## Supplementary Material

Table S1. Field site background, including location, survey dates, and establishment and management history (Casey Bryan, Chris Evans, Scott Crist, Joe Nelson, personal communication, 2016). Lespedeza cuneata volunteered into these sites. Seeding of native species was from commercial seed.

| Site Name | Ownership and Location | Survey <br> Dates | History and Management |
| :---: | :---: | :---: | :---: |
| Headquarter s Prairie | CONWR U.S. FWS <br> Pigeon Creek Rd <br> N 37043.096' <br> W -8901.613' | $\begin{aligned} & 5 / 23 \\ & 7 / 25 \\ & 7 / 26 \end{aligned}$ | -Established: 1971 <br> -Prescribed burns: 1974, 1977, 1981, 1987, 1989, 1990, 1991, 1994, 1997, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2016 <br> -Mowing: 2001 to control sumac in southern half -Herbicide: 2007-L. cuneata treatment with Plateau -Seeding: 1997-rootstock of forbs planted (1600 spp) -Current management: undergoing herbicide treatment before site replanting |
| Postage Stamp Prairie | CONWR U.S. FWS <br> Stringtown Rd <br> N 37043.162' <br> W $-89^{\circ} 02.696^{\prime}$ | $\begin{aligned} & 5 / 24 \\ & 7 / 26 \\ & 7 / 27 \end{aligned}$ | -Established: unknown <br> -Seeding: restoration was planted, records do not indicate date or seed mix <br> -Current management: none |
| HC-6 | CONWR U.S. FWS <br> Hampton Cemetery <br> Rd <br> N $37^{\circ} 41.704{ }^{\prime}$ <br> W -8903.821' | $\begin{gathered} 5 / 31 \\ 7 / 27 \\ 8 / 2 \end{gathered}$ | -Established: 2014 <br> -Prescribed burns: every two years <br> -Mowing: 2014 <br> -Seeding: grass/forb mix was seed drilled in 2014 -Former use: haying of cool season grasses and fescue -Current management: mowing, fire, pesticide application, additional planting |
| Bass Pond West | CONWR U.S. FWS <br> N Wolf Creek Rd <br> N 3741.641' <br> W -890․ $3.463{ }^{\prime}$ | $\begin{gathered} 6 / 3 \\ 7 / 28 \end{gathered}$ | -Established: $\sim 1990$, with additional acreage added in 1994, 2002, and 2004 <br> -Prescribed burns: each half of the unit burned individually on two-year rotation (east unit last burned |
| Bass Pond East | CONWR U.S. FWS <br> N Wolf Creek Rd <br> N 3741.530' <br> W -890ㅇ․043' | $\begin{aligned} & 6 / 7 \\ & 8 / 5 \\ & 8 / 8 \end{aligned}$ | 2015) <br> -Mowing: 2014 <br> -Herbicide: 2007-L. cuneata treatment with Plataeu <br> -Seeding: grass/forb mixture when established -Former use: haying and pasture <br> -Current management: mowing, fire, haying, interseeding |
| North <br> Prairie 1 | $\begin{gathered} \hline \text { CONWR U.S. FWS } \\ \text { Spillway Rd } \\ \text { N } 37^{\circ} 42.258^{\prime} \\ \text { W }-89^{\circ} 07.911^{\prime} \\ \hline \end{gathered}$ | $\begin{aligned} & 6 / 8 \\ & 8 / 1 \end{aligned}$ | -Established: 1994, additional acreage converted in 1997 <br> -Prescribed burns: 1990, 1995 1999, 2001, 2006, 2010, $2012$ <br> -Seeding: native warm season grasses and forbs |
| North <br> Prairie 2 | CONWR U.S. FWS <br> Spillway Rd <br> N 37º 42.473 ' | $\begin{aligned} & 6 / 9 \\ & 8 / 3 \end{aligned}$ | -Former use: grazing and farming -Current management: fire, mechanical removal of autumn olive |


| W -89 ${ }^{\circ} 07.917{ }^{\prime}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Galum Unit | Pyramid State Park IDNR Galum Church Rd N 38 ${ }^{\circ} 02.314^{\prime}$ W - $89^{\circ} 22.617^{\prime}$ | $\begin{gathered} 6 / 10 \\ 8 / 9 \end{gathered}$ | -Established: area reclaimed prior to PSP's purchase in $2001$ |
| Denmark <br> Unit | Pyramid State Park IDNR Denmark Rd <br> N 3759.778' <br> W -89³0.304' | $\begin{gathered} 6 / 13 \\ 8 / 9 \end{gathered}$ | -Current management: unknown |
| Faulkner- <br> Franke <br> Prairie | INPC <br> US-51, south of Mine Rd <br> N 37º $51.230^{\prime}$ <br> W $-89^{\circ} 13.846{ }^{\prime}$ | $\begin{gathered} 6 / 14 \\ 8 / 8 \\ 8 / 10 \end{gathered}$ | -Established: unknown <br> -Prescribed burns: 2010, 2016 <br> -Herbicide: treatment for 8 species in 2011 <br> -Current management: fire |
| Cache River | IDNR <br> US-37, northeast of <br> Perks Rd <br> N $37^{\circ} 18.708^{\prime}$ <br> W - $89^{\circ} 01.196^{\prime}$ | $\begin{aligned} & 6 / 16 \\ & 8 / 11 \end{aligned}$ | -Established: ~2001 <br> -Prescribed burns: 2005, 2013, 2016 (prior to surveys) <br> -Seeding: reseeded twice between 2006 and 2013 <br> -Current management: prescribed burns |
| Cave Creek Glade | INPC <br> US-45, north of Belknap Rd N 37º $21.500^{\prime}$ W -8853.178' | $\begin{aligned} & 6 / 17 \\ & 8 / 10 \\ & 8 / 12 \end{aligned}$ | -Established: self-established; unknown date <br> -Prescribed burns: 1989, 2002, 2008, 2011, 2012, 2014, 2016 (prior to surveys) <br> -Herbicide: L. cuneata treated in 2011, 2014, 2015 <br> -Former use: unknown <br> -Current management: prescribed burns and treatment for L. cuneata, Dipsacus laciniatus, and Microstegium vimineum |
| Dixon <br> Springs | U of I Dixon Springs Agricultural Center $\begin{gathered} \text { US-145 } \\ \text { N } 37^{\circ} 25.408^{\prime} \\ \text { W }-88^{\circ} 40.342^{\prime} \end{gathered}$ | $\begin{aligned} & 6 / 20 \\ & 8 / 24 \end{aligned}$ | -Established: early 1980s <br> -Prescribed burns: none <br> -Mowing: at least once a year until 5-10 years ago <br> -Seeding: planted into trees <br> -Former use: unknown <br> -Current management: none |
| Pennant Bar Openlands 1 | Shawnee National Forest <br> US-146, west of Hound Ridge Rd $\begin{gathered} \text { N } 37^{\circ} 23.205^{\prime} \\ \text { W }-88^{\circ} 42.110^{\prime} \end{gathered}$ | $\begin{aligned} & 6 / 23 \\ & 8 / 12 \\ & 8 / 24 \end{aligned}$ | -Established: unknown <br> -Prescribed burns: 2001, 2003, 2004, 2005; alternate |
| Pennant Bar Openlands 2 | Shawnee National Forest US-146, east of Franklin Ln N $37^{\circ} 23.469^{\prime}$ W - $88^{\circ} 42.681^{\prime}$ | $\begin{aligned} & 6 / 24 \\ & 8 / 31 \end{aligned}$ | -Current management: prescribed burns, treatment for E. umbellate invasion, disking, plowing, planting |

Table S2. Fifty most abundant species observed during the two field survey periods across all 15 sites. ${ }^{*}$ Two letter genus/species are used for target species codes in Fig S1 (and Ds = Desmodium spp., and Sh = Senna hebecarpa).

| Species | 2 Letter Code |
| :---: | :---: |
| Agrimonia parviflora |  |
| Ambrosia artemisifolia |  |
| Ambrosia bidentata | Ag |
| Andropogon gerardii* |  |
| Apocynum cannabinum |  |
| Asclepias syriaca |  |
| Bidens aristosa |  |
| Bromus inermis |  |
| Campsis radicans |  |
| Carex bicknelli |  |
| Carex bushii |  |
| Chamaecrista fasciculata* |  |
| Cirsium discolor |  |
| Coronilla varia |  |
| Desmodium canadense |  |
| Desmodium paniculatum |  |
| Dichanthelium clandestinum |  |
| Dioscorea villosa |  |
| Elymus virginicus |  |
| Festuca arundinacea |  |
| Galactia regularis |  |
| Helianthus divaricatus |  |
| Juncus interior |  |
| Lespedeza cuneata |  |
| Lonicera japonica |  |
| Melilotus alba |  |
| Microstegium vimineum |  |
| Monarda fistulosa |  |
| Muhlenbergia asperifolia |  |
| Panicum virgatum** |  |
| Penstemon digitalis* |  |
| Persicaria hydropiperoides |  |
| Poa pratensis |  |
| Pycnanthemum tenuifolium |  |
| Ratibida pinnata** |  |
| Rosa carolina |  |
| Rosa multiflora |  |
| Rubus sp. |  |
| Schizachyrium scoparium |  |
| Setaria faberi |  |
| Silphium integrifolium |  |
| Solidago Canadensis* |  |
|  |  |

Solidago graminifolia
Sorghastrum nutans*
Teucrium canadense
Toxicodendron radicans
Trifolium campestre
Verbesina alternifolia
Vernonia missurica

Table S3. Results of vector fitting for each of the 15 site ordinations. R and p -values are bold if significant at $\alpha<0.05$.

|  | $$ |  | $\left\|\begin{array}{cc} c_{n} & 0 \\ \substack{0 \\ \\ \\ \hline \\ \hline} \end{array}\right\|$ |  |  |  | $\begin{aligned} & \text { n } \\ & 0 n \\ & 0 i \\ & \text { II } \end{aligned}$ | Z | $$ | $\left\lvert\, \begin{array}{ll} \infty \\ N_{1} \\ 0 \\ 0 \\ \approx & \\| \\ \end{array}\right.$ |  |  |  |  |  | $\begin{aligned} & \text { ño } \\ & \text { ín } \\ & \text { III II } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{\hat{\sim}}{\hat{2}}$ |  |  | $\begin{aligned} & \bar{m} \\ & \underset{i}{o} \\ & \frac{\pi}{i} \\ & \frac{\pi}{n} \end{aligned}$ |  |  | $\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \frac{2}{i} \\ & \Pi \\ & \pi \end{aligned}$ |  |  | $\begin{gathered} \text { N } \\ \text { in } \\ \text { N } \end{gathered}$ |  | $$ |  |  |  |
|  | ～ |  | $\left\|\begin{array}{cc} 0 & 2 \\ 0 & 0 \\ i 1 & 0 \\ & 10 \end{array}\right\|$ | $\begin{array}{ll} \underset{\sim}{n} & \underset{1}{0} \\ \underset{\sim}{1} \\ \underset{\sim}{1} \end{array}$ |  |  | $\begin{array}{ll}  \pm & 0 \\ 0 \\ 0 \\ i \\| \\ \text { IIn } \end{array}$ | $\begin{gathered} \text { N } \\ \text { O } \\ \text { II } \\ \text { In } \end{gathered}$ |  |  |  | $\begin{array}{ll} \infty \\ \aleph_{0}^{\infty} \\ \underset{\sim}{1} \\ \underset{\sim}{0} \end{array}$ |  |  | $\begin{aligned} & \text { So } \\ & 0.0 \\ & \text { il } \\ & \sim 1 \end{aligned}$ |  | $\begin{aligned} & \text { 管 } \\ & \text { ií } \\ & \text { III } \end{aligned}$ |
|  | $\bar{\sim}$ |  | $\left\|\begin{array}{ll} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ \hline \\ \hline \\ \hline} \end{array}\right\|$ |  |  |  |  | $\left\lvert\, \begin{array}{ll} 0 & n \\ 0 & \infty \\ 0 \\ & \\| \\ \end{array}\right.$ |  |  |  |  |  |  |  |  |  |
|  | $\tilde{Z}$ |  |  |  | $\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{\hat{O}} \\ & \text { il } \\ & \approx \\ & \approx \end{aligned}$ |  |  | $\begin{array}{ll} \infty & 0 \\ n_{0} \\ 0.0 \\ i l & \\| \\ \end{array}$ |  | $\begin{aligned} & \underset{\sim}{0} \stackrel{N}{6} \\ & \stackrel{1}{6} \\ & \underset{\sim}{\\|} \end{aligned}$ |  | $$ | $$ |  |  |  |  |
|  | $\overline{2}$ |  | $\left\|\begin{array}{cc} 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0 \\ & 10 \end{array}\right\|$ |  |  | $\begin{aligned} & 0 \\ & \text { No } \\ & \text { No } \\ & \text { No } \\ & \sim \end{aligned}$ |  |  |  | $\left\lvert\, \begin{array}{ll}  \pm & 0 \\ o \\ \text { oin } \\ \text { q } \end{array}\right.$ |  |  |  |  |  |  |  |
| ， | 은 |  |  |  |  |  | $\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & i \\| \\ & \text { In } \\ & \hline 10 \end{aligned}$ |  | $\begin{aligned} & \text { 웅 } \\ & 0 \\ & \text { iI } \\ & \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { d } \\ & \text { n } \\ & \text { in } \\ & \text { In } \\ & \end{aligned}$ |
|  | 首 | $\left\|\right\|$ |  |  |  |  |  |  | $\left\lvert\, \begin{array}{ll} \infty & m \\ M & \ddots \\ 0 & 0 \\ \sim & \\| \\ \hline \end{array}\right.$ |  |  |  |  |  |  |  |  |
|  | 易 | $\begin{array}{cc} \substack{c \\ \vdots \\ o \\ \text { II } \\ \\ \hline \\ \hline} \end{array}$ |  |  | $\begin{aligned} & \text { Nin } \\ & \text { in } \\ & \end{aligned}$ |  | $\begin{array}{ll} \bar{m} & \tilde{n} \\ 0 \\ \vdots \\ & I I \end{array}$ | $\begin{aligned} & 9 \\ & 0.0 \\ & 0.0 \\ & i 10 \end{aligned}$ |  |  |  | $\begin{aligned} & 90 \\ & \text { o. } \\ & \text { il } \\ & \end{aligned}$ |  | $$ |  |  |  |
|  | 言 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | טن |  | $\left\|\begin{array}{cc} \substack{c} \\ 0 & 0 \\ i & 0 \\ & 1 \\ 0 \end{array}\right\|$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ชิ |  |  |  |  |  | $\begin{aligned} & \text { y } \\ & \text { on } \\ & \text { II } \\ & \text { a } \end{aligned}$ |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { N N } \\ & \text { on } \\ & \text { IIII } \end{aligned}$ |  |
|  | $\frac{3}{2}$ |  | $\left\|\begin{array}{cc} c & 0 \\ 0 & 0 \\ 0 & 0 \\ & 1 \\ 0 \end{array}\right\|$ |  |  |  |  |  |  |  |  | $$ |  |  | $\begin{aligned} & \text { Nin } \\ & \text { il } \\ & \text { cill } \end{aligned}$ |  | $\begin{aligned} & \text { Na } \\ & \text { on } \\ & \text { iIt } \\ & \text { an } \end{aligned}$ |
|  | 任 |  |  |  |  |  | $\begin{gathered} \text { n } \\ \text { of } \\ \text { II } \\ \text { cil } \end{gathered}$ | $\begin{array}{ll} \bar{m} & \frac{n}{0} \\ i \pi \\ & \pi \end{array}$ |  |  |  |  |  |  | $\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{N}{\circ} \\ & \underset{\sim}{i} \end{aligned}$ | $\begin{array}{cc} 0 & 0 \\ 0 & \infty \\ 0 \\ 0 & 0 \\ & \pi \\ 0 \end{array}$ |  |
|  | $\begin{aligned} & \stackrel{0}{0} \\ & > \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


a

(b) $\mathrm{Ag} \quad \mathrm{t}_{4}=7.26, \mathrm{p}=0.002$
(c) Legumes $U=24, T_{12,12}=102, p=0.003$
b

c
Figure S1. The plant-soil feedback responses (on total (a), above- (b), and belowground (c) biomass) of the nine target species (codes refer to the first letter of the genus and specific epithet, respectively [Table S2]) to soil conditioning without competition (panel a) and in the presence of competition with L. cuneata (panel b) and the competition effect responses (on total (a), above- (b), and belowground (c) biomass) on the nine target species comparing competition with L. capitata to competition with L. cuneata in unconditioned (panel c) and conditioned soil (panel d). The PSF was calculated as $\ln$ (Biomasscond/Biomassurcond) within each replicate and averaged per target species (mean $\pm$ se). Positive responses indicate that the target species produced greater biomass in conditioned soil while negative responses indicate that they produced less biomass in conditioned soil. The competition effect was calculated as (BiomasscanBiomassLap) / (BiomassLcun+BiomassLap) within each replicate and averaged per target species (mean $\pm$ se). Positive responses indicate that the target species produced greater biomass under competition with $L$. cuneata than competition with $L$. capitata while negative responses indicate that they produced less biomass in competition with $L$. cuneata than competition with L. capitata. Significant PSFs and competition effects (compared to 0) are denoted with *. All calculations are averages of 3-4 replicates excluding $A$. gerardii and $P$. digitalis no competition PSFs, which are averages of only 2 replicates due to misidentified and dead plants.

