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Abstract: As one of the most notorious invasive species, the red imported fire ant (Solenopsis invicta
Buren) has many adverse impacts on biodiversity, environment, agriculture, and human health.
Mapping the potential global distribution of S. invicta becomes increasingly important for the
prevention and control of its invasion. By combining the most comprehensive occurrence records
with an advanced machine learning method and a variety of geographical, climatic, and human
factors, we have produced the potential global distribution maps of S. invicta at a spatial resolution
of 5 × 5 km2. The results revealed that the potential distribution areas of S. invicta were primarily
concentrated in southeastern North America, large parts of South America, East and Southeast
Asia, and Central Africa. The deforested areas in Central Africa and the Indo-China Peninsula were
particularly at risk from S. invicta invasion. In addition, this study found that human factors such as
nighttime light and urban accessibility made considerable contributions to the boosted regression
tree (BRT) model. The results provided valuable insights into the formulation of quarantine policies
and prevention measures.

Keywords: S. invicta; red imported fire ant; potential distribution; boosted regression tree;
human factors

1. Introduction

Biological invasion is a global problem, causing serious environmental, economic, and social
damages [1,2]. Included in “100 of the World’s Worst Invasive Alien Species” [3], the red imported
fire ant (Solenopsis invicta Buren) is recognized as one of the most widespread and damaging invasive
pests known to impact ecosystem processes, agricultural production, infrastructure, and human
health [4–9]. S. invicta is native to South America and was accidentally introduced into the United
States in the 1930s [10,11]. In subsequent years, this species rapidly spread throughout California and
other regions of the world, including the Caribbean islands, Australia, New Zealand, Japan, China,
and South Korea [12–16]. Given the strong adaptive and reproductive capacity, S. invicta has great
potential to colonize numerous other regions, inflicting enormous damage to the local economy and
ecosystems [17,18]. Prevention of biological invasion is much less expensive than post-entry control.
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Hence, it is essential to study the potential global distribution of S. invicta to provide a scientific basis
for the formulation of prevention and control measures.

Species distribution models (SDMs) have been widely used in predicting the potential geographic
distribution of S. invicta (Table 1). For example, Killion et al. applied a colony-growth model to examine
the potential range of S. invicta in the United States by incorporating temperature-driven development
rates of S. invicta life-stages and simulating the number of workers in a colony [19]. Korzukhin et al.
formulated a dynamic model of colony growth and alate production on the assumption that soil
temperature was the key ecological factor determining colony growth and reproduction to predict the
current extreme distributions and future range of S. invicta in the United States [20]. Morrison et al.
superimposed precipitation data upon the temperature-based predictions to estimate colony alate
production and predicted the future global geographic range limits of S. invicta at the station scale [21].
Sutherst and Maywald used the CLIMEX model to estimate the response of S. invicta to temperature
and moisture from its range in the United States and estimated the potential global areas at risk for
S. invicta invasion [14]. Ward modelled the potential geographic distribution of six invasive ant species
in New Zealand by three different methods (BIOCLIM, DOMAIN, and Maxent) with 19 bioclimatic
variables [22]. Ulrichs et al. predicted S. invicta distributions with climate (relative humidity, temperature,
and precipitation) and habitat data (landcover type) [23]. More recently, Wang et al. quantified colony
growth based on daily air temperature and precipitation data, to simulate the potential range of S. invicta
in China under current and future climate conditions [24]. Sung et al. modelled the potential distribution
of S. invicta under current climate conditions using six different species distribution models combined
with 19 bioclimatic variables, and selected the random forest (RF) model to obtain its potential global
distribution under climate change [13].

Table 1. Summary of existing literature on predicting the potential geographic distribution of S. invicta.

Author/Year Methods Environmental Variables Extent Resolution

Killion et al., 1993 [19] Colony-growth model Temperature The United States -
Korzukhin et al., 2001 [20] Colony-growth model Temperature, precipitation The United States Station
Morrison et al., 2004 [21] Colony-growth model Temperature, precipitation Global Station
Sutherst et al., 2005 [14] CLIMEX Temperature, moisture Global 10′(~340 km2)

Ward, 2007 [22] BIOCLIM, DOMAIN,
MAXENT 19 bioclimatic variables New Zealand 30”(~1 km2)

Ulrichs et al., 2008 [23] Stepwise Discriminant
function analysis

Relative humidity,
temperature, precipitation,

landcover type
the United States 2.5′(~85 km2)

Wang et al., 2018 [24] colony-growth model Temperature, precipitation China 0.1◦(~10 km2)

Sung et al., 2018 [13] GLM, GAM, MARS, ANN,
CTA, RF 5 bioclimatic variables Global 30”(~1 km2)

Numerous studies have indicated that biological invasion is often closely associated with human
impacts [25–28]. Human activities such as trade, tourism, and transport are indispensable indicators
that determine the potential range of invasive species [29]. S. invicta is more likely to colonize
disturbed environments of human-associated habitats [22,30–32], and the cross-regional spread is often
aided by human transportation [33,34]. However, existing studies focus on the impact of climatic
factors on the distribution of S. invicta, whereas few of them take human factors into account during
modelling. Besides, the occurrence localities of S. invicta used in existing studies are relatively limited,
and few studies predict the global potential distribution of S. invicta on a high spatial resolution.
Therefore, the main purposes of this study are to (1) Fully collect the location records of S. invicta.
(2) Comprehensively analyze the climatic, geographical, and human factors that may influence the
distribution of S. invicta and quantitatively simulate the relationship between each type of factors and
S. invicta presence with a machine learning method-the boosted regression tree (BRT). (3) Predict the
global potential distribution of S. invicta at a spatial resolution of 5 × 5 km2.
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2. Materials and Methods

2.1. Data

2.1.1. Environmental Variables

The geographical distribution of S. invicta is influenced by many environmental factors. In the
present study, these factors were divided into three categories: climatic factors, geographical factors,
and human factors.

Climatic factors such as temperature and precipitation are the main constraints that limit the
distribution and growth of S. invicta. For example, continental areas where the annual precipitation
is less than 510 mm, cannot provide a suitable habitat for S. invicta [21,35,36], and its overwintering
population is confined by the minimum temperature of the winter season [37,38]. Previous studies
have also indicated that the foraging activity and colony growth of S. invicta have remarkable relations
with temperature and humidity [30,39–41]. Therefore, we adopted accumulated annual precipitation,
maximum temperature, minimum temperature, and relative humidity to reflect the climatic conditions.

Geographical factors also play a substantial role in determining the distribution of S. invicta.
S. invicta is well adapted to opportunistic exploitation of disturbed habitats and some extreme
environments [42]. For instance, in arid continental areas, S. invicta will be able to successfully
establish if there are permanent sources of water (i.e., lakes, rivers, or dams) or regularly irrigated
areas (i.e., fields or lawns) [11,21]. Additionally, some studies have indicated that S. invicta prefers
open, sunny areas while it is less abundant in densely wooded areas [30,43]. Thus, the data of distance
to a river, distance to lake, and distance to ocean [44] were adopted to reflect the water availability,
the normalized difference vegetation index (NDVI) data was applied to reflect the density of vegetation
cover, and the elevation dataset was used to reflect the temperature variance with altitude.

Human activities and urbanization are crucial factors that affect the distribution and abundance
of ant species [45–47]. S. invicta may look for sanctuary in human habitations or infrastructure
(such as climate-controlled buildings or greenhouses) in areas where the cold climate makes it difficult
to overwinter [14]. The natural dispersal distances are usually limited to hundreds of meters or
a few kilometers [30], while long-distance dispersal occurs primarily through human activities or
major disturbances [22,32]. Commercial transportation of agricultural or landscaping materials
(e.g., containers, equipment, or potted plants soil) has resulted in the cross-regional spread of S. invicta
colonies [30,34]. Land cover type, population density, and nighttime light were obtained to represent the
extent of human activities. The urban accessibility dataset, for estimating the travel time to major cities,
was used to reflect the connectivity of different locations and the concentration of economic activity.

The environmental variables used for this study were received in a gridded format with various
resolutions. To ensure the spatial consistency of these variables, we converted the spatial resolutions of
all variable data to 0.05 degrees (approximately 5 km). Detailed information on the related spatial
variables used in this study is shown in Table 2.

Table 2. The environmental variables adopted in this study.

Category Predictor Variables Data Source

Climatic factors

Maximum temperature

CliMond Climate Data [48]Minimum temperature
Relative humidity

Accumulated annual precipitation

Geographical factors

Distance to ocean
G-Econ 4.0 dataset of Yale University [44]Distance to river

Distance to lake
Elevation Shuttle Radar Topography Mission (SRTM) [49]

Vegetation Global Inventory Modelling and Mapping Studies (GIMMS) group [50]

Human factors

Land cover Global Land Cover-SHARE (GLC-SHARE) [51]
Urban accessibility European Commission Joint Research Center [52]
Population density NASA Socioeconomic Data and Applications Center (SEDAC) [53]

Nighttime light Earth Observation Group, NOAA [54]
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2.1.2. Presence Data

In this study, the occurrence localities of S. invicta were derived from various sources, including
websites, literature, field surveys, and government reports. S. invicta occurrence records with detailed
geographical coordinate information were downloaded from the website of the Global Biodiversity
Information Facility (GBIF) [55], supplemented by AntWeb [56] and Centre for Agriculture and
Bioscience International (CABI) [57]. Published studies and maps of S. invicta occurrences were also
applied to extract the location information of S. invicta. Also, in this study, we used data from JK
Wetterer’s records to document the worldwide range of S. invicta until 2013, including both published
and unpublished [58]. The occurrence records from the literature published after 2013 were included
as well, as shown in Table S1 (see supplementary materials).

In addition, according to the “List of administrative areas for the distribution of agricultural
plant quarantine pests in China 2019”, 387 counties in 12 provinces of China have been invaded by
S. invicta [59]. Since the occurrence was recorded at the county scale, the county centroids were used as
the occurrence locations. To obtain more localities of S. invicta occurrence in China, we went to Fujian
Province to conduct field surveys and collected the locations of nests of S. invicta.

After deduplication, a total of 1610 occurrence records of S. invicta were collected, as shown in
Figure 1. The occurrence records of S. invicta from websites and literature were mainly located in
North and South America, whereas records from field surveys and government reports were mostly
distributed in China.

1 
 

 

 

 

Figure 1. Global occurrence records of S. invicta.

2.1.3. Pseudo-Absence Data

Pseudo-absences (PAs), also known as background data, are widely used in species distribution
modelling when only presence data is available. As the selection of PAs could severely impact the model
performance, different strategies have been proposed to improve the selection of appropriate PAs. One of
the methods is to randomly select PAs from all points outside a pre-defined region based on a simple
preliminary model or based on a minimum distance to the presence. Barbet-Massin et al. showed that
this method performed better in machine learning methods (i.e., BRT and RF), and recommended using
the same number of PAs as available presences [60]. In this study, we derived PAs with environmental
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exclusion based on prior knowledge from studies of Killion et al. [19] and Korzukhin et al. [20].
Their studies applied colony-growth models which incorporated temperature and precipitation
(in Korzukhin et al. [20]) to identify the potential range of S. invicta. The estimated annual precipitation
(510 mm) and annual minimum temperature (−17.8 °C) were applied as reasonable thresholds that
limit the range expansion for S. invicta. By setting environmental limits, PAs are selected outside the
suitable area of the species to keep a certain distance from the presence points.

Besides, water and iced bodies were also excluded from PAs selection by overlaying with the land
cover map. To reduce the effect of sample selection bias on the model prediction, we implemented the
selection of PAs 300 times randomly. After each random selection process, we constructed 3220 samples
(1610 presences and 1610 PAs) and divided the samples into two subsets, the training samples and
validation samples accounted for 75% (2415) and 25% (805) of the total samples respectively.

2.2. Boosted Regression Tree Model

In this study, a machine learning method, the boosted regression tree (BRT) model, was adopted
to predict the potential global distribution of S. invicta. BRT is a combination of statistical and machine
learning techniques. It has been widely used in species distribution modelling [61–64]. BRT combines
the advantages of both regression trees and boosting algorithms. The characteristics from the tree-based
methods give the BRT abilities to deal with different types of predictor variables (numeric, categorical,
binary, etc.), accommodating missing data, and being insensitive to outliers [65,66]. In addition,
the model can fit complex nonlinear relationships as well as identifying and modelling the interactions
between different predictors automatically. Based on the idea that it is easier to find and compute
an average from many rough rules than to find a single highly accurate prediction rule, the boosting
technique combines many simple tree models to improve the performance and predictive accuracy
of single tree models [65]. Boosting implements a forward and stepwise procedure to merge results
of several competing models, where tree models are fitted interactively to a subset of the training
data, using appropriate methods (stochastic gradient descent here) gradually to increase emphasis on
observations that were modelled poorly by the existing collection of trees.

Based on the above-mentioned reasons, the BRT model was applied in the present study. The R
version 3.3.3 statistical programming environment [67] was used in combination with the extension
packages (i.e., dismo [68], caret [69], and gbm [70]) to build the BRT model and evaluate the prediction
accuracy. The optimal settings of the BRT models were determined by the cross-validation results
from 300 times repeated computations. The learning rate determines the contribution of each tree to
the growing model, the tree complexity controls whether interactions are fitted and the bag fraction
determines the proportion of the used training data. The main tuning parameters were set as follows
(tree.complexity = 4, learning.rate = 0.005, bag.fraction = 0.75, step.size = 10, cv.folds = 10, max.trees = ),
and the other parameters were kept as gbm defaults. Following these steps, we fitted an ensemble of
300 BRT models to increase the robustness of the model prediction and quantify the model uncertainty.

3. Results

3.1. Accuracy Evaluation

A ten-fold cross-validation method was applied to each model to avoid overfitting, and the area
under the curve (AUC) statistic and true skill statistic (TSS) were used to evaluate the predictive
performances of the BRT models. The validation statistics suggested that the ensemble BRT model
performed well. The AUC values for the training dataset and validation dataset were 0.981(±0.004)
and 0.981(±0.009) respectively, and the TSS were 0.879 for the training dataset and 0.853 for the
validation dataset, which indicated a high predictive accuracy. In addition, the model uncertainty was
also quantified in the spatial predictions based on the standard deviation values across the model
ensemble. The uncertainty analysis revealed that the prediction uncertainty in most areas was low
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(lower than 0.26), and high uncertainty areas were mostly distributed around high-risk areas for
S. invicta infestation (Figure 2).
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Figure 2. Uncertainty distribution of the BRT model.

3.2. Potential Risk of S. Invicta Invasion

On the foundation of the observed relationship between S. invicta occurrence records and each
environment predictor, we used the fitted ensemble BRT models to predict the global infestation risk
of S. invicta. Figure 3 shows the infestation risk level, also considered as the suitability of S. invicta,
on a continuous scale from 0 to 1, which was generated by calculating the mean prediction across
all models for each grid cell. The predicted infestation risk map revealed that the high-risk areas are
primarily concentrated in medium and low latitude regions, including southeastern North America,
large parts of South America, East and Southeast Asia, and Central Africa, which were consistent with
the current distribution range of the species. The predicted medium-risk areas were distributed around
the high-risk areas.

In North America, the predicted high-risk areas were mainly distributed in the southeast and
west coast of the United States, the east coast of Mexico, northern Guatemala, and northern Belize
(Figure S1). In South America, the potential areas suitable for S. invicta were located in most parts,
including Brazil, Colombia, Venezuela, Guyana, Suriname, French Guiana, eastern Peru, northeastern
Bolivia, western Paraguay, northeastern Argentina, and Uruguay (Figure S2). The suitable areas in
Europe were scattered around the Mediterranean, in coastal regions of Portugal, Spain, France, Italy,
Albania, and Greece (Figure S3). In Africa, the suitable areas were mainly concentrated in Central
Africa, including southern Cameroon, Equatorial Guinea, Gabon, western Angola, Congo, midwestern
DR Congo as well as some coastal cities in Ivory Coast, Ghana, Benin, Nigeria, and South Africa
(Figure S4). In Asia, the predicted high-risk areas were mainly distributed in East Asia, Southeast Asia,
and coastal South Asia, specifically including southern China, Indo-China Peninsula (i.e., Burma, Laos,
Thailand, Cambodia, and Vietnam), Malaysia, northern Philippines, and Bangladesh. Coastal areas in
India, Indonesia, South Korea, and Japan were also medium or high-risk areas (Figure S5). In Oceania,
the southeastern coast of Australia, northern New Zealand, and coastal Papua New Guinea were at
medium risk (Figure S6). It is noteworthy that in both Central Africa and Southeast Asia (particularly
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on Indo-China Peninsula), though there were no or very few records of previous S. invicta presence,
the model predicted high risk in these regions. Also, in some coastal areas and islands of Central
America, the Mediterranean, Oceania, the Indian Ocean, and Southeast Asia, the model also predicted
medium- or high-risk for S. invicta infestation.

2 

Figure 3. Global infestation risk level of S. invicta.

3.3. Relative Contribution of Environmental Factors

To identify the key factors that determine the potential distribution of S. invicta, we quantified the
contribution of each predictor to the ensemble BRT model using the relative contribution (RC) indicator
(Table 3). The statistics suggested that the climatic factors accounting for 71.14% of the variation
explained by the ensemble BRT models, were the most important predictors in the model, followed by
human factors (15.55%) and geographical factors (13.31%). Accumulated annual precipitation was the
most significant predictor, with a relative contribution rate of 51% (±7.21%), followed by the maximum
temperature, which had a relative contribution of 14.98% (±4.44%). The distance to a river, nighttime
light, and urban accessibility had relative contributions of 8.34% (±2.33%), 6.75% (±3.24%), and 4.8%
(±2.22%), respectively. The contribution rates of other predictors are shown in Table 3.

As illustrated in Figure 4, the accumulated annual precipitation was positively correlated to the
probability of suitable land for S. invicta, an increase in the probability was observed as the accumulated
annual precipitation initially increased from 500 mm. The maximum temperature and nighttime light
also showed a positive correlation with suitability, whereas the distance to a river, urban accessibility
presented a negative correlation with suitability, and for the minimum temperature, the correlation
was not significant.



Sustainability 2020, 12, 10182 8 of 13

Table 3. The relative contribution of the related environmental factors.

Mean Relative Importance (%) Standard Deviation (%)

Climatic factors 71.14% -
Accumulated annual precipitation 51.00% 7.21%

Maximum temperature 14.98% 4.44%
Minimum temperature 3.51% 1.97%

Relative humidity 1.65% 0.81%

Human factors 15.55% -
Nighttime light 6.75% 3.24%

Urban accessibility 4.80% 2.22%
Land cover 2.30% 0.75%

Population density 1.70% 0.74%

Geographical factors 13.31% -
Distance to river 8.34% 2.33%

Vegetation 2.24% 0.84%
Elevation 1.52% 0.91%

Distance to lake 0.69% 0.46%
Distance to ocean 0.52% 0.29%

2 

Figure 4. Marginal effect plots of main spatial predictors overall 300 boosted regression tree (BRT)
ensembles fitted to the full data set. The black lines depict the mean effect curves, and the shaded areas
represent the 95% confidence interval.

4. Discussion

The results were consistent with S. invicta’s current range and the predictions of previous
studies [13,14,21], and our study presented more details and finer distinctions with a higher resolution.
The potential suitable areas for S. invicta were primarily concentrated in southeastern North America,
large parts of South America, East and Southeast Asia, and Central Africa. This was also in line with
the predictions of the Maxent model (see Figure S7). By comparison with the potential distribution
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of the black imported fire ant (Solenopsis richteri), a closely related species to S. invicta, we found that
S. richteri was able to survive in higher latitude than S. invicta. S. richteri had broader potential in
temperate regions such as Europe, East Asia, South Africa, and eastern North America [71]. By contrast
, S. invict was more abundant in Southeast Asia, Centra Africa, and northern South America. This was
largely because S. richteri is more tolerant to cold than S. invicta, while S. invicta has higher tolerance to
heat and desiccation stresses than S. richteri.

These maps could be used to identify areas where S. invicta could establish but has yet to be
reported or areas where the infestation risk is underestimated. For example, in Central Africa and
Indo-China Peninsula, though S. invicta has rarely been observed or reported before, the BRT model
predicted high-risks for S. invicta infestation. It is worth noting that the geographical distribution range
of these high-risk areas overlapped with that of tropical rainforests. Many studies suggest that S. invicta
constructs earthen mounds in the open, sunny areas for brood thermoregulation and is less abundant in
the warm, wet, and dense forests [21,42,72]. Therefore, it is more likely to establish in those disturbed
and developed forested areas, including the edges of forests or agricultural areas [73], deforested areas
are especially in danger of becoming colonized. According to the “Global Ecosystems and Environment
Observation and Analysis Annual Report 2019” [74], forest coverage decreased in both Central Africa
and Indo-China Peninsula from 2000 to 2018, largely as a result of devastating forests for arable
land [75,76]. The deforested areas could provide suitable habitats for the establishment of S. invicta,
and should be taken into adequate account. In addition, the model also predicted medium- or high-risk
in some coastal areas and islands of Central America, the Mediterranean, Oceania, the Indian Ocean,
and Southeast Asia, where the ecological environment is relatively fragile, the introduction of S. invicta
may cause devastating damage to local species and biodiversity. Therefore, inspection and quarantine
measures in these medium- or high-risk areas need to be strengthened, thereby preventing it from
becoming widespread, and minimizing the ecological and economic impacts.

Climatic variables were the most important factors responsible for the environmental suitability of
S. invicta. Precipitation and temperature are the major determinants that limit the distribution range of
S. invicta. The low minimum temperature in the winter, the high maximum temperature in the summer,
or inadequate precipitation would prevent it from becoming successfully established. As illustrated
in Figure 4, when the accumulated annual precipitation increased from 500 mm and the maximum
temperature increased from 15 °C, the habitat suitability for S. invicta also increased, which conform to
the ecological characteristics of the species [40,77,78]. As the survival of S. invicta in arid regions is
highly dependent on sources of permanent water or irrigated areas, the distance to a river also made
considerable contributions to the BRT model. The suitability gradually decreased as the distance to a
river increased. It is encouraging that human factors also had a strong influence on the model prediction
with a total contribution of 15.55%. Nighttime light and urban accessibility appeared to be important
human factors determining the potential distribution of S. invicta. Specifically, the environmental
suitability for S. invicta increased as the nighttime light index rose (which indicates a high degree of
human activities). This may reflect its preference for human disturbances, S. invicta has been shown to
inhabit a wide variety of human habitats and infrastructures [30–32]. The urban accessibility factor is
negatively correlated with suitability. When the travel time to major cities increased (which represents
lower connectivity and less economic activity), the environmental suitability for S. invicta decreased.
These results added credibility to the rationality of the initial assumption that human activities may
provide S. invicta with suitable living conditions and promote its spread.

It should be noted that the potential distribution of S. invicta is also affected by many other factors.
For example, soil properties, flooding, and the distribution of food resources, natural enemies, and host
plants may also affect the distribution of S. invicta [30,31,79–81], future prediction could be refined by
including more comprehensive factors and higher spatio-temporal resolution datasets.
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5. Conclusions

In this study, we combined the most comprehensive occurrence records with an advanced machine
learning method and a variety of variables to predict the potential global distribution of S. invicta.
Our results indicated that the potential distribution areas of S. invicta were primarily concentrated in
southeastern North America, large parts of South America, East and Southeast Asia, and Central Africa.
The deforested areas in Central Africa and the Indo-China Peninsula were especially at risk from
S. invicta invasion. Some islands and coastal areas in Central America, the Mediterranean, Oceania,
the Indian Ocean, and Southeast Asia were also found to be suitable habitats for S. invicta. These findings
could provide a scientific basis to formulate prevention and control measures proactively. Additionally,
human factors such as nighttime light and urban accessibility made considerable contributions to the
BRT model, this could provide an important baseline for incorporating human factors in modelling the
potential distribution of S. invicta as well as other species.
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