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Abstract: Faults in Heating, Ventilation and Air Conditioning (HVAC) systems affect the energy
efficiency of buildings. To date, there rarely exist methods to detect and diagnose faults during
the operation of buildings that are both cost-effective and sufficient accurate. This study presents
a method that uses artificial intelligence to automate the detection of faults in HVAC systems.
The automated fault detection is based on a residual analysis of the predicted total heating power and
the actual total heating power using an algorithm that aims to find an optimal decision rule for the
determination of faults. The data for this study was provided by a detailed simulation of a residential
case study house. A machine learning model and an ARX model predict the building operation.
The model for fault detection is trained on a fault-free data set and then tested with a faulty operation.
The algorithm for an optimal decision rule uses various statistical tests of residual properties such as
the Sign Test, the Turning Point Test, the Box-Pierce Test and the Bartels-Rank Test. The results show
that it is possible to predict faults for both known faults and unknown faults. The challenge is to
find the optimal algorithm to determine the best decision rules. In the outlook of this study, further
methods are presented that aim to solve this challenge.

Keywords: residual analysis; fault detection; HVAC system faults; model prediction; random forest;
ARX modeling; statistical testing; energy efficiency

1. Introduction

In the effort to fight global warming, one of the German government’s goals is to achieve a
climate-neutral building stock by 2050. The policies focus on two strategies, the use of renewable
energies and the increase in energy efficiency. Long-term climate neutrality in the building sector
can be achieved by reducing energy consumption and expanding renewable energy [1]. The thermal
properties of the building envelope, the efficiency of building technology, and the user behaviour
significantly influence energy efficiency of a building. In order to take measures to improve existing
buildings, it is essential to detect the actual energy efficiency of a building. With on-site measurement
data, the actual energy consumption can be detected, and flaws in energy efficiency identified.

Deviations from the efficient operation can result from plant defects, neglected maintenance
or changed or incorrect use by the residents. AS research implies these deviations can result in a
significant additional consumption of energy in the order of 5–30% [2–4]. This study aims to develop a
method to determine the faults in HVAC installations to improve operational efficiency and, therefore,
improve the energy efficiency of a building.
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Fault detection (FD) identifies (detecting) the deviation from the target and actual or expected
operations (faults). There are two possible fault detection scenarios: Either measurement can be
performed on-site, and faults detected afterwards by analysing the data or the faults are detected
automatically in real-time during operation and reported directly to the building technology manager.
Automated fault detection has the advantage that the commissioning of a system is monitored and
optimised by the FD method and that energy is saved over the entire lifespan, and the operation
and maintenance process can be continuously monitored. In this way, an efficient HVAC process can
be ensured.

With the development of new software, data availability and data analysis, and the research on
artificial intelligence [5] many institutions are improving and developing new fault detection methods.
In the past there were many approaches to detect faults by using a number of different prediction
methods. For example Yan et al. [6] suggested a combination of ARX and support vector machines for
fault detection, while Luo et al. [7] created a fault detection of machine tools based on deep learning.
Kim et al. [8] give a summary of automated fault detection and diagnostics (AFDD) studies published
since 2004 that are relevant to the commercial buildings sector. They categorise AFDD in HVAC
areas into three main categories: process history-based, qualitative model-based, and quantitative
model-based methods. Lo et al. also give a good review on machine learning approaches in fault
diagnosis [9]. Z. Ge et al. [10] give a systematical review through the viewpoint of machine learning on
methodologies of data mining and analytics in the process industry. Mattera et al. [11] use the physical
relations inside ventilation units to create virtual sensors from other sensors’ readings, introducing
redundancy in the system. They employed linear regression models, statistical models like linear and
non-linear regression models. Lin et al. [4] investigate what the cost-benefit of FDD methods is and
which methods and data sets can be used to evaluate and compare FDD methods.

Within the ongoing IEA ECB Annex 71 [12] (International Agency’s Energy in Buildings
and Communities Program; Annex 71 Building Energy Performance Assessment Based on In-situ
Measurements), the members explored FD-techniques. Building on the Annex, this study focuses on
the faults of the building system. Simulation data of the twin houses—which are two identical case
study houses at the Fraunhofer Institute for Building Physics in Holzkirchen, Germany—were used.
The simulation was carried out as part of the “The Building Energy Simulation (BES) model validation”
study of the IEA ECB Annex 58 and 71 project [12,13]. The data consist of two sets, a first part in which
fault free operations are simulated and a second part in which various system faults were integrated
into the simulation. Both data sets have the length of one month.

This study is an extension of the work presented by Parzinger et al. at the 12th Nordic Symposium
on Building Physics (NSB 2020) [14]. In a first phase, two different statistical models, a machine
learning approach called random forest [15] and a time series approach called ARX, which stands for
auto regressive process with exogenous inputs, predict the normal operation by predicting the total
heating power of the building. Of these two models, the linear ARX model has the advantage that it is
easier to interpret than random forest. On the other hand, the black box model random forest as an
ensemble method is more difficult to interpret, but has the advantage that it has few problems with
overfitting and provides a non-linear modelling technique. The fault detection approach presented
in this study can, in principle, be performed with any prediction model for regression. Two different
modelling techniques (ARX and random forest) are used to show that the presented methodology
for fault detection is independent of the prediction model. In the second phase, these two prediction
models predict the data set that contains faults. For fault detection two different residual analysis
are processed: 1. The exact times of the faults are known. Thus the best decision rule can be found
for each data set and each statistical model by minimizing the misclassification. 2. The times of the
faults in the preliminary field are not known. In this case, the fault is estimated using the rate of
estimated faults. The fault detection is carried out using residual analysis, model checking based
on residual analysis is a standard technique for time series analysis, cf. [16], page 175 ff. and [17],
page 360 ff. An overview of time series modelling can be found in [16,18]. With a suitable time series
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model adaptation, the residuals are generally expected to stay within—an approximate—white noise
and i.i.d. with a centered mean. In this study we use this characteristic as the starting point for a
decision technique. We propose that this decision technique is suitable for residuals based on any good
model fitting (e.g., resulting from a random forest model).

There are two main types of time series methods for fault detection: non-parametric methods,
which use spectral analysis, and parametric methods, which can be categorized as parameter-based
and residual-based methods [19]. For the residual technique, the estimations of the model parameters
do not have to be considered. The residuals can be calculated directly from the predictions (based on
the same modelling method) and the responses. The white noise property of the residuals can be
analyzed using various statistical tests, which work partially as portmanteau tests. In this study
a data-driven decision rule for fault detection merges multiple tests. Different faults and different
prediction methods for the response yield different deviations of the standard behaviour of the
resulting residuals. The decision rule for fault is learned on the residual data and can be seen as a sort
of portmanteau decision rule for fault detection where the null hypothesis is specified by faultlessness.
The technique is adjusted to the situations of observed and unobserved faults in the learning sample.
Furthermore, the method is formed for fault detection in specific time points and time intervals.

The developed methods for fault detection could replace a graphical, user-subjective valuation of
a residual plot using an automatic, data-based approach. The procedure of the fault detection method
presented in this study is shown in Figure 1. The focus is on the fault detection area highlighted in red.

Figure 1. Summary of FD procedure. The focus of this study is on the fault detection area highlighted
in light red.

2. Description of Simulated Data and System Faults

The simulation was build upon an empirical validation experiment of Annex 58 and Annex 71.
A detailed description of the two identical full-size buildings of the Fraunhofer Institute for Building
Physics in Holzkirchen, Germany, and data can be found in [20–24].

The data set is obtained through detailed simulation with the building performance simulation
(BPS) program IDA Indoor Climate and Energy (IDA ICE) [25]. IDA ICE is a multizone equation based
simulation program to describe and simulate the behaviour of buildings and HVAC systems. A model
of the building and HVAC system is physically described and simulated. The simulation uses the
house description of Annex 58 and the climate boundary conditions of January and February 2019 in
Holzkirchen [26] (Annex 71).

For the simulation model, each room was equipped with a 2000 W electric radiator with a
longwave radiation fraction of 40%. The heating set point of the air temperature was set to 21◦C and
controlled room wise by a thermostatic control with a dead band of ±0.5 K.
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The simulation integrates an MHVR (Mechanical Ventilation with Heat Recovery) air handling
unit with a heat recovery of 80 percent with an integrated MVHR summer bypass (possibility to switch
off the heat recovery during summer months). Table 1 shows the setting of the MHVR for the different
rooms, divided into rooms with supply air and return air. The living room and the kitchen have an
open floor plan.

Table 1. Air handling unit settings.

Room Supply Air [m3/h] Return Air [m3/h]

Living 50 0
Sleeping 50 0
Child 1 25 0
Child 2 25 0
Dining 0 50

Bath 0 50
Kitchen (open to Living) 0 50

The simulation includes a simple occupancy plan of a four-person household with the absence of
users between 7:30 and 17:00 each day. The occupancy is set as presented in Table 2.

Table 2. Occupancy settings.

Room Occupancy Time Slots

Living and Kitchen 3 Persons 6:30–7:30 and 17:00–23:00
Sleeping 2 Persons 23:00–6:30
Child 1 1 Person 23:00–6:30
Child 2 1 Person 23:00–6:30
Dining 3 Persons 6:30–7:30 and 17:00–23:00

Bath 1 Person 6:30–7:30 and 17:00–23:00

The data set starts on 1 January and ends 28 February. The first month (1–31 January), the building
runs in regular operation. The second month (1–28 February) includes faults in the operation of
the building. In this study, three faults are selected. The first fault (F1) is the tripping of the circuit
breaker due to an overload of the upper floor power cable or due to a short circuit. The result is the
loss of heating power on the upper floor. It is possible to deactivate the heat recovery of the ventilation
system through a bypass to prevent overheating during the summer months. In the second fault (F2),
the bypass disables during the heating period. This fault results in cold supply air temperatures in
the ventilation system. In the third fault (F3), the room temperature thermostat of the living room
is broken. The result is a changed setpoint temperature of 28 ◦C. Table 3 gives a detailed description of
the faults and their start and end times.

Table 3. Integrated system fault settings.

Fault Start End

F1 Circuit breaker failure of the electrical heating in
the upper floor 2 February 0:00 4 February 23:59

F2 MHVR summer bypass switch off the heat recovery
during fault duration 10 February 0:00 15 February 23:59

F3 Living room thermostat to set temperature 28 ◦C 20 February 0:00 23 February 23:59

The data set contains the indoor and outdoor properties shown in Table 4. Air temperature
for each room and total heating power supplied by all electrical radiators are measured indoors.
The outdoor properties are the air temperature, relative humidity, diffuse and direct solar irradiation
on horizontal surfaces, and wind speed and wind direction.
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Table 4. Simulated data properties.

Indoor Properties - air temperatures for each room
- total heating power supplied by all electrical radiators

Outdoor Properties

- air temperature
- relative humidity
- diffuse and direct solar irradiation on horizontal surfaces
- wind speed and wind direction

3. Statistical Tests

The presented statistical tests are implemented with the programming language R [27], and the
user interface RStudio [28]. The graphics were created with the R package “ggplot2” [29].

The predictive models for the response total heating power use as predictors the indoor
temperatures of all rooms, all outdoor information, as listed in Table 4 and the daytime in hours.
The estimated total heating power is the model output and the values of the total heating power one
hour and two hours ago at each point in time are added as predictors (features) to the models.

The predictive modelling is carried out with the method random forest [30] and an ARX
(autoregressive with exogenous variables) time series model [31]. To predict the total heating power
ŷt in February, the January data is used to train a model. The total heating power in January is
predicted with a 4-fold cross-validation. The 4-fold cross-validation divides the January data into
four nearly equally sized parts. Then three of these parts predict the reminding part in order to
evaluate the models. The difference between the real values (responses) yt and the predicted values
of the total heating power ŷt are the residuals. Let yt be the response variable of the observed
total heating power and ŷt the predicted total heating power from a model at the time t = 1, . . . , n.
Then ε̂t := yt − ŷt denotes the residual at the time t and ε̂ := (ε̂1, . . . , ε̂n) the vector of the residuals.
Furthermore ε̃ := (ε̃1, . . . , ε̃n, ε̃n+1, . . . , ε̃n+L−1) := (ε̂1, . . . , ε̂n, ε̂1, . . . , ε̂L−1) is defined for a fixed
L ∈ {2, . . . , n}.

Figure 2 shows the January and the February residuals for the developed random forest and the
ARX model.

Figure 2. January and February residuals for ARX model and random forest model.
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After successful modelling, the typical properties of residuals are to be statistically tested. A fault
in the data process is assumed if the behaviour of the residuals deviates significantly from the standard
properties. The special properties of residuals depend on the modelling methodology, the data
structure of the learning sample, as well as on the prediction quality of the model.

It is assumed that the residuals have a median of zero, are independent and therefore uncorrelated
from each other, and behave randomly.

The Sign Test [32] and the Wilcoxon Signed-Rank Test [33] are suitable for testing for median
equal to zero. The Turning Point Test [34] is well suited for testing independence, the Box-Pierce Test
and the Ljung-Box Test [35] for autocorrelation. Randomness can be tested with the Bartels-Rank Test,
Cox-Stuart Trend Test, Difference-Sign Test and Mann-Kendall Rank Test [36]. In total, this study
examines the residuals using nine tests divided into four test objectives.

3.1. Moving p-Value

The moving residuals for the shift s with time window length L ∈ {2, . . . , n}, which represents
the sample size of the moving residuals, are defined by Mε̃(s, L) := (ε̃1+s, ε̃2+s, . . . , ε̃L+s). The moving
residuals are used in order to avoid testing all residuals at once. If pT(.) is the p-value of the statistical
test T, it is used (pT(Mε̃(0, L)), pT(Mε̃(1, L)), . . . , pT(Mε̃(n− 1, L))), for a fixed L, to examine periods
for faults. If the p-value of a test is less then a previously selected significance level α ∈ (0, 1), then the
null hypothesis of this test is significantly not met [17], page 5 ff. For all nine tests the null hypothesis
is that a certain property of the residuals is fulfilled. Therefore it applies that for each test a fault is
suspected when the p-value of this test is smaller then α.

3.2. Mean p-Value (MPV)

A disadvantage of the p-values of the moving residuals used so far is that it can be recognized at
which shift s the p-value is no longer as expected, but not at which time point. In the following, a new
constructed function determines faulty time points. This is made possible by a mean of the p-values
from the moving residuals. Let (1) be the mean p-value, in future called MPV.

ΓT,L(ε̂t) =
1
L

n−1

∑
s=0

pT(Mε̃(s, L))I{ε̃1+s ,...,ε̃L+s}(ε̂t) (1)

where IA(a) denotes the indicator function with IA(a) = 1, if a ∈ A and 0 else. The MPV for a given
test T and a window length L is for each ε̂t the mean of all p-values generated by moving residuals
that used ε̂t in the calculation.

For the fault detection it applies, if ΓT,L(ε̃t) < α, then the test T assumes a fault at time point t.
The fault detection presented here uses a combination of tests, which raises the question of how
many tests must assume at least one fault to assume a fault in total. This value is abbreviated with H.
The value of H is at least one and at most the whole number of tests which are used in the analysis.
In this work nine tests are used. Thus an automated fault detection can be defined by using the three
parameters L ∈ {2, . . . , n}, α ∈ (0, 1) and H ∈ {1, 2, . . . , 9}. Therefore, in the following each triple
(L, α, H) ∈ G := {2, . . . , n} × (0, 1) × {1, 2, . . . , 9} is simplified termed as a decision rule. For the
application G is replaced by a large subset of G. Let (2) be the fault function.

Φ : G → {0, 1, . . . , n},
Φ(L, α, H) 7→ Number of estimated faults in January

(2)
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Since there are no system faults implemented in the January data a limitation is made to the
decision rules which erroneously detect faults. Accordingly, a decision rule from the following set (3)
is required which is refereed to as choice set.

C := {(L, α, H) ∈ G|Φ(L, α, H) = 0} (3)

3.3. Parameter Optimization in the Case of Observed Faults

A grid search finds with the known time points of faults an optimized decision rule (L, α, H) ∈ C,
which minimises a previously defined fault rate. This optimization shows on the data of this study
good results. The applicability of the model, which was optimized by this procedure on another data,
was not tested so far. A problem could be that the decision rule adapts to the data too individually.
In future works, the procedure should be repeated with other validation data. Only when data
with known faults is available, this technique can be used, which is why other procedures are
presented below.

3.4. Parameter Optimization in the Case of Unobserved Faults

A realistic, application-oriented situation is that the system faults are unobserved. This study
looks for a method to derive a valid decision rule from the choice set without prior knowledge of
the faults. The aim is to find the decision rule from the choice set C, which recognizes the faults as
good as possible. Note that there are many decision rules in the choice set that never assume a fault.
A possible approach to get a decision rule with a high statistical power would be to restrict the choice
set via the adjacency. If a decision rule in the choice set is adjacent to a decision rule that estimates
exactly one fault in January, then this decision rule will correctly estimate January, and it should be
able to classify faults with a high power. An example of such an adjacency can be seen in Figure 3,
which is a simplified representation of two parameters. The figure shows the fault estimations of
25 decision rules.

Figure 3. Example for restricting C using adjacency, simplified for H = 7. In green are the combinations
of C, which are adjacent to a combination which assumes exactly one fault.

A disadvantage of this approach is that it is likely to dispose of many good combinations.
Moreover, in future works alternative measures of adjacency could be investigated.
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Another way is to determine the most frequent characteristic of each component from the set C,
i.e., the mode for each component. This means a search for the values defined in (4)–(6) is needed

Lm := argmax
L∈N

|{(L, α, H) ∈ C}| (4)

αm := argmax
α∈(0,1)

|{(L, α, H) ∈ C}| (5)

Hm := argmax
H∈N

|{(L, α, H) ∈ C}| (6)

where |A| denotes the number of elements of a set A. Finally, it is checked whether (Lm, αm, Hm) ∈ C
and for this case (Lm, αm, Hm) is the selected decision rule. Instead of the mode, this procedure can also
be performed with other measures of location such as mean or median. However, the choice quantity
should be further restricted beforehand. This can be done by applying all decision rules to February
and removing the decision rules that predict too few or too many times faults in the February data.

3.4.1. Rate of Estimated Faults

If no suitable element can be found directly from C with the previous methods, the following
approach can also be pursued. For this, each element of the choice set must contain a decision at
any time. Each decision rule can have two values per point in time, zero if it is not classified as fault
and one if it is classified as a fault. The number of decision rules that classify for faults are formed
by the sum of the decisions for each element from C (at any time). Next, these values are divided by
the number of decision rules that classify for faults at least once in February. This way, the decision
rules that never classify a fault are ignored. This rate is referred to as the rate of estimated faults.
If this rate is greater than a fixed threshold value, a fault is assumed. The following Table 5 serves as a
simplified example.

Table 5. Example for the calculation of the rate of estimated faults. The number of decision rules that
assume a fault is marked in blue.

Nr. Decision Rule t = 1 t = 2 t = 3 t = 4 Σ > 0
1 0 1 1 0 True
2 0 0 0 0 False
3 0 0 0 0 False
4 0 1 0 1 True
5 1 1 1 0 True

Σ 1 3 2 1 3

Σ/3 1/3 1 2/3 1/3

Σ/3 > 1/2 False True True False

Table 5 shows that there are four time-points considered, and C contains five decision rules.
Two of these five decision rules never assume a fault. Therefore, the sum of the dichotomous decision
rule values per time is divided by three (blue in Table 5). The threshold value chosen here is 1/2 so that
for the time points two and three faults are classified.

3.4.2. Restricting Areas

The previous methods were based on the MPV, which was used to estimate the exact times when
faults accrue. However, if it is sufficient to limit the faults to certain periods, the following steps can
be taken. First, a significance level α, e.g., 5% is determined. Then the p-values of all January residuals
of each test are calculated, and the tests with a p-value smaller than α are discarded. The remaining
tests are now applied to the February residuals and the tests with a p-value greater than α are discarded.
The tests that remain reject the null hypothesis in February but not in January. Step by step, the range
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of faults is limited by dividing the February residuals into the first and the second half. The p-values of
both halves are calculated. Each half with a p-value greater than α is further divided, and the process
can be repeated. If there are only p-values bigger than α in a range, it can be assumed that there is no
fault in this range. However, the problem with this procedure is that p-values strongly depend on the
sample size. Therefore the threshold α needs to be gradually adapted depending on the sample size.

4. Results

4.1. The Case of Observed Faults

This research uses the decision rules of the choice set for each data set and each model with
the lowest prediction error rate. This study analysed whether the residual analysis delivers better
results when the first, the second or the third fault or all three faults are in the data. Figure 4 shows
the representation of the optimal decision rule for both prediction models when only the first of the
three faults, see Table 3, are present in the data.

Figure 4. Fault estimate with decision rule (106, 11.2%, 8) for the ARX model and (397, 6.2%, 7) for the
random forest model. The periods with faults in the data are marked in red. The y-axis indicates if the
decision rule decided on faults.

When adding only the second fault to the data, it yields to the following Figure 5 with the
same procedure.
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Figure 5. Fault estimation with decision rule (119, 11.8%, 7) for the ARX model and (101, 20%, 8) for
the random forest model. The periods with faults in the data are marked in red. The y-axis indicates if
the decision rule decided on faults.

Figures 6 and 7 show the cases where only the third respectively all faults are present in the data.

Figure 6. Fault estimation with decision rule (84, 10.4%, 8) for the ARX model and (97, 9.6%, 7) for
the random forest model. The periods with faults in the data are marked in red. The y-axis indicates
whether the decision rule decided on faults.
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Figure 7. Fault estimate with decision rule (392, 3%, 7) for the ARX model and (545, 10.6%, 7) for the
random forest model. The periods with faults in the data are marked in red. The y-axis indicates
whether the decision rule decided on faults.

The chosen procedure to test the residuals properties can detect the faults in HVAC systems.
The graphical evaluation provides that if there is a fault in the data set, the faults are detected well
or very well. When analysing the data set containing all three faults, the first fault is not detected.
The optimal decision rule for the chosen prediction models differ from (84, 10.4%, 8) to (545, 10.6%, 7).
The decision rules used are all different and far apart, so it is difficult to choose one decision rule for
all cases.

4.2. The Case of Unobserved Faults

An effort was made to find the best decision rule for the case of unobserved faults. These two
variations of the decision rule that detect faults were explored: a method that limits the choices through
adjacency and a method that involves the change of the mode. The first method rejected too many
good decision rules, while the second method got influenced by the decision rules, that never contain
estimated faults. Additionally the change of the mode did not improve the decision rules. The method
of restricting areas did not lead to any results. All three methods were rejected and instead the rate
of estimated fault was analysed. If the faults are detected with no prior knowledge of the exact time
points and without empirical values for a decision rule, then the faults can be predicted by calculation
of the rate of estimated faults. The following shows the result for the data sets with three different
faults and a data set with no faults for the chosen prediction models. Figure 8 shows the results for the
first fault, Figure 9 the second fault, and Figure 10 the third fault.
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Figure 8. Rate of estimated faults for the first fault. In red, the period with fault, in green the period
without fault, in blue is the median, and the mean of the estimated rates is in orange.

Figure 9. Rate of estimated faults for the second fault. In red, the period with fault, in green the period
without fault, in blue is the median, and the mean of the estimated rates is in orange.
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Figure 10. Rate of estimated faults for the third fault. In red, the period with fault, in green the period
without fault, in blue is the median, and the mean of the estimated rates is in orange.

In Figure 11, you can see the rate of estimated faults when the data set implements all three faults.

Figure 11. Rate of estimated faults with all faults. In red, the period with fault, in green the period
without fault, in blue is the median, and the mean of the estimated rates is in orange.
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When evaluating the faultless data, one gets the representation in Figure 12.

Figure 12. Rate of estimated faults for the faultless data. In red, the period with fault, in green the
period without fault, in blue is the median, and the mean of the estimated rates is in orange.

The fault detection is carried out via a threshold value. This study uses the median and the mean
of estimated rates (shown in orange and blue in the figures). The difficulty is to define the appropriate
threshold value between zero and one. The Figures 8–12 show the course of the rate of estimated
faults and the selected threshold values. The graphical evaluation shows that faults are detected but
that many areas are also incorrectly identified as faults. It seems that both the median and the mean
of estimated faults are too low thresholds. Especially the fault detection from 600 h shows a fault
graphically if there is no fault.

4.3. Comparison Prediction Models

The January residuals, created by a 4 fold cross-validation, are useful to compare both prediction
models. This can be done by using the mean squared error (MSE) of each model, which is defined by
1
n ∑n

t=1 ε̂2
t . For the ARX model, the calculated MSE equals 31,001.55, and for the random forest, it is

100, 274.7. For this reason, the ARX model seems to be a better choice to predict the total heating power.
Usually the hyperparameters of the random forest should be optimized to reduce the MSE but in this
case the recommended values by Leo Breimann [15] were just used to perform the fault detection.
In this way one tests how the fault detection methods perform for residuals with high variance. For the
observed case Figures 4–6 show the results when only adding one fault to the data. The decision rule
using the ARX model delivers better results because the decision rule based on the random forest
model often suspects faults where no faults are and match the existing fault less accurately. If all faults
are in the data as shown in Figure 7, both models detect the third fault very well, the ARX model
has problems with the second fault, and both models recognise the first fault not well. In the case of
unobserved faults, the ARX detects the fault better if there is only one fault in the data set. For more
faults in the data set, the random forest worked better. The MSE of both the ARX and the random
forest models seem not to substantially affect the detection of faults based on the residual analysis.



Sustainability 2020, 12, 6758 15 of 18

5. Conclusions

This study uses residual analysis for fault detection of HVAC systems in buildings. A detailed
simulation of a residential case study house provided the data for the analysis. The predictive
modelling of the total heating power was carried out with the method random forest and ARX
(autoregressive with exogenous variables) time series model. The fault detection was carried out
by a residual analysis. The residuals were calculated directly from the predictions. A combination
of statistical tests explored the white noise properties of the residuals, while a data-driven decision
rule that combines multiple tests predicted the faults. The methods for fault detection developed in
this study could replace a graphical, user-subjective evaluation of a residual plot using an automatic,
data-based approach.

The fault detection method that uses residual analysis has several advantages: For one the method
does not depend on the prediction model applied, furthermore information such as model parameter
estimations and specific model structures are become superfluous. The research has proved that the
methods of fault detection can be applied and different types of prediction models such as time series
models and procedures of machine learning (including black-box methods) are suitable. Statistical tests
can be added or removed depending on the suspected residual properties.

This study introduces two different methods of residual analysis one that finds a decision rule
by grid search when faults are observed and the other that uses the rate of estimated faults when
faults are unobserved. Better results are achieved with the case of observed faults then with the case
of unobserved faults. Both fault detection methods depend heavily on the p-values, which usually
depend on the sample size, and the methods had to be consistently adjusted to the specific situation
and the given sample size.

The results show that the method for the case of unobserved faults should be pursued further in
the future. Since in practice the faults will not be observed. The evaluation of the case of unobserved
faults has brought with it the following difficulty: The results of the method on unobserved faults
show that the threshold value is difficult to find. The threshold value determines how accurate
a fault is predicted and has the function of a trade-off between specificity and sensitivity of the
classification rule. Fault detection based on the rate of estimated faults can be used without prior
knowledge of the faults. Additionally, this procedure also finds faults when none are present,
see Figure 12. However, the advantage of this method, which is to ignore the decision rule that
never detect faults, in this case becomes a disadvantage. By adjusting the threshold for the decision on
faults, the ratio between the decision rules that identify at least one fault and the decision rules overall
in the choice set could be improved. At the end of the test month (approx. 600 h), the FD method
detects a fault where there is no fault. We interpret this to be the case that the seasonal temperature
fluctuations were not sufficiently represented in the training data set, and the temperature increase
during this period (winter-spring transition) was therefore detected as a fault.

The method invites the application on data measured on-site. A real building evaluation could be
performed using a learning data set based on a building simulation (with simulated, observed faults)
of the same building. Consequently, it is essential to test the applicability of a decision rule based
on simulated building data on the behaviour of the original building. The accuracy of the building
simulation would then be a significant factor in the successful application of the method.

6. Outlook

In the next stage of this study, we plan to apply more statistical methods for fault detection on the
one hand and the other hand, an extended dataset to represent seasonal fluctuations better. We also
plan to increase the number of technical faults in the ventilation system, in the heating and control
system and a hydraulic problem. In a third phase of our study we plan to apply the developed fault
detection models based on the simulated annual data set to data measured in situ.
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The following methods could be suitable for finding an optimal algorithm to determine the
best decision technique: defining upper and lower bounds for residuals, using the coefficient of
determination, and the correlation comparison of the sensors.

A first new approach is to derive an upper and a lower bound using the residuals in the
fault-free state. Then a fault might exist if k ∈ N residuals in a row are outside of the bound.

Mattera et al. [11] present a second model approach which we plan to investigate as well.
The coefficient of determination (R2) between the predicted value and the observed value per day is
used to predict faults. In linear regression, a value of the coefficient of determination of one indicates a
perfect linear relationship, while a coefficient of determination of zero indicates no linear relationship.
Matera et al. assume a fault if R2 is low. Instead of the coefficient of determination, other measures
like the mean squared error would also be possible indicator for the presence of faults. Matera et al.
also suggested using each sensor as a response to determine the specific cause of the fault. In future
studies statistical methods to estimate (in an automated and data-driven way) the cause of a fault can
be considered.

In addition to a residual analysis based on a predictive model of one response, other approaches
are also conceivable. An idea for such an approach is an overall correlation comparison, which is
conducted by calculating the correlation (with respect to the linear or monotone relationships) between
all sensors per day. Then, with the help of the fault-free state, an upper and a lower bound is defined
for each sensor pair. If a certain number of correlations is outside the bound, a fault can be assumed.
The advantage of this method is that it would allow us to determine, without much additional effort,
which sensors are suitable to detect the fault by taking into consideration not only the number of
correlations outside the boundary but also which pairs are outside the boundary.

Creating a whole network of prediction models for real sensors as the response variables could be
a useful extension of an overall correlation comparison. The predicted values as virtual sensors are
checked against the observed values of the real sensors. The basis for the development of decision
rules for fault detection could then be the deviation between the behaviour of the whole prediction
network on faultless data and the behaviour of the network on a data set with faults.
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Abbreviations

The following abbreviations are used in this manuscript:

AFDD Automated fault detection and diagnostics
ARX Autoregressive with exogenous variables
C Choice set
FD Fault detection
FDD Fault detection and diagnostics
R2 Coefficient of determination
(L, α, H) Decision rule
ECB Energy in Buildings and Communities Programm
ŷt Estimated total heating power
Φ(L, α, H) Fault function
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H Minimum number of MPV that have to assume a fault before in total a fault is assumed
HVAC Heating, Ventilation and Air Conditioning
IA(.) Indicator function
IEA International Energy Agency
MPV, ΓT,L(ε̂t) Mean p-value
MSE Mean squared error
Lm, αm and Hm Mode of L, α, H
Mε̃(s, L) Moving residuals
n Number of observations
yt Observed total heating power
pT(.) p-value of the statistical test T
ε̂t Residual at time t
G Set of decision rules
α Significance level
t Time
L Time window length
ε̂ Vector of residuals
ε̃ (ε̂1, . . . , ε̂n, ε̂1, . . . ε̂L−1)
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