,104]
Seismic electric signal [21]

Electromagnetic signals [30,63,64,71]
Ground water elevation [105,106]

Land sliding [41,82,83,86]

Earthquake
physics

Earthquake light
Ionosphere disorder

ML, NN
Technique for Order of Preference

by Similarity to Ideal Solution

[36,85]
[26]

Elsticrebound Seismic Gap
Seismic Pattern

Pattern recognition
Clustering, ML

[37,38,40,51]
[49,88]

5.1. Comparitive Analysis of Methods

Multiple techniques have been used for earthquake prediction in the literature. We have formulated
the foundation of this mapping study on expert systems.However, there are many other approaches as
well for the prediction of earthquake presented in the literature. We have compared expert system
developed for earthquake prediction with other artificial intelligence techniques used for the same
in Table 13.

Table 13. Comparison of three Artificial intelligence techniques.

Method Comparison

Neural networks
and

Expert systems

Expert system is about capturing and encoding (often manually) rules that experts use so as to develop a program that
can mimic their behavior in a very specific domain. It often involved chaining these rules together. With ANN the

rules are encoded automatically by presenting examples, good and bad, to the network. The network adjusts
weightings over many iterative cycles, honing its output to the correct value. Feed Forward Neural Networks can
predict long term and short term earthquakes but it cannot get feedback of output from multiple layers and Back

Propagation Neural Network mostly trapped in different local conditions during the training phase of earthquake data
sets. However, probability of getting desired output raises when it is tested with ideally designed inputs.

Machine learning
and

Expert systems

Machine learning (ML) focuses on modeling of data statistically and expert is involved at the time of decision.
Supervised learning algorithms are used to copy the ending decisive behavior of the Expert systems are based upon set
of rules prescribed by human expert and learn by directly injecting the domain level knowledge of human expert. The
knowledge obtained from the expert is completely converted into membership functions and used in decision making.
Explanation facility is also available as an expert describes all the steps till decision, the basis and exception handling
procedures. A rigid system is developed that follows exact rules as described by the expert. Rigidness of the expert

system makes it most suitable from all other techniques for predicting future earthquakes.

Table 14 presented the comparision of multiple methods including fuzzy, neuro fuzzy,
rule based and machine learning used for earthquake prediction in the literature.It can be observed
that both deterministic and probablistic methods are being excercised for earthquake prediction.
Many researchers have performed numerical experiments to achieve success in predicting earthquakes.
Some have developed tools while others have explored multiple dimensions of application area.

Table 14 clearly presents that most recent studies have worked on exploring machine learning
based models for earthquake prediction.
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Table 14. Comparision of Methods.

Method Ref.
Prediction Approach Algorithm Defined Application

Area Dataset

Deterministic Probabilistic Analytical
Work

Global
Approximation

Numerical
Experiment

Exploration with
actual forecasts

Success
Achieved

Characteristic
Earth quake Precursors Zone Studied

Fuzzy Expert
System

[2] 4 4 4 4 China

[6] 4 4 4 4 Iran

[8] 4 4 Taiwan

[9] 4 4 4 Iran

[10] 4 4 4 4 4 California

[13] 4 4 4 China

[14] 4 4 4 Caraga

[15] 4 4 4 Turkey

[18] 4 4 Nepal

[21] 4 4 4 4

[23] 4 4 4 4 China

[24] 4 4 4 India

[26] 4 4 4 India

[50] 4 4 4 4 Nepal

[51] 4 4 4 China

[52] 4 4 Saudi Arabia

[80] 4 4 4 4 4 Malaysia

[82] 4 4 Iran

[83] 4 4 4 4 Iran

[84] 4 4 4 4 Malaysia

[86] 4 4 Ethiopia

Neuro Fuzzy
Expert System

(NFES)

[5] 4 4 4 Iran

[17] 4 4 Chile

[19] 4 4 4

[20] 4 4 4 4
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Table 14. Cont.

Method Ref.
Prediction Approach Algorithm Defined Application

Area Dataset

Deterministic Probabilistic Analytical
Work

Global
Approximation

Numerical
Experiment

Exploration with
actual forecasts

Success
Achieved

Characteristic
Earth quake Precursors Zone Studied

Neuro Fuzzy
Expert System

(NFES)

[22] 4 4 4 Iran

[27] 4 4 4

[28] 4 4 Iran

[30] 4 4 4 4

[32] 4 4 Turkey

[33] 4 4 4 4

[49] 4 4 4 4 China

[77] 4 4 4

[81] 4 4 4 Greece

Machine
Learning (ML)

[34] 4 4 4 Cyprus

[35] 4 4 4 India

[36] 4 4 India

[37] 4 4 4 4 Iran

[38] 4 4 4 4

[39] 4 4 4 4 4

[40] 4 4 4

[41] 4 4 4 California

[42] 4 4 4 4

[44] 4 4 4 4

[56] 4 4 4 4 4 4

[57] 4 4 4 California

[58] 4 4 4 4 California

[59] 4 4 4 4
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Table 14. Cont.

Method Ref.
Prediction Approach Algorithm Defined Application

Area Dataset

Deterministic Probabilistic Analytical
Work

Global
Approximation

Numerical
Experiment

Exploration with
actual forecasts

Success
Achieved

Characteristic
Earth quake Precursors Zone Studied

Machine
Learning (ML)

[60] 4 4 4 4 Japan

[61] 4 4 4 4

[62] 4 4 4

[63] 4 4 4 4 4

[64] 4 4 4 California

[65] 4 4 Croatia

[66] 4 4 4

[68] 4 4 Pakistan

[69] 4 4 Greece

[70] 4 4 4 4 Turkey

[71] 4 4 Iran

[72] 4 4 Chile

[74] 4 4 4 4
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5.2. Principal Findings

The goal of this systematic mapping study is to examine the current status of ES used to predict
earthquakes by selecting the appropriate number of recently published papers. We have passed all the
studies from our selection and quality criteria to classify the studies according to the scores obtained
by every research work on the basis of rules listed in Table 6. The categories of the studies according to
their quality scores has been listed in Table 6. In this mapping study, 74% articles have above average
scores, 15% articles scored average quality results and 11% researches are below average.Table 11 will
facilitate the researchers in selecting quality studies.

In Figure 6, we have combined the answers from sub-parts of RQ2 for presenting an overview
of earthquake prediction activity. This mapping has allowed us to obtain more information on how
the results from each RQ relate to each others. Figure 6 presents the research type facet related to
earthquake prediction, distributed over approaches and its empirical type. It allows us to conclude
that only one model was proposed by the authors that mainly report their experience in the earthquake
prediction process. However, guidelines have been provided by six authors. The majority of the
solution proposals have developed models for earthquake prediction. However, just one researcher has
developed a tool for earthquake prediction evaluation. Further information regarding the relationship
between type facets is shown in Figure 6.
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RQ3 deals with identification of the type of proposed ES. Figure 7 shows the relationship between
the proposed ES with other system specific details. Machine / deep learning has emerged as most
focused and recent trend in the earthquake prediction process. However, It can be clearly seen
from Figure 7 that FES has been proposed by a majority of the researchers for a long time period.
FES is representing a balance in the selection of all input parameters except the use of deductive
logic in earthquake prediction in Figure 7. It might be due to the nature of FES basically reflecting
uncertainty [15] that’s why most of the researchers have used inductive logic to propose FES for the
earthquake prediction. However, some of the researchers have also worked to proposed NFES and
RBES but their frequency is very low.
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The findings of our systematic mapping study havethe following implications for practitioners
and researchers. This study will allow them to discover the existing use of expert system in the literature
concerning earthquake prediction.

In order to improve the reliability in earthquake prediction, researchers and practitioners may
consider the following advices:

1. Globally, we need a program of identification and characterization of potentially hazardous faults
in multiple seismic zones. From those studies, site-specific expected seismic shaking maps can be
developed that would facilitate in developing expert system for earthquake prediction process.

2. By comparing different forecasts that are computed from common data, contrasts in performance
can be tied to specific features of the computational prediction method. Enforcing the need to
create a testable prediction, hypothesis that may reveal shortcomings or incomplete features of
the prediction method is needed.

3. Activities focusing on comparative testing of computational prediction methods based on
seismicity and fault information that provide probabilistic predictions of moderate magnitude
earthquakes on a geographic grid are needed. This approach can be optimized to achieve
useful statistics in a short time and can also advance the research field by providing insights
into the computational predictability of earthquakes. However, visible hypotheses such as the
M8/MSc predictions of global earthquakes, the “reverse detection of precursors” method, or the
Retrograde Intravenous Pressure Infusion “RIPI” method, each of which analyze temporal and
spatial variations in seismicity, or other methods based on observable quantities such as the
electromagnetic field, ground temperature, gaseous emissions, geodetic deformation, or changes
in seismic wave speed. Many of the most visible and influential earthquake predictions are posed
as “alarms” or “times of increased probability” (TIPs) within some specified region rather than as
probabilities on a grid of points.

4. Evaluation of emerging situations such as earthquake swarms, the likelihood of damaging
aftershocks or triggered earthquakes following major quakes, or the likelihood of re-rupture of
a fault following a major earthquake should be examined. Likewise, a broader suite of statistical
tests, spanning the range from straightforward to sophisticated, would allow some prediction
methods to be easily disproven in a way that’s clear to researchers, the media and the public,
while providing the rigorous analysis required for comparative testing. These should include
statistical tests applicable to alarm-based computational prediction methods.
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5.3. Evolution of Tools and Techniques

To reveal the development trend of researchers, various tools and techniques used to develop ES
for earthquake prediction given in the literature have been listed in Table 10. It is clear from Table 10
that 41% of the researchers have used the MATLAB software for development of an ES. MATLAB is
in the market since 1984. MATLAB is used for multi domain purposes like signal processing, image
processing and automation, etc. It has Simulink, state flow, embedded coder and Simulink coder.
Simulink facilitates the model based development where as code is automatically generated through
embedded coder. Moreover, traceability of the code is much easier than legacy coding. Simulink helps
in the development of a system in block diagrams by providing many elements like transfer function,
summing junction, fuction generators and oscilloscopes which makes the work easier for the researchers.
Through its debugging option, it has gained the trust of the researchers from last thirty five years.
It is also clear from Table 6 that for earthquake prediction rule-based expert systems have been focused
till 2013 then, till 2017 fuzzy and neur- fuzzy expert systems have been explored. But, now a prominent
change in the research trend has been observed from 2018 onwards that earthquake predictions are
being carried out using machine learning and deep learning approaches. Changing trend of earthquake
prediction approaches has been shown in the timeline presented in the Figure 8.
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6. Conclusion and Future Directions

This paper has presented a systematic mapping study to summarize the existing research on
multiple approaches involving machine learning, neuro-fuzzy, fuzzy and rule based approaches
that have been used for earthquake prediction. Out of 2137 studies, 70 articles published between
January 2010 till January 2020 were carefully selected and classified on the basis of research type,
empirical type, approach, target area, and other system specific parameters. Publication source and
trend have also been identified. Most of the articles considered in this study have been selected from
peer reviewed journals and (Computing Research and Education) CORE ranked conferences. Majority
of the papers included in this mapping study involve empirical validation for the proposed solutions
to predict earthquakes.

The use of various types of ES presented in this study may help researchers to identify approaches
that can be adopted in order to improve the quality of earthquake prediction in their work. For future
research more attention should be given to theapplication of machine learning and deep learning
methods for earthquake prediction. Due to ever increasing volume of data, there is a need to employ
machine learning and deep learning for the prediction of earthquakes. Moreover, there is a need to
conduct more of evaluation research for the validation of the already presented prediction models
based on fuzzy logic.

The analysis of the presented research works show that most of the approaches focused on
analyzing the precursors generating direct warning of an earthquake. However, recent trends show
that there is a need to extend this work by involving other factors which may include volcanic eruption,
nuclear explosion, hurricanes, tsunamis etc.

The results obtained showed that an increasing amount of attention has been paid to the use of an
ES for earthquake prediction since 2011. It has been noticed that till 2013 the reserch has been more
focused on rule based methods for earthquake prediction. Then the trend has changed towards using
fuzzy and neuro fuzzy methods till 2018. Machine learning and deep learning has emerged as the
most focused approach for earthquake prediction in the recent time.
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The classification developed in this mapping study has presented increased trend of applying FES
and ML in making long term earthquake predictions. However, In the future, more advanced deep
learning based model should be designed to make pinpoint predictions. Moreover, there is a continuing
need to develop a suite of basic tools and reference models to rapidly establish an unbiased framework
to evaluate prediction methods, which enforces strict adherence to the scientific method, motivates
investigators to accurately and unambiguously express prediction hypotheses, and provides guidance
and tools for formal testing of those hypotheses. These features would lead to progress in evaluating
seismicity-based models.
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