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Abstract: We propose combining the filter framework model of community assembly with the
passenger-driver model of non-native species behavior to help clarify the impacts of invasive species
in the communities they invade and to guide sustainable management protocols. Observational field
surveys and a greenhouse experiment explored the role of the invasive legume Lespedeza cuneata
in the communities it invades and how natives in three functional groups—grasses, forbs, and
legumes—respond to its presence. Within-site analyses from the field survey revealed differences in
invaded and uninvaded areas in half of the sites, suggesting that site-specific characteristics influences
whether L. cuneata’s presence corresponds to local differences in species composition. The greenhouse
experiment found higher levels of saprophytic and arbuscular mycorrhizal fungi in soil conditioned
by L. cuneata than in unconditioned soil. However, competition between L. cuneata or the native
congener L. capitata and nine native species illustrated stronger aboveground competitive effects than
belowground soil effects due to soil conditioning, with impacts differing among functional groups.
The response of L. cuneata was reduced in the presence of grasses and other legumes but not forbs.
Assessing the impact of L. cuneata with the combined community assembly model revealed this
invasive plant acts as a driver because it alters abiotic and biotic filters to impact species composition.
Managing for high grass abundance and planting native legumes will help sustain grasslands from
L. cuneata invasion.

Keywords: competition; filter model; grassland; Lespedeza cuneata; passenger-driver model; plant-soil
feedback; sustainable management

1. Introduction

Studies of non-native invasive species dynamics need to include invasive impacts on community
assembly, especially when the control of the invasive species through management cannot keep
pace with its spread. A relevant model of community assembly for studying plant invasions is the
filter framework model, in which biotic and abiotic filters determine the species composition of an
ecosystem by only allowing species able to “pass through” the filters to establish and thrive [1–5].
Biotic filters are constraints imposed by the living components of an ecosystem, such as competition,
predation, and mutualisms, while abiotic filters are limiting environmental and climatic factors, such
as soil composition, water availability, and temperature. By contrast, the passenger-driver model of
community assembly differentiates between two types of non-native species: drivers, which are able
to establish and dominate in an ecosystem, and passengers, which establish themselves but do not
adversely affect other species [6,7]. Approximately 10% of non-native species act as drivers, lowering
community diversity and creating novel communities of plants through competition, soil conditioning,
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withstanding disturbance, or altering nutrient cycles [6,8–10]. Passengers can survive disturbances
but are not catalysts of major changes in ecosystem biodiversity or function [7,11,12]. We propose to
integrate driver and passenger species dynamics into the filter framework (Figure 1). In this adaptation,
non-native passenger and driver species both pass through the filters and establish at which point
passengers exist in the community with minimal broader impacts, while drivers alter the filters, thereby
affecting the establishment and survival of other species. However, a challenge to understanding the
role of an invasive species and its broader effects that will allow for the development of sustainable
management protocols is determining the mechanisms through which it affects these filters [13].
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native passenger species = white diamonds and invasive driver species = black squares (e.g., Lespedeza 
cuneata) are able to pass through the filters and establish along with some native species = grey circles. 
The passenger has no additional major impacts while the driver species interacts with the abiotic and 
biotic filters (indicated by the black arrows), thereby affecting which species are able to pass through 
the filters to become part of the established community (indicated by the thickening of filter lines). 
The width of lines corresponds to the strength of impact: grey arrows are native impacts while black 

Figure 1. Proposed model combining the filter model with the passenger-driver model. Species from the
regional species pool must pass through abiotic and biotic filters to become part of the established pool
of species. The funnel shape indicates that not all species are able to pass through the filters. (a) Scenario
1 assumes native community functioning, or community dynamics of native plants (grey circles, e.g.,
Lespedeza capitata), while (b) Scenario 2 assumes community functioning with invasive exotic species
present, or community dynamics when driver species are present. In Scenario 2, non-native passenger
species = white diamonds and invasive driver species = black squares (e.g., Lespedeza cuneata) are able
to pass through the filters and establish along with some native species = grey circles. The passenger
has no additional major impacts while the driver species interacts with the abiotic and biotic filters
(indicated by the black arrows), thereby affecting which species are able to pass through the filters to
become part of the established community (indicated by the thickening of filter lines). The width of
lines corresponds to the strength of impact: grey arrows are native impacts while black arrows are
driver impacts. Dashed arrows indicate normal feedbacks between the abiotic and biotic filters that
occur as part of community assembly processes.
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The overall objective of this study was to explore how the invasive species Lespedeza cuneata
functions as a driver and a filter through aboveground and belowground processes to affect species
composition in restored grasslands, in order to guide management practices. We combined a regional
study (field surveys) with a small-scale study (greenhouse experiment) to connect invasive dynamics
with their broader impacts [13]. We asked three specific questions: (1) Is there a difference between
species and functional group abundance and composition in areas where L. cuneata is present or absent
within infested grasslands? (2) How does L. cuneata dominate native vegetation? and (3) How do
native plants in different functional groups respond to aboveground and belowground interactions
with L. cuneata?

2. Materials and Methods

2.1. Study Species

Lespedeza cuneata (Dum. Cours.) G. Don (Sericea lespedeza), is an invasive non-native perennial
legume introduced in the late 1800s to the United States from Asia for forage, soil erosion control,
and reclamation of degraded land [14]. Lespedeza cuneata easily overcomes native vegetation, forming
near-monocultures. This invasive species has greater flower and seed production and attracts a higher
frequency of pollinator visits than native Lespedeza spp., and produces seeds that can persist in the seed
bank for over 20 years [15]. Lespedeza cuneata benefits from disturbances such as fire and is resilient as
an adult due to a deep taproot [16].

Because attempts to control L. cuneata via fire, herbicide, grazing, and biocontrol have met limited
long-term success, they should be replaced by efforts to manage this species without necessarily
attempting complete removal [17–21]. To properly manage L. cuneata, an understanding of its
interactions with the surrounding flora and subsequent impacts on the communities it invades
is required [22]. Thus, exploring this species’ potential to act as a driver in the filter model
through aboveground and belowground mechanisms can provide insight into how it functions
in invaded communities.

Aboveground, competitive shading by L. cuneata due to its large leaf area and high aboveground
biomass has been observed [14,23], as well as its resistance to herbivory due to high tannin levels [17,24].
Belowground, intraspecific positive plant—soil feedbacks (PSFs) have been observed. In a positive PSF,
a plant alters the soil to benefit its own growth, either directly or indirectly, via detriment to the growth
of other plants [25–27] affecting invasion success [28]. PSFs of L. cuneata have led to high biomass
and nodulation rates [26,29,30], modified soil microbial communities [31], high symbiotic nitrogen
fixation [32], and allelopathic effects [33–37]. However, studies of L. cuneata soil conditioning have
been limited in that the specific mechanisms responsible for changes in soil composition, the effects of
these changes on co-occurring native legumes other than Lespedeza spp., and differences among grass,
forb, and legume functional groups have yet to be identified.

2.2. Field Surveys

To investigate the patterns and outcomes of invasion by L. cuneata, 300 plots were established
across 15 Lespedeza cuneata-infested grassland restorations in southern Illinois, USA, each with its
own management history (see Table S1 in the Supplementary Material). Sites ranged in age from 2 to
45 years since establishment. The status of L. cuneata infestation prior to restoration was unknown, but
L. cuneata was not introduced into the restorations. Field surveys were conducted in both early and
late summer 2016 to capture seasonal phenological changes in vegetation. Within each site, 20 one-m2

quadrats were established in a stratified random design in reference to a transect [38] with half the
plots located in L. cuneata-absent areas (hereafter referred to as LCA plots) and half located in areas
where L. cuneata was present (hereafter referred to as LCP plots), based upon protocols by Eddy and
Moore [39] and a pilot survey in 2015 (unpublished data). A power analysis conducted on the data
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from the pilot study indicated that a sample size of n = 9 per treatment (LCA/LCP) yields a power >0.8.
Thus, 10 plots per treatment were sampled (total n = 20) [40,41].

The species present in each quadrat were identified (nomenclature according to [42]) and their
abundance based upon the estimated canopy cover of plants rooted in the quadrat, recorded according
to the modified Daubenmire scale [43]. In the second round of surveys, the plots were relocated, and
data were collected as in the first survey.

2.3. Greenhouse Experiment

The greenhouse experiment was conducted at Southern Illinois University, Carbondale, Illinois,
to investigate the mechanism through which L. cuneata interacts with native species. Phase one of the
experiment, the “conditioning phase”, consisted of growing L. cuneata in soil to condition it; phase
two, the “response phase”, consisted of the experimental trials [44]. Soil was collected from the
upper 25 cm of a 2 m2 area of a non-infested prairie restoration at Crab Orchard National Wildlife
Refuge (CONWR) in January 2016 (37◦42.027′ N, 89◦03.928′ W). The soil type was a combination of
two Oxyaquic Fragiudalf Alfisols, Ava silt loam 2–5% slope, and Ava silty clay loam 5–10% slope,
severely eroded [45]. The soil was passed through a 1.25 mm sieve and mixed with sand to create
a 1:1 soil:sand mixture that was placed in 10.2 cm × 10.2 cm × 35.6 cm plastic treepots (3670.7 cm3

volume) (Hummert International, Earth City, Mo) to mimic deep grassland soils and minimize the
chance of plants becoming root-bound. Seeds of L. cuneata collected from CONWR in autumn 2015
were germinated in Petri dishes and transplanted as 2–3 week old seedlings into half of the pots
(n = 108) containing the collected and processed soil:sand mixture at a rate of twelve seedlings per
pot. The other half of the soil did not have plants growing in it and became the “unconditioned” soil
type. All pots were watered on the same watering regime (once to twice daily) and kept under 16 h
photoperiod lamps. Pots were blocked by replicate (n = 4) and arranged 2 replicates per bench.

Plants were grown for 10 weeks from February 12, 2016 through April 22, 2016, a length of time
over which effects of L. cuneata on its soil have been observed [35–37] and similar to the conditioning
phase for previous plant-soil feedback studies [25,46–50]. The average ambient air temperature was
27.6 ◦C (maximum 42.4 ◦C; minimum 15.9 ◦C), the average relative humidity was 25.2% (maximum
86.7%; minimum 5.9%), and the average PAR was 221.6 µM/m2s (maximum 1795 µM/m2s; minimum
0 µM/m2s). After 10 weeks, the aboveground and belowground biomass was removed before each soil
type was re-sieved (2mm) and mixed within each replicate [51]. The available nitrogen was extracted
from the conditioned and unconditioned soil samples (n = 10 per soil type) within 24 h of collection.
The samples were analyzed for inorganic nitrogen availability (NO3 and NH4

+) via 2N KCl extractable
nitrogen tests and for the presence and abundance of soil microbial communities through phospholipid
fatty acid analysis (PLFA), at the SIUC Core Facility for Ecological Analyses. Thirteen fatty acids were
analyzed as markers for 6 different bacterial/fungal functional groups: C14:0, C16:0, and C18:0, for
non-specific bacteria; i-C15:0, a-C15:0, i-C16:0, and i-C17:0, for gram positive bacteria; C16:1_9 and
C17:0 ∆ 9,10, for gram negative bacteria; C18:1_9 cis and C18:2_9,12, for saprophytic fungi; C16:1_11
cis, for arbuscular mycorrhizae fungi; and 10 Me C16:0, for actinomycetes.

The experimental trials (phase 2) were designed to investigate the effect of soil conditioning
and/or aboveground competition with L. cuneata on three functional groups. The experiment consisted
of 2 soil treatments (conditioned or unconditioned soil), 3 competition treatments (no competition
control, competition with native Lespedeza capitata, or competition with invasive L. cuneata), and 3 native
target species from 3 functional groups (grasses, forbs, and legumes) with 4 replicates per treatment
combination. Target grasses included Andropogon gerardii Vitman, Sorghastrum nutans (L.) Nash, and
Panicum virgatum L.; target perennial forbs included Solidago canadensis L., Penstemon digitalis Nutt.
ex Sims, and Ratibida pinnata (Vent.) Barnhart; and target legumes included Chamaecrista fasciculata
(Michx.), Desmodium spp. (Torr.) Torr. & A. Gray, and Senna hebecarpa (Fernald) Irwin & Barneby.
Seed unable to be collected from the field was supplemented with seed collected from the southern
Illinois region in previous years (Panicum virgatum and Ratibida pinnata) or with seed purchased from
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Prairie Moon Nursery, Winona, MN (Chamaecrista fasciculata and Lespedeza capitata). These target species,
including the congener L. capitata, were all abundant native prairie species across the range of surveyed
field sites that co-occurred with L. cuneata. The treatment with L. capitata, a native perennial legume
closely related to L. cuneata, was included to differentiate between the general effects of competition
and the specific effects of competition with the invasive L. cuneata on the native plants.

Seeds were germinated and transferred as 1–4 week old seedlings (depending on the growth rate
of the species) into the soil in the greenhouse pots. Within the first 2 weeks, the plants were thinned
to the most robust single seedling per species per pot. The plants were watered daily. Phase 2 ran
10 weeks, from 6 May to 17 July 2016. On 19 May 2016, all pots were moved to the Tree Improvement
Center, on the SIUC campus, due to better temperature control. The average ambient air temperature
was 26.3 ◦C (maximum 53.2 ◦C; minimum 11 ◦C), excluding data from 22 through 31 May 2016, due to
a data logger malfunction. The plants ranged in maturity at the conclusion of the experiment.

Height and leaf number were measured weekly, while the final height, leaf number, root length,
number of bacterial root nodules (present on legumes and visible with naked eye), and leaf chlorophyll,
a proxy for nitrogen levels, quantified using a leaf chlorophyll meter [52,53], were measured at the
conclusion of the experiment. The aboveground and belowground biomass of each plant was collected,
oven-dried at 60 ◦C, and weighed. The specific leaf area was calculated by averaging the area of a leaf
(cm) (measured using a Li-COR LI-3000A Portable Area Meter, LiCOR Biosciences, Lincoln, NB, USA)
divided by its dry weight (g) for 3 leaves per plant. Soil pH and conductivity were measured using
pH and conductivity meters according to protocol by the manufacturer (Fisher Scientific, Hampton,
NH, USA).

2.4. Statistical Analysis of the Field Surveys

Percent cover data was transformed to the midpoint of each abundance class, L. cuneata abundance
was excluded, and the data were standardized to the site unit total. Four diversity indices (richness,
evenness, Shannon’s H’, Simpson’s) and the average abundance of each functional group and origin
group were calculated and compared between LCA and LCP plots with a two-way repeated measures
mixed model, with the presence of L. cuneata nested within the site.

To investigate regional trends in L. cuneata invasion, data were averaged for each set of 10 plots
per LCA/LCP treatment per site per survey (i.e., n = 15 LCA plots and n = 15 LCP plots per survey).
Nonmetric multidimensional scaling (NMDS) was performed using Bray–Curtis dissimilarity values
followed by vector fitting of 17 plots and 6 abiotic/management variables (Table 1). Species centroid
plots were generated using the weighted averages of the 50 most abundant species. Repeated measures
permutational analyses of variance (PERMANOVA) were run to test the significance of (1) L. cuneata
presence and (2) site on LCA/LCP groups. Homogeneity of dispersion tests (PERMDISP) were
performed to test the variability in the size of the LCA/LCP and site groups in ordination space.

Site-by-site analyses were conducted to investigate small-scale site-specific patterns not apparent
in the regional analysis. The 10 LCA and 10 LCP plots within each site served as the replicates (i.e.,
n = 20 per site per round). NMDS and vector fitting analysis were performed separately for each site in
the manner described above (excluding the abiotic/management vectors). Blocked repeated measures
analysis of similarity (ANOSIM) tests were conducted to test for an effect of L. cuneata’s presence on
species composition. PERMDISP was performed to test the variability of the dispersion of LCA and
LCP plot groups in ordination space.

All data analyses were conducted in DECODA, PRIMER6, and SAS 9.4 [54–56]. Significance was
accepted at α = 0.05.

2.5. Statistical Analysis of the Greenhouse Experiment

The nitrate/nitrite levels, ammonium levels, and biomass of six soil microbial functional groups
were compared between conditioned and unconditioned soil using pairwise t-tests (or rank tests for
non-normal data). Mixed models were run to test for effects and interactions between 4 factors on the
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growth of the 9 native target species: soil conditioning (fixed), competition (fixed), functional group
(fixed), and replicate (random), using the measured dependent variables. Time was added as a fixed
factor to this model to analyze repeated measures of height and leaf number data of both competitor
species and target species over 8 weeks. Tukey HSD post-hoc tests were conducted to examine pairwise
relationships. All data were log+1 transformed prior to analysis. Data from 206 plants were included
in the analyses, giving a sample size of n = 206 (instead of the original 216) because 6 plants died
and 4 pots of A. gerardii actually contained Setaria viridis. Two pots intended to contain P. digitalis
that actually contained S. canadensis were analyzed as such because it was one of the study species.
The same mixed model, repeated measures, and Tukey’s analyses were conducted on the traits of the 2
competitor species, L. cuneata and L. capitata, using their measured dependent variables.

Modifications of Perkins and Nowak’s [57] competition effect (CE) equation:

CE = (BiomassL. cuneata − BiomassL. capitata)/(BiomassL. cuneata + BiomassL. capitata), (1)

and Chiuffo et al.’s [25] PSF equation:

PSF = ln(Biomassconditioned soil/Biomassunconditioned soil), (2)

were used to quantify the competition effects and plant—soil feedbacks of the target species. Both indices
were calculated using total, aboveground, and belowground biomass per each pair of target species
from each treatment within each replicate, and then those values were averaged across replicates
per species. The indices range from −1 to 1; positive values indicate that plants produced greater
biomass when growing in conditioned soil or in competition, while negative values indicate that plants
produced less biomass in conditioned soil or when in competition [57]. Indices were compared to zero
using pairwise t-tests to indicate if a competition effect or PSF effect was occurring. All analyses were
conducted in SAS 9.4 except for the pairwise tests, which were conducted in ggplot2 in R; Graphing was
performed in SigmaPlot 11.0 (Systat Software, Inc. 2008, San Jose, CA, USA).

3. Results

3.1. Field Surveys

Across all plots, 275 species were identified (in addition to L. cuneata). LCP plots contained
9.8 ± 0.6 species per m2, while LCA plots contained 10.2 ± 0.8 species per m2 (t28 = 0.42, p = 0.68).
The total plant cover excluding L. cuneata was 20.4% higher in LCA compared to LCP plots (mean ± se;
LCA plots = 103.8 ± 1.6%, LCP plots = 83.4 ± 1.9%), with an L. cuneata cover of 20.7 ± 1.4%
in LCP plots. The cover of two functional groups was greater in LCA than LCP plots: grasses
(LCA plot mean = 38.2 ± se 6.4%, LCP plots = 18.4 ± 3.0%, F15,132 = 4.14, p < 0.0001) and legumes
(LCA plots = 14.2 ± 2.7%, LCP plots = 7.4 ± 1.4%, F15,152 = 4.2, p < 0.0001).

Regionally, community composition did not differ between LCA and LCP plots (PERMANOVA
pseudo-F1,59 = 0.24, p = 1.0). There were significant differences among sites (PERMANOVA
pseudo-F14,59 = 4.69, p = 0.001), between LCA and LCP plots nested within site (PERMANOVA
pseudo-F15,59 = 5.41, p = 0.001), and between surveys per site (PERMANOVA pseudo-F15,59 = 3.26,
p = 0.001). Sixteen of the 23 tested vectors were significantly related to the NMDS ordination
(Table 1, Figure 2a). The abundance of invasives and natives and the fire history vectors had the
strongest correlations (indicated by Max R values). The species centroid plots indicated a positive
association between fire/herbicide management and native grasses and a negative association between
the management vectors and non-native grasses (Figure 2b, Table S2 in the Supplementary Material).
Tests of the dispersion of plots in the regional ordination illustrated the variability in the dispersion of
points for each site (indicated by a significant PERMDISP between site groups) but no differences in
the variability of LCA and LCP plot dispersion.
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Table 1. The 23 vectors fitted to the field survey nonmetric multidimensional scaling (NMDS) ordinations, grouped by category (table columns). Vectors for functional
and origin groups are based on abundance data; abiotic/management vectors were only included in the regional analysis. Max R and p values indicate the vector fit to
the regional analysis (Figure 2a).

Functional Groups Origin Groups Diversity Measures Survey Variables Abiotic/Management

Grass (R = 0.36, p = 0.02) Native (R = 0.84, p < 0.0001) Shannon diversity (R = 0.44, p = 0.002) Site (R = 0.26, p = 0.15) Site age (2–45 years) (R = 0.19, p = 0.34)
Forb (R = 0.59, p < 0.0001) Non-Native (R = 0.43, p = 0.008) Simpson diversity (R = 0.47, p = 0.001) Survey round (R = 0.04, p = 0.96) Site size (0.4-14.16 ha) (R = 0.37, p = 0.018)

Legume (R = 0.32, p = 0.05) Invasive (R = 0.86, p < 0.0001) Evenness (R = 0.41, p = 0.006) L. cuneata presence (R = 0.06, p = 0.90) History of fire (yes, no) (R = 0.74, p < 0.0001)
Sedge/rush (R = 0.13, p = 0.60) Richness (R = 0.43, p = 0.003) L. cuneata abundance (R = 0.23, p = 0.23) L. cuneata herbicide treatment (yes, no) (R = 0.51, p = 0.0003)

Vine (R = 0.32, p = 0.04) Soil type (Alfisols, Inceptisols, Enstisols) (R = 0.53, p < 0.0001)
Woody (R = 0.13, p = 0.58) Slope (0–20 degrees) (R = 0.59, p = 0.0002)
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On an intra-site scale, eight of the 15 sites had significantly different species composition between
LCA and LCP plots, with the presence of L. cuneata (the plot selection criterion) and its abundance
driving this separation (Table 2). Four of the eight sites had higher forb abundance in LCP compared
with LCA plots, while three sites had higher grass abundance in LCA compared with LCP plots.
The significant difference in composition between LCA and LCP plots in six of the eight sites was
supported by a nonsignificant difference in dispersion, which indicates that there is no significant
variability in the size of the LCA and LCP groups, and thus the detection of a significant ANOSIM is
based on differences in community composition. The significant PERMDISP result for the other two
sites, however, indicates that the variability in size of the LCA and LCP groups could be contributing
to the difference found between the plot types, rather than their separation being driven by differences
in species composition alone (Table S3 in the Supplementary Material).Sustainability 2020, 12, x FOR PEER REVIEW 8 of 20 
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Figure 2. Panel (a) NMDS ordination (stress value = 0.197) comparing the grassland community
composition of L. cuneata-absent (LCA) and L. cuneata-present (LCP) plots of all sites on the regional
scale. Each point represents the average community composition of all 10 LCA or LCP plots per site
per survey. Points from the first and second survey for each plot are connected with black arrows to
illustrate how the plots changed over time. Pairs of LCA and LCP plots from the same site are within
ellipses to clarify interpretation using the ellipse tool in SigmaPlot. Five abiotic vectors (red lines) were
fitted to the ordination significant at α < 0.05 (Table 1). Panel (b) Functional group centroids of the
NMDS ordination (Panel a) calculated from the weighted averages of the 50 most abundant species in
the field surveys.

Table 2. Effect of the presence of L. cuneata on community composition. Repeated measures
analysis of similarity (ANOSIMs) with LCA/LCP plots as groups and survey as blocks for each
site. Max R = ANOSIM test statistic. Significance of p-values accepted at α = 0.05 and shown in bold.

Site Max R p-Value

Bass Pond East (CONWR) 0.06 0.02
Bass Pond West (CONWR) 0.03 0.09

Cache River 0.09 0.009
Cave Creek Glade 0.13 0.0007

Dixon Springs 0.07 0.04
Faulkner-Franke Prairie 0.05 0.02

Hampton Complex 6 (CONWR) −0.04 0.77
Headquarters Prairie (CONWR) 0.16 <0.00001

North Prairie 1 (CONWR) 0.08 0.0005
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Table 2. Cont.

Site Max R p-Value

North Prairie 2 0.01 0.26
Pennant Bar 1 0.05 0.06
Pennant Bar 2 0.03 0.11

Postage Stamp (CONWR) 0.02 0.15
Pyramid State Park Denmark 0.05 0.06

Pyramid State Park Galum 0.19 <0.0001

3.2. Greenhouse Experiment

Nitrate/nitrite levels were greater in unconditioned compared to conditioned soil, while ammonium
levels were not significantly different (mean ± se): nitrate/nitrite (unconditioned = 8e−3

± 6e−4 mg/g
soil, conditioned = 7e−4

± 6e−5 mg/g soil, t9.2 = 11.5, p < 0.001) and ammonium
(unconditioned = 9.4e−4

± 3.56e−4 mg/g soil, conditioned = 3e−4
± 6e−5 mg/g soil, Mann–Whitney

U = 43, T10,10 = 98, p = 0.6). There was a higher abundance of two fungal communities in conditioned soil
(mean± se): saprophytic fungi (unconditioned = 1.2± 0.10 nmol/g soil, conditioned = 1.82± 0.25 nmol/g
soil, t11.8 = 2.3, p = 0.04) and arbuscular mycorrhizal fungi (unconditioned = 1.04 ± 0.07 nmol/g soil,
conditioned = 1.38 ± 0.11 nmol/g soil, t15 = 2.6, p = 0.02). Conditioned soil produced target plants with
greater belowground biomass and higher leaf chlorophyll levels than unconditioned soil (Figure 3).
Competition (with both Lespedeza competitors) reduced total and belowground biomass of all target
plants and root length of forbs and legumes (Figure 4). The functional group by time interaction on the
repeated measures height data indicated that the functional groups had different growth rates, with
grasses growing at a faster rate than forbs and legumes (Figure 5).

Soil conditioning and competition with L. cuneata affected grass traits in a positive manner
(excluding specific leaf area). Competition with L. cuneata negatively affected forbs and legumes for
most traits, although the leaf chlorophyll of legumes and forbs was increased by soil conditioning
(legumes) or competition with L. cuneata (forbs). When competing with L. cuneata, the grass Andropogon
gerardii experienced a positive PSF effect on total, aboveground, and belowground biomass while
another grass, Sorghastrum nutans, experienced a positive PSF on belowground biomass (Figure S1 in
the Supplementary Material). One forb, Ratibida pinnata, experienced a positive PSF on belowground
biomass in the absence of competition. In unconditioned soil, the total and belowground biomass of the
forb and legume functional groups (as well as the aboveground biomass of the legumes) experienced a
significant negative competition effect. In conditioned soil, the total and belowground biomass of the
forbs was more negatively affected by competition with L. cuneata compared to L. capitata.

Soil conditioning did not affect the traits of either Lespedeza competitor species (all traits, p > 0.05).
However, there was a significant effect of the target species’ functional group on the growth of the
competitor species for 9 of the 11 measured traits, with the Tukey’s tests indicating different responses of
the invasive competitor to competition with different functional groups, but no difference in responses
of the native competitor (Figure 6). When grown with forbs, the biomass, final plant height, and leaf
number of L. cuneata individuals were greater than when in competition with the other two functional
groups (Figure 6). Competition with legumes resulted in the shortest roots, smallest number of root
nodules, and lowest leaf chlorophyll levels in L. cuneata individuals. The repeated measures analysis
on height and leaf number revealed a significant interaction between competitor species, functional
group, and time on the height and leaf number of competitor species, with the competition with forbs
producing the tallest L. cuneata individuals, with the most leaves, and the competition with legumes
the shortest, with the least leaves. The competition with all functional groups produced similar sized
L. capitata individuals with a similar number of leaves (Figure 7).
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Figure 3. The effect of conditioned and unconditioned soil on the growth of target plants from three 
functional groups: forbs, grasses, and legumes. Ten traits were measured at the conclusion of the 
greenhouse experiment (mean ± se): (a) total biomass, (b) aboveground biomass, (c) belowground 
biomass, (d) height, (e) root length, (f) leaf number, (g) specific leaf area, (h) leaf chlorophyll levels, (i) 
soil pH, and (j) soil conductivity. Total n = 206. Replicates per bar = 36 except for unconditioned soil 
x forbs, where n = 33, unconditioned soil x grasses, where n = 33, conditioned soil x forbs, where n = 

Figure 3. The effect of conditioned and unconditioned soil on the growth of target plants from three
functional groups: forbs, grasses, and legumes. Ten traits were measured at the conclusion of the
greenhouse experiment (mean ± se): (a) total biomass, (b) aboveground biomass, (c) belowground
biomass, (d) height, (e) root length, (f) leaf number, (g) specific leaf area, (h) leaf chlorophyll levels,
(i) soil pH, and (j) soil conductivity. Total n = 206. Replicates per bar = 36 except for unconditioned
soil × forbs, where n = 33, unconditioned soil × grasses, where n = 33, conditioned soil × forbs, where
n = 33, and conditioned soil × grasses, where n = 35. The F statistic and p-values included on the graphs
correspond to either a significant soil or functional group factor (α < 0.05). There were no significant
interactions between soil and functional group treatments.
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Figure 4. The effect of three competition treatments (none, L. capitata, and L. cuneata competition) on 
the growth of target plants from three functional groups: forbs, grasses, and legumes. Ten traits were 
measured at the conclusion of the greenhouse experiment (mean ± se): (a) total biomass, (b) 
aboveground biomass, (c) belowground biomass, (d) leaf number, (e) specific leaf area, (f) leaf 
chlorophyll levels, (g) height, (h) root legnth, (i) soil pH, and (j) soil conductivity. Total n = 206. 
Replicates per bar = 24, except for no competition x forbs, where n = 21, no competition x grasses, 
where n = 22, L. capitata x forbs, where n = 23, L. capitata x grasses, where n = 23, L. cuneata x forbs, 
where n = 22, and L. cuneata x grasses = 23. The F statistic and p-values included on the graphs 
correspond to the significant competition, functional group, or competition by functional group factor 
(α < 0.05). Mean values of bars sharing the same letter are not significantly different for the 

Figure 4. The effect of three competition treatments (none, L. capitata, and L. cuneata competition)
on the growth of target plants from three functional groups: forbs, grasses, and legumes. Ten traits
were measured at the conclusion of the greenhouse experiment (mean ± se): (a) total biomass,
(b) aboveground biomass, (c) belowground biomass, (d) leaf number, (e) specific leaf area, (f) leaf
chlorophyll levels, (g) height, (h) root legnth, (i) soil pH, and (j) soil conductivity. Total n = 206.
Replicates per bar = 24, except for no competition × forbs, where n = 21, no competition × grasses,
where n = 22, L. capitata× forbs, where n = 23, L. capitata× grasses, where n = 23, L. cuneata× forbs, where
n = 22, and L. cuneata × grasses = 23. The F statistic and p-values included on the graphs correspond
to the significant competition, functional group, or competition by functional group factor (α < 0.05).
Mean values of bars sharing the same letter are not significantly different for the competition by
functional group interaction on root length (interaction effects on other variables were not significant).
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Figure 5. The effect of the interaction between functional group and time (F14,750 = 133.66, p < 0.0001)
on the height (mean ± se) of three functional groups. Different letters indicate significant differences.
Total n = 206. Mean values of bars sharing the same letter are not signficiantly different (p < 0.05).
Blue circle = forb, green triangle = grass, red square = legume.
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Figure 6. The effect of competition with three different functional groups on the growth of the 
competitors, native L. capitata and invasive L. cuneata. Nine traits were measured at the conclusion of 
the 9-week greenhouse experiment (mean ± se): (a) total biomass, (b) aboveground biomass, (c) 
belowground biomass, (d) height, (e) root length, (f) number of root nodules, (g) leaf number, (h), 
specific leaf area, and (i) leaf chlorophyll levels. Total n = 139. Replicates per bar = 24, except for forb 
x L. capitata, where n = 23, grass x L. capitata, where n = 23, forb x L. cuneata, where n = 22, and grass x 
L. cuneata, where n = 23. The F statistic and p-values included on the graphs correspond to a significant 
functional group, competitor species, or functional group by competitor species factor on competitor 
species’ growth. Mean values of bars sharing the same letter are not signficiantly different (α < 0.05) 
for the interaction between functional group and competitor species treatments on the total and 
aboveground biomass, root length, height, and leaf number (interaction effects on other variables 
were not significant). 

Figure 6. The effect of competition with three different functional groups on the growth of the
competitors, native L. capitata and invasive L. cuneata. Nine traits were measured at the conclusion
of the 9-week greenhouse experiment (mean ± se): (a) total biomass, (b) aboveground biomass,
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(c) belowground biomass, (d) height, (e) root length, (f) number of root nodules, (g) leaf number,
(h) specific leaf area, and (i) leaf chlorophyll levels. Total n = 139. Replicates per bar = 24, except for
forb × L. capitata, where n = 23, grass × L. capitata, where n = 23, forb × L. cuneata, where n = 22, and
grass × L. cuneata, where n = 23. The F statistic and p-values included on the graphs correspond to a
significant functional group, competitor species, or functional group by competitor species factor on
competitor species’ growth. Mean values of bars sharing the same letter are not signficiantly different
(α < 0.05) for the interaction between functional group and competitor species treatments on the total
and aboveground biomass, root length, height, and leaf number (interaction effects on other variables
were not significant).
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repeated measures height (panel a, F14,482 = 3.86, p < 0.0001) and leaf number (panel b, F14,466 = 6.40,
p < 0.0001) of the competitor Lespedeza spp. over the course of the greenhouse experiment. Total n = 206.
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by circles share the same letter. Grey = L. capitata; red = L. cuneata; circles = forbs; triangles = grasses;
squares = legumes.

4. Discussion

Grassland restoration and management should incorporate the likelihood that exotic species will
spread under climate change [58], and recognize that adaptive management practices will be necessary
to create sustainable grassland restorations [59]. Our results reinforce the need to understand the
mechanisms through which exotic species such as Lespedeza cuneata compete with native species in
restorations to better sustain the integrity and ecosystem services that grasslands provide [60,61].

4.1. Patterns of Invasion: Field Surveys

The community composition of invaded and uninvaded L. cuneata patches within infested sites
differed at some sites, but not regionally, indicating a scale effect [13]. Moreover, the widespread
occurrence of L. cuneata across the landscape suggests that dispersal was not a limitation for invasion.
As the presence of L. cuneata was unrelated to community composition regionally, its effects were likely
being driven by differences between sites such as site quality; site size, which could be an indication
of greater heterogeneity in larger sites supporting greater species richness [62]; differences in species
diversity, indicating that grasslands vary in species composition regardless of the interactions with
invasive species [63]; soil types, which varied across three soil orders; differences in the abundance of
native, non-native, and invasive species; and differences in degree and type of management [13,64]. It is
likely that multiple factors are interacting to determine species composition, as observed in California
grasslands where the abundance of invasive species, the grazing regime, and the soil type interact to
determine the abundance of native species [65].

By contrast, differences between invaded and uninvaded patches were observed in half the
surveyed sites when analyzed within-sites. In some sites, the presence of L. cuneata coincided with
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differences in the abundance of functional groups and community composition, while in others,
the characteristics of each site and its management appeared to play a stronger role in determining
species composition. Thus, L. cuneata’s relationship to the vegetation in the sites that it invades is
likely dynamic, scale-dependent, and related to the functional group and phylogenetic similarity of
established native species [21].

At the site scale, this study suggests that invasion success is related to the functional group
identity of both the invader and the established plants. The observed higher abundance of legumes
and grasses in uninvaded patches than invaded patches suggests either that L. cuneata is a superior
competitor and suppresses the growth of these functional groups where it occurs, or that it invades
where these functional groups are already at low abundance. Prior studies support the explanation
that these functional groups may offer greater resistance to L. cuneata’s invasion than other functional
groups, such as non-leguminous herbaceous plants. Grassland plants are most successful at resisting
the invasion of species belonging to their own functional group, due to limiting similarity [66–69].
Because the competition between species of the same functional group is expected to be more intense
due to their overlapping niches, limiting similarity predicts that an invasive plant will prevent the
further establishment of native plants in the same functional group [70,71]. Fargione et al. [67] observed
that in grasslands, grasses prevent the establishment of invasive species (regardless of the functional
group of the invader) to a greater degree than other groups. This notion supports the idea that the
poor establishment of L. cuneata in areas with high grass abundance is due to a weak ability to compete
with grasses [4], and the observations of relatively slow seedling emergence and resprouting from the
perennial root system in the spring [16,72]. While legumes were still present in LCP plots, their overall
abundance was half that observed in LCA plots, which supports prior findings of limiting similarity
of legume invaders that had a limited ability to invade legume monocultures [73]. We observed a
significantly greater abundance of grass and legume species in uninvaded patches, suggesting that, on
a local scale, grasses can suppress an invasive legume, and native legumes can exclude it. Our findings
align with observations of the lower success of L. cuneata in restored plots with higher abundances
of C4 grasses and legume species, compared to non-restored plots with lower abundances of these
functional groups [74].

4.2. Mechanisms of Invasion: Greenhouse Experiment

Changes to soil properties due to the growth of L. cuneata, the first step in a plant–soil feedback [75],
were observed after 10 weeks of conditioning. A significantly greater fungal biomass in conditioned
than unconditioned soil is supportive of speculations that L. cuneata modifies its soil via changes to soil
microbial communities [30,31], which in turn can affect its competitiveness against native species [76].
However, because most plant species, including L. cuneata [77], have an arbuscular mycorrhizae
association, finding elevated fungal biomass in conditioned soil should not be surprising [78].

Our expectations of greater levels of nitrogen in conditioned compared with unconditioned soil
were not fulfilled. However, our results are not unprecedented, because comparisons of nitrogen
levels in L. cuneata conditioned and unconditioned soil have found greater levels in conditioned
soil [30], lower levels in invaded soil [79], and equal amounts between the two soils [26]. In our
study, microbial immobilization of nitrogen in response to plant carbon inputs in the conditioned
soil is a likely explanation of lower nitrate levels. As the roots of L. cuneata individuals grew, they
likely provided an increasing input of carbon, which would have been broken down by microbes [80].
Because this microbial activity requires a nitrogen source, it is likely that the active soil’s microbial
community depleted the total available nitrogen in the conditioned soil [80].

This study supports the interpretation that aboveground competition plays a larger role than
belowground effects in determining which plants can coexist with L. cuneata [30]. The PERMANOVA
results exploring which greenhouse experiment treatments drove the overall differences between target
plants found a nonsignificant effect of soil (supporting the conclusion that the soil did not affect plants
across all measured traits), but a significant effect of competition. Studies of the relative strength of
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PSFs and competition find the latter to be a stronger influence and/or to alter soil relationships [81,82].
Soil conditioning only benefited the growth of grasses, which supports previous findings showing a
greater biomass of the native grass S. nutans when grown in L. cuneata-invaded than in uninvaded
soil [26]. In this case, changes to the soil could be enhancing the competitive ability of the natives by
reducing the amount of native pathogens or promoting the growth of beneficial microbes, including
mycorrhizae, to natives [81]. While PSFs may play a role in determining the invasiveness of plants,
it appears that for L. cuneata, soil effects are minimized in comparison to competition, even under
greenhouse conditions, where PSFs are likely to be most evident [83].

The growth of Lespedeza cuneata did not differ between the two soil conditioning treatments,
contrary to direct positive plant–soil feedbacks observed between many invasive species and their
soil [84], suggesting that L. cuneata experiences an indirect PSF through its effects on neighbor species
rather than directly benefiting its own growth [25,27]. Because L. cuneata plants were not grown
individually in both soils, the PSFs of the L. cuneata individuals could not be calculated. Considering
the specific effects of competition on measured traits (mixed models) rather than whole plant growth
can provide a detailed picture of how an invasive species responds to competition with different
functional groups. Comparing the individual functional traits of the Lespedeza competitors in response
to growing with three target functional groups revealed only one L. capitata trait affected by functional
group but 9 of the 11 L. cuneata traits differing depending upon the functional group with which it
was competing. Competition with forbs produced the best performing L. cuneata individuals, while
competition with legumes produced the poorest performers. The difference in responses between the
native and non-native Lespedeza could be due to their origin (native vs. non-native), the greater leaf
production of L. cuneata, different growth forms (branched, bush-like L. cuneata vs. slender L. capitata),
or different bacterial associations [29,85]. These results illustrate that the native Lespedeza capitata is
more able to coexist with species across functional groups than the non-native L. cuneata.

4.3. Role as a Driver and Filter

This study supports the role of L. cuneata as a driver species, because, through its competition with
other species and ability to condition the soil, it leaves a lasting effect on the ecosystem it invades [6].
These mechanisms alter current filters, with soil conditioning altering the nutrient and microbial
community abundance (i.e., abiotic filters) and the invasive species exerting stronger competitive
effects than a native competitor (i.e., a biotic filter) [86–88]. Because L. cuneata altered these filters in
ways that benefit its growth and suppress that of other native species, it can be considered a driver [89].

The ability of L. cuneata itself to act as a filter was not supported in this study. The field surveys
suggested that established native grasses and legumes act as superior competitors and may locally
filter out L. cuneata. This observation supports the idea that the most competitively dominant species
in an area, either an invasive species or an already established native, will filter the establishment of
additional species [90]. In the greenhouse experiment, most functional traits of grasses were either
unaffected or increased when in competition with L. cuneata, while competition with grasses reduced
L. cuneata’s growth in several traits. Legume growth was only slightly reduced under competition
with L. cuneata, while among the functional groups, legumes suppressed the growth of L. cuneata to
the greatest degree in the majority of traits. Because these results suggest that competition between
grasses/legumes and L. cuneata results in the facilitation of native grasses [91], limiting similarity of
other legumes, and detrimental effects to L. cuneata, these functional groups act in order to filter the
establishment of L. cuneata.

4.4. Management Implications and Outlook

These findings reaffirm the prioritization of managing to control L. cuneata in the grasslands
that it invades, in order to sustain ecosystem services [20,21]. Combining the observational and
experimental findings results in several broad management recommendations. First, managing high
grass abundance will help buffer a grassland from L. cuneata’s invasion or its further spread. Second,
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increasing diversity by planting legumes, rather than non-leguminous forbs, can help increase the
resistance to invasion and the quality of a grassland [92,93]. To promote legume growth, inoculating
with rhizobia should be considered, as well as options for reducing nutrient limitation [94,95]. Finally,
sites should be assessed and monitored on a local scale to determine the specific impacts of L. cuneata
on the functional groups of individual grasslands, because this species does not operate in a consistent
manner. Including these recommendations in a larger invasive plant management framework can
increase the chances of achieving a sustainable grassland restoration [96,97].

5. Conclusions

Lespedeza cuneata acts as a driver in the ecosystems it invades by altering the abiotic and biotic
filters to affect native species on a functional group basis, providing support for a combined filter-driver
framework as a useful tool for studying invasive impacts (Figure 1). The variation in the impacts of
L. cuneata on functional groups suggests that this invasive species may not be dominantly suppressive
of all members of the communities it invades. The contingency of site-specific relationships apparent
in the field survey, coupled with the controlled greenhouse experiment, does not support the role
of this invasive species as a strong filter, providing hope that the occurrence of L. cuneata does not
determine community dynamics and that some native species have the potential to act as strong filters.
Future studies should consider the interspecific competition between L. cuneata and native dominants,
especially grasses and legumes, during the invasion process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/15/5951/s1.
Figure S1: The plant-soil feedback responses (on total (a), above- (b), and belowground (c) biomass) of the nine
target species (codes refer to the first letter of the genus and specific epithet, respectively [Table S2]) to soil
conditioning without competition (panel a) and in the presence of competition with L. cuneata (panel b) and the
competition effect responses (on total (a), above- (b), and belowground (c) biomass) on the nine target species,
comparing the competition with L. capitata to the competition with L. cuneata in unconditioned (panel c) and
conditioned soil (panel d). The PSF was calculated as ln(Biomasscond/Biomassuncond) within each replicate and
averaged per target species (mean ± se). Positive responses indicate that the target species produced greater
biomass in conditioned soil, while negative responses indicate that they produced less biomass in conditioned
soil. The competition effect was calculated as (BiomassLcun-BiomassLcap)/(BiomassLcun+BiomassLcap) within
each replicate and averaged per target species (mean ± se). Positive responses indicate that the target species
produced greater biomass in competition with L. cuneata than in competition with L. capitata, while negative
responses indicate that they produced less biomass in competition with L. cuneata than in competition with
L. capitata. Significant PSFs and competition effects (compared to 0) are denoted with *. All calculations are
averages of 3–4 replicates, excluding A. gerardii, P. digitalis and no-competition PSFs, which are averages of only
2 replicates due to misidentified and dead plants; Table S1: Field site background, including location, survey
dates, and establishment and management history (Casey Bryan, Chris Evans, Scott Crist, Joe Nelson, personal
communication, 2016); Table S2: Fifty most abundant species observed during the two field survey periods across
all 15 sites. * Two-letter genus/species are used for target species codes in Figure S1 (Ds = Desmodium spp. and
Sh = Senna hebecarpa); Table S3: Results of vector fitting for each of the 15 site ordinations. R and p-values are bold
if significant at α < 0.05.
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