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Abstract: Public availability of geo-coded or geo-referenced road collisions (crashes) makes it possible
to perform geovisualisation and spatio-temporal analysis of road collisions across a city. This study
aims to detect spatio-temporal clusters of road collisions across Greater London between 2010 and
2014. We implemented a fast Bayesian model-based cluster detection method with no covariates
and after adjusting for potential covariates respectively. As empirical evidence on the association
of street connectivity measures and the occurrence of road collisions had been found, we selected
street connectivity measures as the potential covariates in our cluster detection. Results of the most
significant cluster and the second most significant cluster during five consecutive years are located
around the central areas. Moreover, after adjusting the covariates, the most significant cluster moves
from the central areas of London to its peripheral areas, while the second most significant cluster
remains unchanged. Additionally, one potential covariate used in this study, length-based road
density, exhibits a positive association with the number of road collisions; meanwhile count-based
intersection density displays a negative association. Although the covariates (i.e., road density and
intersection density) exhibit potential impact on the clusters of road collisions, they are unlikely to
contribute to the majority of clusters. Furthermore, the method of fast Bayesian model-based cluster
detection is developed to discover spatio-temporal clusters of serious injury collisions. Most of the
areas at risk of serious injury collisions overlay those at risk of road collisions. Although not being
identified as areas at risk of road collisions, some districts, e.g., City of London, are regarded as areas
at risk of serious injury collisions.

Keywords: traffic safety; road collision; spatio-temporal cluster detection; fast Bayesian model-based
detection method; street connectivity

1. Introduction

The distribution of road collisions is spatially heterogenous as road collisions are more likely to
cluster in certain places than in others [1–3]. A spatio-temporal analysis of road collision across a city
can help: (1) investigate the associations between road collisions and environmental characteristics
(e.g., road infrastructure, land use and demographics); and (2) identify areas with a high risk of
road traffic safety issues. The former can offer empirical evidence on the necessity of traffic safety
interventions (e.g., improving road infrastructure, reducing traffic speed, etc.). The latter can be
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achieved by detecting clustering of road collisions [2,3]. Accordingly, road infrastructure improvement
and speed limit measures should be prioritised in those high-risk areas inside a city to better reduce
road collisions. In the past decade, as geo-coded or geo-referenced road collisions (crashes) are publicly
available, geovisualisation and spatio-temporal analysis of road collisions are increasingly performable.
On the one hand, point-level collision data enables us to identify spatial clustering of collisions without
considering spatial distribution of “population”. For point-level collision data, popular clustering
methods have been developed, including kernel density estimation [1–3], network kernel density
estimation [4–6], Ripley K-function [3,7], and K-means [8]. One the other hand, area-level collision
volume data enable us to conduct cluster detection after taking account of “population”. Typically,
Kulldorff’s spatial cluster detection methods have been widely used to detect spatial clusters of collision
injuries [9,10]. Clustering identification results indicate areas with a high density of collisions (events
or points) while cluster detection results indicate areas at high risk of collisions. Compared to cluster
identification of road collisions, cluster detection of road collisions after considering the distribution
of “population (traffic flows)” is scarce. Moreover, the existing studies on collision cluster detection
have three limitations: (1) they focus mainly on spatial cluster detection but have not been extended to
spatio-temporal cluster detection; (2) they mainly choose residential population or working population
to represent the “population variable” in the cluster detection setting while traffic flow volume can,
indeed, better represent “population variable”; and (3) as Kulldorff’s spatial cluster detection methods
are computationally demanding, they are not suitable for a large data set.

An efficient spatio-temporal cluster detection method has been recently developed [11]. Since
the cluster detection method applies a model-based approach, it can largely improve efficiency by
avoiding simulations and detect clusters regardless of whether fixed effects or mixed effects are
included in the model [11]. Moreover, the method enables us to take account of potential covariates
in the cluster detection. According to the existing studies, road collisions are mainly attributable to
human factors, vehicle factors and built environment factors. In other words, human factors (e.g.,
drowsiness, fatigue, alcohol usage, drug abuse, driving inexperience, non-seatbelt use and traffic
violations) [12–14], vehicle factors (e.g., older vehicles, emergency vehicles, overloaded vehicles) [15–17]
and built environment factors (e.g., lower levels of street connectivity, lower levels of land use mix,
lack of traffic calming) [18–20] contribute to road collisions. Compared with human factors and
vehicle factors, built-up environment factors are related closely to urban design and urban planning.
Particularly, the influence of the built environment (e.g., street connectivity and land use) on collision
occurrence has been reported [18]. Typically, street connectivity is reportedly associated with the
occurrence of road collisions [19,20]. Count-based density measures (e.g., intersection density) and
length-based density measures (e.g., road density) are likely to exhibit different types of associations
with the occurrence of road collisions. For instance, more crashes are associated with higher road
density [19], while fewer crashes are associated with higher intersection density [20]. Therefore, we
can count street connectivity measures, including both count-based and length-based measures, as the
potential covariates in this study.

Although it is of more interest to model road collisions according to human, vehicle and built
environment factors, regression models cannot be firmly established due to the absence of required
data on those factors. Instead, this study is dedicated to identifying areas at risk of road traffic safety
issues by discovering spatio-temporal clusters of road collisions across a city. In this study, a Bayesian
model-based detection method was applied to cluster detection instead of conventional cluster detection
methods (e.g., Kulldorff’s spatial cluster detection methods), as the Bayesian model-based approach (1)
is likely to produce a larger number of statistically significant clusters and more local areas are required
to be identified as a result; and (2) it allows researchers to incorporate covariates into cluster detection
and thereby to identify potential risk factors that are worth new investigations [11]. Specifically, this
study aims to detect spatio-temporal clusters of road collisions when replacing residential population
with traffic flow volume as the “population variable”. Empirically, we used the district-level data across
London from 2010 to 2014 to detect spatio-temporal clusters by district and year. Methodologically,
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we applied a fast Bayesian model-based detection method newly developed [11] to the road collision
data due to its advantages: a model-based approach accounting for covariates and the application of a
fast approximation method (integrated nested Laplace approximation) instead of a conventional one
(Markov chain Monte Carlo methods). As empirical evidence on the association of street connectivity
measures and the occurrence of road collisions has been found, we selected street connectivity measures
as the potential covariates in the cluster detection. Furthermore, we detected spatio-temporal clusters
of serious injury collisions when setting the number of road collisions as the “population variable”.
Detection results for road collisions and serious injury collisions were compared. This study makes
new contributions to this field by: (1) extending spatial cluster detection to spatio-temporal cluster
detection; (2) replacing residential population with traffic flow volume as the “population variable”;
(3) applying a new and faster cluster detection method which can further incorporate covariates into
the cluster detection; and (4) examining the potential impact of the covariates (street connectivity
measures) by comparing cluster detection results with no covariates and after adjusting for covariates.

2. Literature Review

Spatial analyses of road collisions across a city are mainly divided into two groups: point-based
analyses and area-level analyses. In the group of point-based analyses, researchers have focused
on the spatial distributions of road collisions along roads or around intersections. Kernel density
estimation (KDE) methods were initially used to explore spatial clustering of road collisions [1–3].
After considering the structure of road network, network kernel density estimation (NKDE) methods
were adopted to improve the clustering analysis of road collisions [4–6]. Application of K-means
allows researchers to define the number of clusters (groups) [8] while the application of KDE focuses
on the concentration of high-density road collisions. Compared with KDE, NKDE and K-means
methods, Ripley K-function methods were developed to determine the global distribution pattern
of road collisions, including random distribution, clustering distribution and even distribution [3,7].
KDE and NKDE methods can be further utilised to investigate local areas with high clustering of
road collisions if Ripley K-function methods determine that the global distribution pattern of road
collisions is clustering distribution [3,7]. Those point-based analyses uncovered several findings on
spatial distribution of road collisions: e.g., more road collisions have occurred at road intersections
than on road segments [3]; meanwhile more road collisions have occurred along motorways than along
other types of road [7].

In the group of area-based analyses, researchers have focused more on the spatial distribution of
road collisions in relation to socioeconomic and built environment characteristics. First, researchers
identified clusters of road collisions largely existed in those areas with lower socioeconomic status (e.g.,
densely populated or poorer areas) [9,10]. Second, relevant studies explained the spatial variations of
road collisions by using a variety of regression models, including Poisson models (e.g., spatial lag,
spatial multinomial-generalised Poisson, and Poisson log-normal regression models) [21–24], Bayesian
models (e.g., Bayesian spatial joint, Bayesian spatial random parameters Tobit, and Bayesian–Poisson
log-normal models) [25–28], and spatially varying coefficients models (e.g., geographically weighted
regression and Bayesian spatially varying coefficients models) [29,30]. Bayesian models are reported
to outperform Poisson models in modelling road collisions [29,30]. Third, impacts of socioeconomic
and built environment characteristics on road collisions were investigated at the area level [23,27,29],
the intersection level [21,24,25], and the road segment (street) level [22,25,26]. More specifically,
population [29], traffic volume [29] and speed limit measures [29,30] are reported to contribute to road
collisions at the area level. Roadway configuration, the type of approach roadway function, the type of
traffic control, the total daily volume of entering traffic and the split of volumes between approaches
are all associated with collision frequency at intersections [21], while increased traffic volume and
poorer pavement conditions are associated with more collisions at road segments [26]. More collisions
are reported to occur at intersections with signal controls, with more intersecting legs, and with higher
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speed limits, while more collisions are reported to occur on road segments with more lanes, more
accesses, higher speed limits and worse pavement conditions [25].

3. Materials and Methods

In this section, data on crime and socioeconomic factors are introduced. The spatio-temporal cluster
detection method used is presented, followed by a list of socioeconomic factors as potential covariates.

3.1. Data

In this study, we focus on 5-year road collisions across the region of Greater London. It consists of
33 districts, including City of London and 32 boroughs (see Figure 1). The district-level road collision
data were downloaded from the London Datastore (https://data.london.gov.uk/dataset/road-collisions-
severity). According to the level of severity, the road collisions are classified into “fatal injury”, “serious
injury”, and “slight injury”. Table 1 shows the number of road collisions in London by severity and
year. The number of road collisions increases largely after 2012 when the 2012 Summer Olympics took
place in London. From 2012 to 2013, the number of road collisions by each severity level increases
by more than 50%. The district-level motor vehicle flow volume data were downloaded from the
website of GOV.UK (https://www.gov.uk/government/statistical-data-sets/road-traffic-statistics-tra).
The flow volume is represented by the number of vehicles passing in 24 h at an average point on the
road network in each local authority. It is calculated by dividing the estimate of annual vehicle miles
in each local authority by the length of road in that authority and number of days in the year. The
road network data were downloaded from the Ordnance Survey (https://www.ordnancesurvey.co.
uk/business-government/products/open-map-roads). Figure 2 box-plots district-level collision rate
and serious injury collision rate across London from 2010 to 2014. As Figure 2 shows, inter-annual
variability in collision rate is not high across London though collision rate is relatively low in 2013.
Figure 3 maps district-level road collision rate and serious injury collision rate (i.e., the number of
serious injury collisions/the number of motor vehicle flows) in 2012 (note: 2012 is in the middle of the
5 years).Sustainability 2020, 12, x FOR PEER REVIEW 5 of 15 
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Table 1. The number of road collisions in Greater London by severity and year.

Year 2010 2011 2012 2013 2014

Fatal injury 1979 2107 1905 3342 3444
Serious injury 25,694 26,086 26,487 41,360 43,331
Slight injury 175,031 172,217 165,373 255,715 271,899

Total 202,704 200,410 193,765 300,417 318,674
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3.2. Detecting Spatio-Temporal Clusters of Road Collisions

3.2.1. Fast Bayesian Model-Based Cluster Detection

Based on the model-based approaches of [31] for the detection of spatial disease clusters to space
and time [32], Gómez-Rubio et al. [11] propose a new approach that uses dummy variables in a
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regression model to group regions into clusters. The importance of the clusters is assessed based on
a likelihood calculation that measures the extent to which the clusters capture the variability in the
outcome [11]. To address a huge computational burden due to the usage of Bayesian hierarchical
models fit by means of Markov chain Monte Carlo (MCMC) methods, Gómez-Rubio et al. [11] use a
fast approximation method (integrated nested Laplace approximation) proposed by Rue et al. [33] to fit
the model, and provide a reasonable estimate of the coefficient of the cluster variables and compute the
deviance information criterion (DIC) in model selection. Theoretically, the problem of cluster detection
is regarded as a problem of variable selection, where covariates include a number of dummy variables
that represent all possible clusters [11]. Hence, when fitting an individual model to test for different
clusters, this approach, based on integrated nested Laplace approximation (INLA), will be faster than
fitting the same models with MCMC [11].

For the sake of brevity, we present the model as follows [32]:

log(µi,t) = log(Ei,t) + γ jc
( j)
i,t (1)

where µi,t is the mean of area i at time t, and Ei,t is the expected number of cases in area i at time t.
c( j)

i,t is a cluster dummy variable for spatio-temporal cluster j, and γ j is the coefficient of the cluster
dummy variable.

Note how now data are indexed according to space and time. Dummy cluster variables are
defined as in the spatial case, by considering areas in the cluster according to their distance to the
cluster centre, for data within a particular time period. When defining a temporal cluster, areas are
aggregated using all possible temporal windows up to a predefined temporal range.

Moreover, Ei,t is computed as follows [11]: “Raw expected cases Ei,t are computed using the
population in each area. Covariate standardised expected number of cases Ei,t is computed fitting a
Poisson regression (generalised linear model) with offset log(Ei,t) on the covariates. Then, the fitted
values from this model are used to compute the expected number of cases using Equation (1).”

3.2.2. Covariates

Table 2 lists the covariates considered in this study. The response is the number of road collisions
(unit: count). The covariates are street connectivity indicators, including road density (i.e., length
of roads/area) and intersection density (i.e., number of road intersections/area). Table 2 also shows
statistical descriptions for the covariates.

Table 2. The covariates that are considered in this study.

Category Variable Full Name Mean SD

Response N_RC Number of road collisions (count) 737.36 253.96

Covariates
RD Road density (km/km2) 13.04 3.31
ID Intersection density (count/km2) 120.51 42.36

In this study, the cluster detection is implementable in R. Specifically, the model-based cluster
detection method is supported by an R package named “DClusterm” [32].

4. Results and Discussion

This section demonstrates the cluster detection results with no covariates or after adjusting for
covariates, and discusses the potential impacts of potential covariates. Furthermore, the results of
cluster detection for serious injury collisions are presented. They are further compared with those
detected for road collisions.
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4.1. Cluster Detection: Spatio-Temporal Clusters of Road Collisions

We applied the fast Bayesian model-based cluster detection method to the 165 observations (33
districts × 5 years) with no covariates and after adjusting for covariates respectively. In the cluster
detection, the “case variable” is the number of road collisions by district and year; the “population
variable” is the number of motor vehicle flows by district and year.

4.1.1. Cluster Detection with no Covariates

First of all, we implemented the model-based cluster detection method with no covariates.
Covariate standardised expected number of cases Ei,t was computed fitting a Poisson regression
(generalised linear model) with offset log(Ei,t) on no covariates (see Equation (1)). The generalised
linear model (GLM) estimated is shown in Table 3 (see GLM 1). As a result, five statistically significant
clusters were detected with a p-value of below 0.05. These clusters are list in Table 4 and mapped in
Figure 4 (see Table 4 and Figure 4a). In Table 4, the clusters are ranked according to the p-value in
ascending order. All these clusters cover 5 years from 2010 to 2014 (see Table 4). Specifically, the most
significant cluster (Cluster 1 in Figure 4a) and the second most significant cluster (Cluster 2 in Figure 4a)
are located around the central areas (inner boroughs in Figure 1); while the other three clusters (Cluster
3, 4 and 4 in Figure 4a) are located around the peripheral areas (outer boroughs in Figure 1).

Table 3. The estimation results of generalised linear models (GLMs) (N = 165).

Coefficient GLM 1 GLM 2

Intercept 6.477 × 10−12 −0.937 ***
RD 0.194 ***
ID −0.013 ***

AIC 19,438 15,086

Note: Significance codes: ***: 0.001.
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Table 4. Statistically significant clusters of road collisions with no covariates.

Cluster Size Start Time End Time Statistic p-Value Risk

1 4 2010 2014 1318.03 <0.001 0.391
2 3 2010 2014 1265.73 <0.001 0.431
3 5 2010 2014 201.551 <0.001 0.143
4 2 2010 2014 197.901 <0.001 0.222
5 3 2010 2014 27.061 <0.001 0.079

4.1.2. Cluster Detection after Adjusting for Covariates

Subsequently, we implemented the model-based cluster detection method after adjusting for
covariates. Ei,t was computed fitting a Poisson regression (generalised linear model) with offset log(Ei,t)
on two covariates: RD (road density) and ID (intersection density). The GLM estimated is shown
in Table 3 (see GLM 2). Expectedly, RD is statistically significantly and positively associated with
observed number of road collisions (response), while ID is statistically significantly and negatively
associated with observed number of road collisions (response). As a result, 6 statistically significant
clusters were detected with a p-value of below 0.05. These clusters are listed in Table 5 and mapped in
Figure 4 (see Table 5 and Figure 4b). In Table 5, the clusters are ranked according to the p-value in
ascending order. Clusters 5 and 6 cover 2 and 3 years respectively while the other 4 clusters cover
5 years (see Table 5). Specifically, Cluster 2 (the second most significant cluster) and Cluster 3 are
located around the central areas (inner boroughs) while the other 4 clusters are located around the
peripheral areas (see Figure 4b). Particularly, Cluster 1 (the most significant cluster) is located around
the southern peripheral areas. It is noted that 2 districts belong to Cluster 5 from 2010 to 2011 and
constitute Cluster 6 from 2012 and 2014.
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Table 5. Statistically significant clusters of road collisions after adjusting for covariates.

Cluster Size Start Time End Time Statistic p-Value Risk

1 2 2010 2014 1115.666 <0.001 0.573
2 3 2010 2014 533.565 <0.001 0.273
3 4 2010 2014 517.329 <0.001 0.239
4 4 2010 2014 371.843 <0.001 0.224
5 5 2010 2011 3.365 <0.001 0.03
6 2 2012 2014 2.052 <0.001 0.03

4.1.3. Comparison of Cluster Detection with and without Covariates

We compared the clusters detected in the two models (with and without covariates). The
geographic boundaries of clusters tend to move eastward from the detection results with the covariates
to those without the covariates (see Figure 4). Cluster 2 is an exception as its geographic boundaries
remain the same. This indicates that Cluster 2 is unlikely to be explained by the covariates while the
other clusters are partly explained by the covariates. Particularly, the most significant cluster (Cluster 1
in Figure 4a) changes into the third most significant cluster (Cluster 3 in Figure 4b) after adjusting for
the potential covariates. Additionally, the most significant cluster (Cluster 1) moves from the central
areas (inner boroughs) to southern peripheral areas (outer boroughs) (see Cluster 1 in Figure 4a and
Cluster 1 in Figure 4b). Generally, the covariates are likely to have potential impact on the clusters of
road collisions.

We further examined the high-risk areas (i.e., areas covered by clusters) which disappeared or
newly appeared in relation to the two covariates. Figure 5 maps the covariates (i.e., RD and ID) across
London. After comparing Figure 4a,b, we can identify 4 disappearing areas and 2 newly disappearing
areas after adjusting for the covariates. Moreover, as Table 3 shows, RD is positively associated with
the number of road collisions while ID is negatively associated with the number of road collisions.
Accordingly, among the four disappearing high-risk areas, two co-locate with a high level of RD while
the other two co-locate with a low level of ID (see Figures 4 and 5 together). Figure 6 shows the two
areas mainly caused by a high level of RD, the two areas mainly caused by a low level of ID, and the
two areas newly appearing after adjusting for the covariates. Apart from the 4 disappearing high-risk
areas, other high-risk areas are unlikely to be attributable to the two covariates (i.e., RD and ID). In
other words, the majority of high-risk areas are not attributable to street connectivity. Besides, further
investigations are needed to explain the remaining high-risk areas.

4.2. Cluster Detection: Spatio-Temporal Clusters of Serious Injury Collisions

Likewise, we applied the fast Bayesian model-based cluster detection method to the 165
observations (33 districts × 5 years) with no covariates. In the cluster detection, the “case variable” is
the number of serious injury road collisions by district and year whist the “population variable” is the
number of all-type road collisions by district and year. As a result, five statistically significant clusters
were detected with a p-value of below 0.05. These clusters are listed in Table 6 and mapped in Figure 7
(see Table 6 and Figure 7). Specifically, the most significant cluster (Cluster 1 in Figure 7) located
around the central areas (City of London and inner boroughs) covers only 2011 and 2012; the second
most significant cluster (Cluster 2 in Figure 7), located in southwestern London, covers only 2010.
Cluster 3, located in the City of London, covers 2013 and 2014; Cluster 4, located in the northwestern
peripheries (outer boroughs), covers only 2013; and Cluster 5, located in the southwestern peripheries
(outer boroughs), covers 3 years (from 2011 to 2013).
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2 13 2010 2010 29.287 <0.001 0.234
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4.3. Discussion

Generally, the covariates are likely to have potential impacts on the clusters of road collisions. The
most significant cluster moves from central areas (inner boroughs) to southern peripheral areas (outer
boroughs) after adjusting for the covariates. Moreover, as the potential covariates used in this study,
length-based road density exhibits a positive association with the number of road collisions while
count-based intersection density exhibits a negative association. This is consistent with some previous
studies [19,20]. Furthermore, we compared the cluster detection results for road collisions and serious
injury collisions (see Figures 4 and 7). Most of these areas at risk of serious injury collisions overlay
those at risk of road collisions. Although not being identified as areas at risk of road collisions, some
districts, e.g., City of London, are regarded as areas at risk of serious injury collisions.

5. Conclusions

In this study, we aimed to detect spatio-temporal clusters of road collisions across Greater London
from 2010 to 2014. We implemented a fast Bayesian model-based cluster detection method with no
covariates and after adjusting for covariates respectively. As a result, the most significant and second
most significant clusters were located around the central areas covering 5 years. Moreover, after
adjusting for the covariates, the most significant cluster moves from the central areas to the peripheral
areas, while the second most significant cluster remains unchanged. Although the covariates (i.e., RD
and ID) exhibit potential impact on the clusters of road collisions, they are unlikely to contribute to
the majority of high-risk areas. Furthermore, we detected spatio-temporal clusters of serious injury
collisions. As expected, most of the areas at risk of serious injury collisions overlay those at risk of
road collisions. Although not being identified as areas at risk of road collisions, some districts, e.g.,
City of London, are regarded as areas at risk of serious injury collisions.

However, there are some limitations in this study. Firstly, we cannot undertake cluster detection
by a higher level of temporal granularity (e.g., month) or spatial granularity (e.g., smaller area, street
or intersection) due to the absence of spatio-temporally fine-grained traffic flow volume data. Due to
the potential presence of the modifiable areal unit problem (MAUP), the cluster detection results might
differ from fine-grained data and coarse-grained data. Secondly, although traffic flows should include
traffic flows by different transport modes, we had to use motor vehicle flows rather than all-mode
traffic flow to represent traffic flows in this study due to the absence of pedestrian and cycle flow
volume. Thirdly, apart from traffic flow volume, other dynamic factors (e.g., weather conditions) have
not been considered in this study. The impacts of street connectivity on road collisions might be better
examined after adjusting for weather conditions.

We will attempt to address those limitations in the future. Firstly, we will perform a similar study
in another city with the availability of fine-grained traffic flow data. This would help to understand
the potential influence of the MAUP on the cluster detection. Secondly, we will attempt to repeat
this study once all-mode traffic flow data are publicly available. The cluster detection results might
differ between selected motor vehicle flow volume and all-mode traffic flow volume as the population
variable. Thirdly, to take account of more built-up environmental factors as potential covariates, we
will select transport facilities including traffic calming, walkways and sidewalks once the data are
publicly available. Fourthly, we would include more dynamic factors (e.g., weather conditions) in the
future. Finally, since previous studies argued that the reduced travel speed caused by increasing traffic
volume may decrease the likelihood of crash occurrence [26], we would consider traffic volume and
traffic speed that could be both observed or estimated [34].
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