
sustainability

Article

Deep Reinforcement Learning for the Management of
Software-Defined Networks and Network Function
Virtualization in an Edge-IoT Architecture

Ricardo S. Alonso1,* , Inés Sittón-Candanedo 1 , Roberto Casado-Vara 1 , Javier Prieto 1,2

and Juan M. Corchado 1,2,3,4

1 BISITE Research Group, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo 2,
37007 Salamanca, Spain; isittonc@usal.es (I.S.-C.); rober@usal.es (R.C.-V.); javierp@usal.es (J.P.);
corchado@usal.es (J.M.C.)

2 AIR Institute, Edificio Parque Científico, Módulo 305, Paseo de Belén 11, Campus Miguel Delibes,
47011 Valladolid, Spain

3 Department of Electronics, Information and Communication, Faculty of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan

4 Pusat Komputeran dan Informatik, Universiti Malaysia Kelantan, Bachok 16300, Malaysia
* Correspondence: ralorin@usal.es

Received: 31 May 2020; Accepted: 10 July 2020; Published: 15 July 2020
����������
�������

Abstract: The Internet of Things (IoT) paradigm allows the interconnection of millions of sensor
devices gathering information and forwarding to the Cloud, where data is stored and processed
to infer knowledge and perform analysis and predictions. Cloud service providers charge users
based on the computing and storage resources used in the Cloud. In this regard, Edge Computing
can be used to reduce these costs. In Edge Computing scenarios, data is pre-processed and filtered
in network edge before being sent to the Cloud, resulting in shorter response times and providing
a certain service level even if the link between IoT devices and Cloud is interrupted. Moreover,
there is a growing trend to share physical network resources and costs through Network Function
Virtualization (NFV) architectures. In this sense, and related to NFV, Software-Defined Networks
(SDNs) are used to reconfigure the network dynamically according to the necessities during time.
For this purpose, Machine Learning mechanisms, such as Deep Reinforcement Learning techniques,
can be employed to manage virtual data flows in networks. In this work, we propose the evolution of
an existing Edge-IoT architecture to a new improved version in which SDN/NFV are used over the
Edge-IoT capabilities. The proposed new architecture contemplates the use of Deep Reinforcement
Learning techniques for the implementation of the SDN controller.

Keywords: industrial internet of things; edge computing; software defined networks;
network function virtualization; deep reinforcement learning

1. Introduction

Technologies such as Internet of Things (IoT), Industrial Internet of Things (especially robust and
fault tolerant IoT devices) and Cyber-Physical Systems allow millions of sensor and actuator devices that
interact with the context of users [1]. These data is usually managed by the Cloud, where digital twins
represent physical entities. Data is stored in Big Data repositories and processed to extract knowledge
and forecast the state of entities and context in the future. For this purpose, different artificial
intelligence techniques are applied in the Cloud, including multi-agent systems [2], or Machine
Learning/Deep Learning techniques [3]. IoT, IIoT and CPS paradigms are used in many different
applications, such as healthcare, smart energy, smart farming, or industry 4.0, among many others [4].

Sustainability 2020, 12, 5706; doi:10.3390/su12145706 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-6599-0186
https://orcid.org/0000-0001-8953-7848
https://orcid.org/0000-0003-0198-696X
https://orcid.org/0000-0001-8175-2201
https://orcid.org/0000-0002-2829-1829
http://dx.doi.org/10.3390/su12145706
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/14/5706?type=check_update&version=2


Sustainability 2020, 12, 5706 2 of 23

There are scenarios where a solution consisting of only one IoT layer and one Cloud layer may
have certain drawbacks. The dependency on the Cloud as a data store and application provider implies
that an interruption in the link between the IoT layer and the Cloud layer also interrupts the service [5].
Moreover, Cloud service providers offer pricing plans based on the amount of resources that customers
use during time . In this sense, the Edge Computing paradigm arises to reduce the cost associated with
the transfer, storage and processing of data in the Cloud. In this way, data is filtered and pre-processed
in the edge of the network before being sent to the Cloud, allowing the application of machine learning
techniques in the same edge, obtaining shorter response times and maintaining system functionalities
even during communication breaks between the IoT layer and the Cloud layer [6].

On the other hand, there is a growing trend to share physical network resources and costs by
different user entities through Network Function Virtualization (NFV) [7]. To reduce the maintenance
costs of these physical resources and make the configuration of the network more flexible over time,
Software-Defined Networks (SDN) techniques are also used, which are closely related to NFV [8]. Thanks
to SDN, it is possible to use general purpose COTS (Commercial Off-The-Self) elements that can be
reconfigured over time according to the changing needs of the network, instead of deploying specific
elements (e.g., switches, bridges or routers) that have to be replaced when the network grows or
changes [9].

In this sense, intelligent mechanisms are needed to efficiently optimize virtual data flows in
networks according to the Quality of service (QoS) required by each application. Deep Reinforcement
Learning is one of the most promising trends in recent years in the field of machine learning aimed at
control [10]. Among its applications are self-driving cars In this type of application, we will call as
“agent” a self-driving car, chess virtual player or an Edge node in an IoT network redirecting network
traffic and defending itself from multiple sources of cyber attacks. Nonetheless, the agent cannot store
and contemplate all the possible scenarios in which it can be found due to the enormous number of
possibilities. Thus, the agent explores its environment knowing the possible states, the probability of
changing between those states, the set of actions it can perform in each of those states and the reward
or penalty it will get in each case.

In this work, we propose the evolution of an existing Edge-IoT architecture to a new improved
version in which SDN/NFV are used over the Edge-IoT capabilities. For this purpose, the Global Edge
Computing Architecture (GECA) has been taken as a basis, oriented to the implementation of Edge-IoT
solutions and presented by Sittón-Candanedo et al. [11]. The Global Edge Computing Architecture
has already been applied, in fact, in Smart Energy [12] and Smart Farming [6] scenarios where it
was necessary to reduce data transfer between the IoT and the Cloud and, therefore, the costs of
computing and storage in the Cloud. However, in its previous version it did not have SDN/NFV
capabilities, which have been explored by Alonso et al. [13] for its current incorporation to the
architecture. The new proposed architecture contemplates the use of Deep Reinforcement Learning
techniques for the implementation of the SDN controller. In this sense, it is proposed the application of
a Deep Q-Learning model [14] for the management of virtual data flows in SDN/NFV in an Edge-IoT
architecture according to the required quality of service.

The rest of this work is structured as follows. The next section (Section 2) describes the problem to
be solved along with the state of the art in the field of Internet of Things and Edge Computing solutions,
the different approaches when using Network Function Virtualization and Software-Defined Networks
to Edge Computing scenarios, as well as the application of Deep Reinforcement Learning for data flow
management in networks. After that, Section 3 presents the Global Edge Computing Architecture and
the new mechanism proposed to manage data flows in Software Defined Networks based on GECA.
Then, Section 4 describes the experimentation and the obtained results after implementing the GECA
2.0 SDN mechanism based on Deep Q-Networks. Finally, conclusions and future work are presented
in Section 5.



Sustainability 2020, 12, 5706 3 of 23

2. Problem Description and Related Work

In this section we will progressively describe the problem to be solved. In order to do this, we will
make an analysis of the related work existing in the field of the Internet of Things and Industrial
Internet of Things in Section 2.1. After that, in Section 2.2 we will describe what advantages the Edge
Computing paradigm provides over solutions based only on IoT and Cloud layers. On the other hand,
Section 2.3 will describe how Software-Defined Networking and Network Function Virtualization
can help in Edge-IoT scenarios. Finally, Section 2.4 will present Reinforcement Learning and Deep
Reinforcement Learning techniques to manage network virtualization in Edge-IoT approaches.

2.1. Challenges in Internet of Things and Industrial Internet of Things Scenarios

The Internet of Things (IoT) is, in part, an evolution of other concepts such as Cyber-Physical Systems,
Sensor Networks and Wireless Sensor Networks [15], among others. Wireless Sensor Networks allow us to
collect information about different physical measurements of the users’ environment and, sometimes,
of the users themselves [16]. WSNs have been applied in multiple scenarios such as healthcare and
telecare [17], smart buildings [18] or smart farming [6]. As can be seen, over time there have been
and are multiple wireless technologies to implement WSNs. In fact, we often find scenarios where
several technologies are used at the same time because there are several elements to be monitored (e.g.,
people, objects, the environment, etc.), so we talk about Heterogeneous Wireless Sensor Networks [17].
To accommodate these necessary heterogeneity, different approaches have been employed in terms
of frameworks and platforms for cohabitation and information fusion [15]. Nonetheless, the need to
connect an increasing number of sensors of different types and monitor and store information in the
Cloud, leads us inexorably to the Internet of Things.

However, it was not until 1999 that the term Internet of Things was first mentioned by Kevin
Ashton [19]. Interest in IoT grew as large companies and governments saw it as a key technology.
In this sense, Google began to store data related to the Wi-Fi networks of the users of its services
in 2010. That same year, the Chinese government established the IoT as a priority topic within
its five-year plan [20]. Over the years the terminology took on its own formal definitions, such as
that of Kethareswaran and Ram [21], which defined the Internet of Things as the connection of
objects (buildings, vehicles) through a network infrastructure with electronic elements (sensors,
actuators, radio frequency identification tags, etc.) to collect and exchange data. The most
important IoT application areas include healthcare [17], transport and logistics [22], smart homes [23],
smart energy [4], smart cities [24] or Industry 4.0 [25], among many others. On the other hand,
the Industrial Internet of Things (IIoT) [26] is one of the fundamental aspects of the new Industry 4.0 [27].
The IIoT emerges as a new milestone on the Internet so that billions of machines in the industry are
equipped with various types of sensors, connected to the Internet through heterogeneous networks [28].
Possible applications of the IIoT include abnormal pattern detection [29] or predictive maintenance [25],
among many others.

Although the implementation of IoT ingestion layers allows to deal with the problem of
heterogeneity, two other problems remain to be solved. One of them is the large amount of data
that thousands of devices can send to an IoT platform. To reduce the data traffic between the IoT layer
and the cloud, solutions such as the Edge Computing paradigm arise. Edge Computing allows reducing
congestion by the demand for computing resources, network or storage in the cloud. With this strategy,
computational and service infrastructures approach the end user by migrating data filtering, processing
or storage from the cloud to the edge of the network [30,31]. The second challenge to be solved is that,
regardless of the transmission technology used, there may be multiple different user or applications
using a common transmission infrastructure from the IoT to the Cloud. Sharing network resources
and infrastructure by various organizations, operators and user groups can be done through Network
Function Virtualization and Software-Defined Networks [13].



Sustainability 2020, 12, 5706 4 of 23

2.2. Edge Computing and Edge-IoT Platforms

The Edge Computing paradigm allows us to take part of the computational load from the Cloud
to the Edge nodes [30]. Shi et al. [32] define Edge computing as computer and network resources located
between data sources, such as IoT devices, and cloud data centers. In these edge nodes it is possible to
filter the information coming from the IoT layer to the Cloud, thus reducing the cost of computing
and storage services in the Cloud. Edge nodes can pre-process the information collected from the IoT
nodes, thus reducing the information to be processed and stored in the Cloud [11]. In addition, it is
possible to execute Machine Learning or even Deep Learning algorithms in the Edge nodes, so that a
more direct service can be given to users, reducing response times [6]. It is also possible to continue
providing service temporarily during communication breaks with the Cloud [12]. Figure 1 shows the
basic scheme of an edge computing architecture where the edge nodes allow user application processes
to be executed closer to the data sources [30]. The edge nodes perform compute tasks such as filtering,
processing, caching, load balancing by reducing data sent or received from the cloud and requesting
services and information [13].

Figure 1. Edge Computing architecture, based on the work of Yu et al. [30].

There is a wide variety of scenarios where solutions based on IoT and Edge Computing are
being applied. Among the most relevant applications, we find Smart Farming [6], Smart Energy [33]
or Industry 4.0 solutions [11], among many others. Moreover, although there are scenarios in which
Edge Computing is applied to a single environment as an ad-hoc system, there are also developments
aimed at providing Edge functionalities as a platform. In this way, the reproducibility of the solution
is increased. Likewise, there are different reference architectures within the scope of Edge Computing
applied in industrial environments or Industry 4.0. In fact, one of them is the Global Edge Computing
Architecture [11], on which this work has been based. This architecture, in turn, was the result of
analyzing four of the most important reference architectures in the field of Edge-IoT in Industry 4.0.
The first of these architectures is FAR-Edge [34]. One of the aspects taken by GECA from FAR-Edge is
that both incorporate blockchain functionalities. However, in the case of FAR-Edge the blockchain is



Sustainability 2020, 12, 5706 5 of 23

incorporated in its intermediate layer, while in GECA it is implemented from the base layer, that is,
at the same time that the data are generated by the IoT sensors. Another architecture that has served
as a reference for GECA is INTEL-SAP Reference Architecture [35]. GECA is inspired by the SAP Cloud
Trust Center concept, which aims to verify the ownership of devices and register them in the system or
platform implemented, assigning a certificate of identity (authenticity) to each owner and keeping an
updated list of successfully registered device. In the case of GECA this process is done in the Cloud,
before a new device can access a GECA based system or platform. Thirdly, there is the architecture of
the Edge Computing Consortium [36]. GECA is based on this architecture in terms of the importance of
following a standard. Therefore, GECA’s design is based on the IEC 61499 standard [37], following
a structure of functional blocks, each with its corresponding inputs, processes and outputs. Finally,
the architecture of the Industrial Internet Consortium (IIC) proposes the inclusion of an Enterprise
Layer, on which GECA’s Business Solution Layer is based [38].

There are two main models when designing Edge Computing solutions [30]. In the hierarchical
model, the edge architecture is divided into a hierarchy in which functions are defined based on
distance and resources. In the hierarchical model, therefore, the different edge and cloudlet servers are
deployed at different distances from the end users. Examples of the hierarchical model are the work
of Jararweh et al. [39], who propose a model based on the integration of cloudlets and Mobile Edge
Computing (MEC) servers. The GECA architecture on which this work is based also followed the
hierarchical model before the update proposed in this paper [11]. The second one is the Software-Defined
model [8], described in the next section.

2.3. Software-Defined Networking and Network Function Virtualization in Edge-IoT Scenarios

In order to provide a more efficient use of resources in IoT networks, new solutions are emerging
to virtualize resources [40]. In this sense, concepts such as Network Function Virtualization (NFV)
arise, oriented to the virtualization of the different components of the network [7]. In fact, ETSI MEC
(Mobile Edge Computing) is based on the NFV concept, and its application in IoT scenarios has
been explored widely [41]. In a way closely related to the NFV, and often used complementing each
other, Software-Defined Networks also emerge [8]. Approaches such as Software-Defined Networks and
Network Function Virtualization enable cost savings by employing general purpose devices rather
than more expensive network-specific devices that may need to be replaced if network configuration
needs change over time [9].

Figure 2 shows the typical architecture of Software-Defined Networks [42]. In this type of architecture,
the network is separated into a data plane and a control plane [43]. The data plane consists of
COTS forwarding nodes with general purpose capabilities, rather than specific purpose hardware
(e.g., routers, gateways, etc.) [9]. The remote configuration of the nodes is done from a controller
(i.e., SDN Controller) in the control plane. In this way, the network administrator uses a centralized
control console to reconfigure the traffic flow on the network without having to physically modify the
network nodes [42]. For this purpose, all these nodes have a common interface for remote configuration,
called southbound interface [44]. Southbound interfaces allow abstracting the functionality of the COTS
forwarding nodes and allow the controller to interact with them. In this regard, OpenFlow is the most
representative of southbound interfaces [8].

The open-source OpenFlow protocol allows decoupling the control plane of the data plane of the
networks. Thanks to the uncoupling of these two planes, the control and management of the network
can be carried out remotely in the cloud (in a centralized or distributed way), while packet forwarding
is carried out in the hardware devices that make up the network [8]. The control plane commands
hardware devices specifying how to forward these packets between their adjacent nodes. Therefore,
it is no longer necessary to build different hardware devices with specific functions (ASIC circuits) [7],
making it possible to use cheaper general-purpose hardware, with a lower unit cost and that can
evolve over time simply updating its functions and software remotely, reducing replacement and
warehousing costs. Furthermore, in the control plane of a SDN, a Network Operating System (NOS) is



Sustainability 2020, 12, 5706 6 of 23

running over southbound and northbound interfaces [45]. NOS describe the available software-defined
networking software tools. Over the specific NOS, is possible to build applications aimed at controlling
the network behavior and define high-level network policies (i.e., the management plane) [8]. For this
purpose, northbound interfaces allow these applications to interact with the NOS. A human network
administrator uses a centralized control console to reconfigure the traffic flow on the network without
having to physically modify the network nodes [42]. However, the administration of the network can
be carried out in an automated way by specific software such as a cognitive engine based on intelligent
algorithms. This is, in fact, one of the objectives of this work. Examples of this type of approach are the
work of Baek et al. [46], or the work of Sampaio et al. [47], as we discuss later in Section 2.4.

Figure 2. Software Defined Network (SDN) architecture.

The concept of network virtualization is defined according to Granelli et al. [7] as the process of
combining hardware and software network resources, as well as the network’s own functionalities,
into a single software-based entity that is called a virtual network. Figure 3 shows this approach [42].
As mentioned above, the integration of SDN and NFV is common in the field of scientific and industrial
research to take advantage of the benefits of both [43]. Just as there are intelligent algorithms aimed
at balancing resources, configuring routing and firewall rules remotely from the management plane
using the northbound interface in SDN scenarios, there are also researches that propose intelligent
mechanisms aimed at provisioning resources in NFVs, such as the work of Ruiz et al. [48] or
Pei et al. [49]. Again, our work is focused on provide with new intelligent mechanisms that allow
provisioning virtual network resources in SDN and NFV scenarios.



Sustainability 2020, 12, 5706 7 of 23

Figure 3. Network Function Virtualization (NFV) over Software-Defined Networks.

There are studies in Software-Defined Networks [50], Wireless Software-Defined Networks [51]
and Network Function Virtualization [52] as complementary technologies that could work together
with Edge Computing architectures. Jararweh et al. [53] propose a software-defined model aimed
at the integration of Mobile Edge Computing (MEC) and SDN. Salman et al. [54] go one step further,
proposing the integration of MEC, SDN and NFV, achieving a better MEC performance in mobile
networks and that can be further extended enabling IoT-wide deployment scenarios. More specifically,
there are different solutions aimed at combining both paradigms to further optimize resources in IoT
networks [55]. Within the different approaches, we find HomeCloud [56], a framework that combines
the use of SDN and NFV with the aim of allowing efficient orchestration and delivery of applications
from the servers that are deployed on the Edge itself. Caraguay et al. [40] propose a SDN/NFV
architecture specifically for IoT networks and focused on modifying QoE/QoS flows in real-time by
means of the controller capabilities. Likewise, Monfared et al. [57] propose a two-tier cloud architecture.
In Monfared et al. [57] architecture, on the one hand, there are data servers in the cloud and, on the
other, there are edge devices to provide data closer to users. For the control and management of the
architecture, a network infrastructure defined by the software is proposed.

Nonetheless, it is necessary to find innovative solutions that design and implement intelligent
algorithms that allow automated tasks such as resource balancing, network reconfiguration or
cyberattack prevention in scenarios where IoT, Edge Computing and SDN/NFV are combined. In this
sense, there are some solutions like the proposal of Ruiz et al. [48], who proposes a genetic algorithm for
VNF provisioning in NFV-Enabled Cloud/MEC RAN architectures. However, among the intelligent
algorithms one of the most promising fields in recent years is Reinforcement Learning. This is the basis
of approaches such as that of He et al. [58], which proposes a deep reinforcement learning approach
in SDN with MEC. In the next section we will briefly analyze the state of the art of the use of Deep
Reinforcement Learning in SDN/NFV scenarios.



Sustainability 2020, 12, 5706 8 of 23

2.4. Reinforcement Learning and Deep Reinforcement Learning in SDN/NFV Scenarios

Reinforcement learning (and Deep Reinforcement Learning) is one of the most promising trends in
recent years in the field of machine learning [10]. Among its applications are self-driving cars [59],
robot vacuums [60], automated trading [61], enterprise resource management [62,63] or games. In this
sense, in 2017 was released AlphaGo Zero, an algorithm that was not trained by human competitor
data. AlphaGo Zero was only able to sense positions on the board, rather than having previous data.
AlphaGo Zero also ran on a single machine with 4 TPUs and beat previous AlphaGo Lee [64] in three
days by 100 games to 0. AlphaGo Zero’s neural network was previously trained using TensorFlow
with 64 GPU workers and 19 CPU parameter servers [65]. As can be seen, the potential for Deep
Reinforcement Learning in scenarios where the capacity for initial training dataset is not available is
enormous. This allows envisioning solutions in which to build devices that learn from scratch the
best way to balance data flows in a software defined network taking into account the different QoS
(Quality of Service) and optimizing the use of resources [58], or optimize the use of energy in edge
scheduling [66]. Likewise, they represent algorithms with a great potential to detect new cyberattacks
not yet known without the need to train new models as new threats arise [67].

The Q-learning algorithm [68] is one of the best known model-free techniques in reinforcement
learning, and has numerous evolutions and variants of the same [69]. For any Finite Markov Decision
Processes (FMDP), Q-learning (Q comes from Quality) finds a policy that is optimal in the sense that it
maximizes the expected value of the total reward over any and all successive steps, starting from the
current state [70]. Thus, we have a value function Q(s, a) that takes as input the current state s and the
current action a and returns the expected reward for that action and all subsequent actions. Initially,
Q returns the same arbitrary value. As the agent explores the environment, Q returns an increasingly
better approximation of the value of an a action, given a s state. That is, the function Q is progressively
updated. So, the new value Qnew(st, at) is updated in each iteration from the old value Q(st, at) with a
learning rate α, since the learned value (rt + γ ·maxa Q(st+1, a)) is known, where rt is the reward, γ the
discount factor and maxa Q(st+1, a) the estimate of the future optimal value:

Qnew(st, at)← (1− α)Q(st, at) + α
(

rt + γ ·max
a

Q(st+1, a)
)

. (1)

In this way, the agent has an estimated value for each state-action pair, and whose knowledge
increases with time. With this information, the agent can select which action to carry out in each
moment according to its action-selection strategy, which can take into account an epsilon-greedy strategy,
for example, to increase its knowledge of the environment.

Deep learning has accelerated progress in Reinforcement Learning, with the use of deep learning
algorithms within the RL that define the field of Deep Reinforcement Learning [69]. Deep Learning
allows Reinforcement Learning to scale up to previously intractable decision-making problems, that is,
environments with high dimensional states and action spaces. There are several Deep Reinforcement
Learning algorithms [69], including the variants of Deep Q-Learning (DQN), such as double DQN [66],
dueling DQN, Deep Recurrent Q-Networks (DQRN) and multi-step DQN, among others, and those
based on policy gradient, such as REINFORCE, Advantage Actor-Critic (A2C), Natural Policy Gradient
(NPG), among many others.

Thus, deep reinforcement learning techniques provide great potential in IoT, edge and SDN
scenarios. In the work by Amiri et al. [71], reinforcement learning techniques are used for
energy management in heterogeneous networks based on the QoS required by each service in the
network. Liu et al. [72] focused on designing an IoT-based energy management system using an Edge
Computing infrastructure with deep reinforcement learning. Ferdowsi and Saad [67] proposes the
use of deep reinforcement learning using LSTM (Long and Short-Term Memories) [73] blocks for signal
authentication and security in massive IoT systems.

One of the most relevant works in this sense is the approach by Mu et al. [74], which proposes
a SDN flow entry management mechanism based on Deep Q-Networks and compared with classic



Sustainability 2020, 12, 5706 9 of 23

Q-learning reinforcement learning using Mininet emulator [75]. In our work, Deep Q-Networks is
proposed to manage the Network Function Virtualization in Edge-IoT scenarios. Unlike the work
of Mu et al. [74], whose methodology serves as a basis for the experimentation stage of our work,
our proposal is oriented towards a specific SDN management solution in a reference architecture aimed
to the design, implementation and deployment of Edge-IoT solutions, in which the flows between
nodes are almost entirely mice flows (that carries small amounts of data).

3. Management of SDN Flow Entries in the Global Edge Computing Architecture by means of
Deep Reinforcement Learning

In this section we will describe the contribution of this work. First, Section 3.1 will depict the
GECA architecture in its previous state before introducing SDN and NFV management. After that,
Section 3.2 will describe the new components introduced in the architecture in order to optimize
the management of data flows. In this sense, a flow management mechanism will be introduced in
the Cloud layer (Business Solution Layer) based on Deep Reinforcement Learning based on rewards
indicated by the Edge nodes based on their satisfaction with the observed QoS. The mechanism will be
based on Deep Q-Networks, and its concept design will be explained in Section 3.3.

3.1. The Global Edge Computing Architecture 1.0

This section depicts the Global Edge Computing Architecture (GECA), an architecture designed and
presented by Sittón-Candanedo et al. [11] in a modular and tiered manner, based on the concept of
functional blocks. GECA is structured in three layers: IoT, Edge and Business Solution layers. The main
objective of the architecture is to incorporate low-cost but high-capacity computing resources in its edge
layer to allow pre-processing and filtering of the volume of data sent in a traditional IoT environment
by the set of connected sensors or devices. The principal features and components of the layers of the
architecture, shown in Figure 4 are described in the following order:

• IoT Layer: in GECA, this layer is made up of the set of elements that define an environment like
IoT, that is, objects or connected things that constantly generate data. Among them are sensors,
actuators, controllers or IoT gateways. The data transmission process in this layer is done through
the most used communication standards, such as: Wi-Fi, ZigBee, LoRa or SigFox. In addition
to the IoT devices, this layer includes the components that provide security to the architecture.
The incorporation of a basic blockchain scheme in which the smart contracts through oracles
interact with the physical components of the layer, allows the data to be transferred safely and
following the predefined terms in each contract.

• Edge Layer: This layer proposes the use of low-cost and high-capacity boards such as the Raspberry
Pi, whose characteristics allow it to function as an edge node to process and filter the data collected
and sent by the devices deployed in the IoT layer. The components of these boards: I/O ports,
32 or 64 bit Linux operating system, RAM memory up to 4GB, USB 2.0 to 3.0 ports or SD cards,
allow the installation of libraries such as TensorFlow Lite or similar used to apply Machine
Learning techniques for data management [76]. Machine Learning techniques contribute to the
deployment of the Data Analytics in the Edge layer, making it easier for users to obtain valuable
data and responses with lower latency, reducing the costs associated with Cloud Computing such
as shipping, processing, data storage as well as bandwidth consumption.

• Business Solution Layer: The services and applications associated with Business Intelligence,
which are in a classic Cloud Computing architecture, are included in this layer of GECA. At this
level the architecture facilitates the deployment of public or private services, also allowing
the inclusion of components of: analysis (case based reasoning, data analysis and visualization
algorithms), authentication (to ensure security) knowledge base (using virtual agent organizations
or decision support systems) and APIs (so that services are available in any standard web browser).



Sustainability 2020, 12, 5706 10 of 23

Figure 4. The schema of the Global Edge Computing Architecture.

This architecture was designed from the design phase to support the deployment of solutions
that required IoT, Edge and Cloud layers, and securing the information through a blockchain from
the moment the data was entered from the IoT nodes. As demonstrated through its application in
different scenarios, this architecture offers a scalable and secure environment for users to obtain their
information in real time, remotely accessing the applications that are deployed in the Business solution
layer [6,12]. Nevertheless, the initial design did not consider the possibility of using software defined
networks or network function virtualization to optimize the use of resources in the Edge-IoT networks.
In this work, this architecture is updated taking into account these new functionalities.

3.2. SDN and NFV in the New Global Edge Computing Architecture 2.0

In order to support SDN and NFV capabilities, some of the layers in the Global Edge Computing
Architecture were updated, resulting in the Global Edge Computing Architecture 2.0. The new
architecture is shown in Figure 5. Thanks to the modular and scalable design of the architecture,
the introduction of the new sub-layers and components was a straightforward process.



Sustainability 2020, 12, 5706 11 of 23

Figure 5. The schema of the Global Edge Computing Architecture 2.0.

Therefore, the architecture was updated according to the following modifications:

• IoT Layer: This layer and its components remain unchanged in the new version of the architecture.
In this sense, it is not necessary to modify any of its components, since in this version only
the interaction with the Edge nodes (and the new Fog nodes) from the SDN controller has been
considered. The IoT Layer is the lowest layer within the Infrastructure plane (called data plane in
other SDN architectures).



Sustainability 2020, 12, 5706 12 of 23

• Fog/Edge Layer: The previous Edge Layer in GECA 1.0 is now called Fog/Edge Layer. Moreover,
the Fog/Edge Layer is the topmost layer within the Infrastructure plane. This layer is now subdivided
into two sublayers: the Edge Sublayer and the Fog Sublayer.

– Edge Sublayer: This sublayer inherits the existing components of the previous GECA 1.0
Edge Layer. That is, it is formed by the Edge nodes or Edge Gateways. Thus, these nodes act
as a gateway between the IoT devices and the applications in the Cloud (Business Solution
Layer). Like in GECA 1.0, the Edge Gateways have computing and local storage capacities
to preprocess the data sent from the IoT Layer to the Business Solution layer. Besides, it is
possible to apply machine learning techniques in the same Edge in order to detect anomalous
patterns. Among others, it is possible to apply k-NN (k-Nearest Neighbors) algorithms to detect
anomalous service requests that may mean cyberattacks [77]. Nonetheless, in the new version
of the GECA 2.0 architecture, the Edge Gateways include in their local data stores routing tables
with information about what to do with each type of packet (discard, forward to a certain
communication interface or send to the SDN Controller), as well as counters with the number
of packets received of each type. The packet types are actually filtering patterns based on
the packet headers. The entries (rules) in the tables of each Edge Gateway are configured
and consulted remotely from the SDN Controller in the Cloud (i.e., in the Business Solution
Layer) by means of the Southbound API. In this sense, this nodes incorporate capabilities
similar to those of the COTS forwarding nodes in Figure 2. Each designer can follow the
OpenFlow standard or implement his/her own protocol. The architecture is flexible in this
sense, in order to be open and dynamic in time.

– Fog Sublayer: This new sublayer is composed of Fog Forwading Gateways. Like the Edge
Gateways in the Edge Sublayer, the Fog Forwarding Gateways include packet routing tables
that can be configured remotely from the SDN Controller via the Southbound API. However,
these types of nodes are not connected directly to a subnet of devices in the IoT Layer and do
not need to be able to apply machine learning techniques on the edge. Thus, their function is
quite similar to that of the COTS forwarding nodes in Figure 2. Thus, they are not provided with
computational or storage resources that would raise the costs of the network infrastructure
(whether physical or virtual).

• Business Solution Layer: The Business Solution Layer maintains its name in the new GECA 2.0.
However, the Business Solution Layer is now subdivided into two sublayers: the Virtual Network
Management Sublayer and the Application Sublayer.

– Virtual Network Management Sublayer: This sublayer forms the control plane of the SDN
architecture and it contains the SDN Controller. Also, in this sublayer would be carried
out the capabilities of Network Function Virtualization when managing flows. The same
SDN Controller carries in its SDN/NFV database the management of virtual flows and the
dynamic reconfiguration of remote nodes. In this way, from the first moment of the GECA
2.0 design, it is possible to use SDN and NFV functionalities indistinctly or combined if
the network designer requires it. The SDN Controller makes use of the Southbound API to
remotely reconfigure both Fog Forwarding Gateways and Edge Gateways in the Fog/Edge Layer.
In addition, it offers elements in the Application Sublayer the possibility of accessing the
SDN configuration and the data exchange with the IoT-Edge layers via the Northbound API.
A proposal for network resource allocation and flow control to be implemented as part of
the SDN Controller will be described in the Section 3.3.

– Application Sublayer: This sublayer includes all the functionalities that previously existed
in the Business Solution Layer in GECA 1.0. The difference with GECA 1.0 is that now
the different user applications and the different management components included in the
Business Solution Layer communicate with the network through the Northbound API offered



Sustainability 2020, 12, 5706 13 of 23

by the SDN Controller. Thus, the application layer corresponds to the application plane
(or management plane in other SDN architectures). Also, thanks to the functionalities of the
SDN Controller, different tenants or different applications can share the network infrastructure
transparently, without seeing the data of other tenants or applications that are in another
virtual network sharing the same infrastructure.

GECA was inspired in its initial design by other reference architectures oriented to Industry 4.0
applications, so security is an essential aspect to take into account. Thus, as in the first version of GECA,
in GECA 2.0 there is a transversal layer for the securization of all the data exchanged. This includes the
management of the authentication of the IoT, Edge or Fog devices in the network before they become
part of it, as well as the management by design of distributed ledger technologies, such as blockchain,
in order to save all the transactions carried out by the IoT devices [11]. The IoT layer contemplates
the use of hardware encryption devices to facilitate the incorporation of secure transaction blocks
from the very moment the data is collected by the sensors, behaving like blockchain oracles, as they
are information exchange paths between the blockchain and the real physical world [78]. There are
also oracles in the Business Solution Sublayer in order to exchange dice with the virtual world outside
the blockchain.

3.3. Adaptive Assignment of Network Resources by Means of Deep Q-Learning Techniques

This section will describe the method that is proposed to be developed in GECA 2.0 to dynamically
establish the routing tables in the different Fog Forwarding Gateways and the Edge Gateways from the
SDN Controller. To do this, first we will describe in more detail the Q-Learning algorithm and the Deep
Q-Networks.

As introduced in Section 2.4, Q-Learning is a reinforcement learning algorithm aimed at learning
a policy [68]. This policy or strategy is the core of the agent and it is what dictates how the agent
behaves with the environment. The policy determines what action the agent will take given a given
state. For example, which resources will be reserved in each moment by a SDN controller in a
software-defined network [62].

Mathematically, the policy in the Q-learning algorithm is modeled as an action-value function
Q(s, a). That is, Q(s, a) determines the policy of the agent, resulting in the Q-value or quality level that
it obtains when taking the action a given that it is in the state s. The more Q(s, a) approaches the best
policy, the better it will have been its learning. The objective of the agent is, therefore, to learn the best
Q(s, a), which is known as TD-target or Q∗(s, a).

In supervised learning, a cost function or loss function measures the quality of the h(x) function
used as a hypothesis function to predict the value of a given label for a new input. In reinforcement
learning there is a similar concept of loss function, known as TD-error. Thus, the cost function or loss
function is:

Loss = Q∗(st, at)−Q(st, at). (2)

However, in reinforcement learning the objective function TD-target is always unknown. In this
sense, the Bellman equation is used to estimate Q∗(s, a) [68]:

Q∗(st, at) = rt+1 + γ max Q(st+1, a). (3)

This equation means the following. At the moment t, the agent is in the state st, and, because of
that, it decides to take the action at. Consequently, the agent gets a reward rt+1 and its environment
observation indicates that it is in the new state st+1. According to Q(s, a), the agent calculates, based on
its knowledge until that moment, the maximum Q-value that it can get given the state st+1 considering
all the possible actions that it can take. The discount factor γ is a hyper-parameter between 0 and 1 that
allows to weigh the importance of the maximum Q-value in the future state.



Sustainability 2020, 12, 5706 14 of 23

Thus, the Equation (2) results in:

Loss = rt+1 + γ max Q(st+1, a)−Q(st, at). (4)

One way of minimizing the loss function is by the gradient descent method [79]. In this method,
the Q(s, a) policy is updated based on the current reward and the maximum value of expected
future rewards:

Qnew(st, at)← Q(st, at) + α

(
rt+1 + γ max

at+1
Q(st+1, at+1)−Q(st, at)

)
. (5)

The learning rate α is a hyper-parameter between 0 and 1 that allows to control the speed of
convergence of the procedure.

The Q-Learning algorithm can be implemented with a table known as Q-matrix (or Q-table) of
dimensions S× A, where S is the number of possible states and A is the number of actions that the
agent can perform in each state. The element i, j in the table, or the element s, a, stores the value Q(s, a).

Initially, the agent has no value (or zero) in each element in the table, since it has not explored the
environment yet. The agent, then, starts the first training episode. To do so, it starts moving through
the states s of the environment performing actions a and getting rewards r for it. This allows the agent
to update the table learning the Q(s, a) policy. Once the first episode is finished, it starts a second
episode in which it no longer starts from an empty Q-matrix, but it takes into account the policy Q(s, a)
that it learned during the first episode. It repeats, in succession, a series of N episodes, each with a
maximum number of M actions (or transitions between states) pre-established.

During the learning process, the hyper-parameters explained previously are taken into account:
the discount rate γ and the learning rate α. However, there is another hyper-parameter to be taken into
account, the exploration rate ε, or the percentage of time the agent spends on exploration instead of
exploitation. We recall that ε can be progressively reduced depending on the knowledge acquired by
the agent. Usually, in fact, it starts at 1 and ends at 0, being reduced in each episode by an exploration
decay, usually 1/N. During the learning stage, in each state in each episode, the agent will decide to
take the optimal policy (exploitation) with a probability PO = (1− ε) or to follow a random policy
(exploration), doing a random action, with a probability PR = ε. Once the training of the agent is
finished, it passes to the testing stage, and it will always take the optimal policy, unless it continues
with its learning also in production.

The problem with the classical method based on Q-matrix is that it requires a very high number of
memory spaces. Problems are common where the number of states or even the number of actions is
very high, so that the memory space S× A would be unwieldy or directly unmanageable. In these
situations the Q-table can be replaced by a neural network. Thus, we move from a Q-Learning algorithm
to a Deep Q-Learning algorithm [80].

In this way, we can use a neural network with an input layer with S units (the number of possible
states) and an output layer of A units (the number of possible actions in each state). The number of
hidden layers and units for each of the hidden layers will be determined by the design of the network
and the testing of the different models. We train the neural network, for example, using an optimal
method to minimize loss function, such as gradient descent. In the testing phase, the neural network
will take at its input the state s in which it is in the agent. At the output we will obtain the A values
Q(s, a) for such state s.

Depending on the instructions previously received via OpenFlow protocol, flow tables are
established on the switches in a Software-Defined Network implemented following the GECA 2.0
architecture. Each flow table includes match fields, an action to be performed and statistics. Thus, when a
switch receives an incoming packet, it checks its header and the match fields in its flow tables. If a
match occurs, the action is carried out and the counter in the statistics is increased. The actions can be
to send the packet to a certain port, send the packet to the controller, or drop the packet.



Sustainability 2020, 12, 5706 15 of 23

In this sense, and following partly the methodology of Mu et al. [74], based on Mnih et al. [81],
it is necessary to define the different states, actions and reward mechanisms that will feed the Deep
Q-Networks.

Let’s start with rewards to better understand the overall concept. In this regard, an interface is
defined so that each IoT node informs periodically to the SDN Controller about the response time (i.e.,
the time between the source node sends a packet to a destination node, and the time the source node
receives the acknowledgment from the destination node) in each flow that this IoT node maintains
with another IoT node in the network.

Thus, a short response time will imply a greater reward than a long response time. A failure to
respond will be considered a penalty. Therefore, the reward related to the flow between the source
IoT node i and the destination IoT node j will be based on previous response time following the
Equation (6):

ri,j,t =


+1 if response_timei,j,t < response_timei,j,current_best

0 if response_timei,j,t = response_timei,j,current_best

−1 if response_timei,j,t > response_timei,j,current_best

−Timeout_penalty if timeout

, (6)

where Timeout_penalty is a positive value to penalize appropriately if the current forwarding tables
are wrong, but considering that a transient network interruption or an overload in the destination IoT
node is possible even though with a right table configuration.

Then, the total reward in each cycle will be given by the Equation (7):

rt = ∑
i,j

ri,j,t. (7)

Regarding states, in this first release of the GECA 2.0 SDN mechanism, the SDN Controller knows
and establishes all the different flow entries in the flow tables in all the Edge Gateways and Fog
Forwarding Gateways registered in the network in a centralized way, as described in Equation (8):

st =
{

f low_entryi,j
}

, (8)

where f low_entryi,j represents the j-th entry in the table in the i-th Edge Gateway or Fog Forwarding
Gateway node.

The different possible actions are defined by the possible actions that can be performed from
the SDN Controller to the Edge Gateways and Fog Forwarding Gateways through the Southbound API.
That is, keep an entry in a table, update it, delete it or add a new entry in the table. Thus, for each
node in the Fog/Edge layer there will be at least 4 possible actions in the output layer of the Q-Network,
which determines the actions to be taken by the mechanism for a certain f low_entryi,j, as given by
Equation (9):

ai,j =
{

keepi,j, updatei,j, addi,j, deletei,j
}

. (9)

Therefore, the complete set of possible actions in each iteration will be given by Equation (10):

at =
⋃
i,j

ai,j,t. (10)

4. Experimentation and Results

For the implementation of the Deep Q-Network, we utilize TensorFlow and Keras libraries under
Python. As depicted in Figure 6, in our Q-Network we use as input layer the current states of the
system (given by (8)) and the current performance of the IoT network, given by the last obtained reward



Sustainability 2020, 12, 5706 16 of 23

(Equation (7)). For the output layer we consider an output per each possible action (Equation (10)).
For the intermediate (hidden) layers, we have considered different network architectures (distinct
combination of layers and neurons per layer) for the tests to compare their results, but using always
fully-connected inner product layers.

As in Reference [74], we use ReLU (Rectifier Lineal Unit) functions as activation functions,
as provided by Equation (11).

f (x) =

{
0 if x < 0

x if x ≥ 0
. (11)

Figure 6. Q-Network used in Global Edge Computing Architecture (GECA) 2.0 SDN mechanism.

For the experimentation a Mininet 2.2.2 virtual machine on an Ubuntu 20.4 LTS running directly
on Oracle Cloud with a 1 vCPU and 1GB of RAM has been used. In this base experiment, Python 3.8.2
has been used to implement the new mechanism of the Deep Q-Network acting in the SDN controller
to dynamically configure the tables in the remote nodes, as this allows to use POX as Network Operating
System to implement the SDN [8]. Python has also been used to emulate the remote nodes sending
periodic response times to the SDN Controller.

In the experiment, we have emulated 1 central SDN controller, 4 fully-connected Fog Forwarding
Gateways, 8 Edge Gateways (2 per each Fog Forwarding Gateway) and 16 IoT nodes (2 per each Edge
Gateway), as depicted in Figure 7. We have only considered mice flows (that carries small amounts
of data) of just using Mininet’s built-in iperf tool to generate random traffic patterns, specifically
Poisson traffic at an average rate of 128 kbps, considering the work of Mu et al. [74] as design guide.
We have not considered elephant flows in this experiment as they are not relevant in the majority of IoT
environments, specially in communications among IoT nodes.

Two different tests were performed with this IoT network, using two different neural network
architectures in each case. In Test 1, three intermediate (hidden) layers were used, with 8, 4 and 4
neurons respectively. In Test 2, three intermediate layers were also used, but this time with 8, 8 and 4
neurons, respectively. In neither of the two scenarios were the networks trained previously with some
samples. That is, the initial values of the weights were chosen using random values.

For each of the two cases a maximum number of 1000 episodes was used. In both cases the
same hyper-parameters were used, using typical values in Deep Q-Learning—discount factor γ = 0.95,
learning rate α = 0.1 and an initial exploration rate εt=0 = 1.00, decreasing to a minimum exploration
rate εt=1000 = 0.01 in the last episode. In order to calculate the loss value, the Stochastic Gradient Descent
(SGD) method is used.



Sustainability 2020, 12, 5706 17 of 23

In both cases the goal to achieve was to increase by 30% the performance of the IoT network,
as measured by Equation (7), that is, to reduce by 30% the sum of total response times with respect to
the starting situation in the episode t = 0.

Each of the tests was run 10 times in order to average the results obtained. The summary of the
configuration used and the results obtained is shown in the Table 1.

Figure 7. Emulated Fog-Edge-Internet of Things (IoT) network used for the experiment.

As can be seen, the Test 2 neural network achieves better results than the Test 1 network for
the configuration used in the experiment. However, the computational load is significantly higher
and the tests are executed notably slower in the case of Test 2. It is necessary to perform more tests
with different configurations (different IoT network topologies, different traffic flows between nodes
and different hyper-parameters) and to incorporate quantitative measures of the computational load
required to estimate the cost-benefit balance of using a denser neural network.



Sustainability 2020, 12, 5706 18 of 23

Table 1. Comparison of configuration and results obtained with the different Q-Networks.

Parameter Description Test 1 Test 2

Neural network architecture Neurons per layer 4:8:4:4:4 4:8:8:4:4

γ Discount factor 0.95 0.95
α Learning rate 0.1 0.1
N Max episodes 1000 1000

εt=0 Initial exploration rate 1.00 1.00
εt=1000 Minimum exploration rate 0.01 0.01

Goal Decrease in total response times 30% 30%

Episode in which goal is met
Maximum 198 142
Average 183 102

Minimum 163 92

5. Conclusions and Future Work

SDNs ad NFV make easier to deploy and distribute applications by dramatically reducing
infrastructure overhead and costs. SDNs enable cloud architectures through automated and scalable
application distribution and mobility. Moreover, VFN increase flexibility and resource utilization on
SDNs by means of data center virtualization. Thanks to the application of SDNs on IoT scenarios, it is
possible to separate the data plane from the network control plane and introduce a logically centralized
control plane, called a controller, to abstract control functions from networking.

Programmable control mechanisms of software-defined networks make them an alternative for
reducing the complexity of Edge Computing (EC) architectures by enabling more efficient use of
available computing resources. By using SDNs the data traffic originating from Edge servers can be
dynamically routed freeing Edge devices from the execution of complex network activities such as
service detection, orchestration, and QoS (performance-delay) requirements.

However, these advantages are accompanied by new challenges in terms of managing virtual
resources. In this sense, it is necessary to develop intelligent mechanisms that allow the automated
and dynamic management of the virtual communications established in the SDNs by the different
user nodes. There are different proposals in this regard based on machine learning, such as genetic
algorithms or deep learning. Recently, new approaches based on Deep Reinforcement Learning have
demonstrated to offer great potential in solving this challenge, especially due to the advantages of not
needing previous training data.

Future work includes the implementation and validation of the Global Edge Computing
Architecture (GECA) 2.0, with the possibility of implementing Software-Defined Networks, as well
as Network Function Virtualization. Thanks to the modular and scalable design of the architecture,
the introduction of the new sub-layers and components is a straightforward process. The Deep
Q-Networks will be implemented, compared and tested in the laboratory. After that, an Industry 4.0
platform will be deployed using the new version of the architecture in a real scenario (mixed dairy
farm) where GECA has been formerly applied [6] to validate the new intelligent mechanism.

Also, in this first version of GECA 2.0 has been considered a solution in which the SDN Controller
is centralized in the Cloud. However, as future work we will investigate solutions in which the training
of the Q-Networks is carried out in the Cloud, but GECA 2.0 is provided with a mechanism to transfer
the models to the Fog Forwarding Gateways and Edge Gateways. This will allow the reconfiguration of
the routing tables in the nodes to be carried out in a distributed way and with less delay, being more
appropriate in scenarios where reconfiguration speed and response times are critical. Moreover,
future work also includes the research and implementation of new components within the GECA 2.0
reference architecture, including the development of its NFV features, such as the Management and
Orchestration (MANO), as well as intelligent mechanisms based on Edge Computing and Machine
Learning to implement the provisioning and configuration of the VNFs and the Edge layer.



Sustainability 2020, 12, 5706 19 of 23

Author Contributions: Conceptualization, R.S.A., I.S.-C. and R.C.-V.; Investigation, R.S.A., I.S.-C. and R.C.-V.;
Methodology, J.P. and J.M.C.; Writing—original draft, R.S.A., I.S.-C. and R.C.-V.; Writing—review and editing,
J.P. and J.M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the European Regional Development Fund (ERDF) through
the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677_DISRUPTIVE_2_E (Intensifying the activity
of Digital Innovation Hubs within the PocTep region to boost the development of disruptive and last generation
ICTs through cross-border cooperation). Inés Sittón-Candanedo has been supported by scholarship program:
IFARHU-SENACYT (Government of Panama).

Acknowledgments: Some icons in Figures by Copyright (c) 2018 Sandro Pereira (under MIT License).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Radanliev, P.; De Roure, D.C.; Nicolescu, R.; Huth, M.; Montalvo, R.M.; Cannady, S.; Burnap, P.
Future developments in cyber risk assessment for the internet of things. Comput. Ind. 2018, 102, 14–22.
[CrossRef]

2. De la Prieta, F.; Rodríguez-González, S.; Chamoso, P.; Corchado, J.M.; Bajo, J. Survey of agent-based cloud
computing applications. Future Gener. Comput. Syst. 2019, 100, 223–236. [CrossRef]

3. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

4. García, O.; Alonso, R.S.; Prieto, J.; Corchado, J.M. Energy Efficiency in Public Buildings through
Context-Aware Social Computing. Sensors 2017, 17, 826. [CrossRef]

5. Shi, W.; Schahram, D. The promise of Edge Computing. Computer 2016, 49, 78–81. [CrossRef]
6. Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT

platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98, 102047.
[CrossRef]

7. Granelli, F.; Gebremariam, A.A.; Usman, M.; Cugini, F.; Stamati, V.; Alitska, M.; Chatzimisios, P.
Software defined and virtualized wireless access in future wireless networks: Scenarios and standards.
IEEE Commun. Mag. 2015, 53, 26–34. [CrossRef]

8. Puente Fernández, J.A.; García Villalba, L.J.; Kim, T.H. Software Defined Networks in Wireless Sensor
Architectures. Entropy 2018, 20, 225. [CrossRef]

9. Alenezi, M.; Almustafa, K.; Meerja, K.A. Cloud based SDN and NFV architectures for IoT infrastructure.
Egypt. Inform. J. 2019, 20, 1–10. [CrossRef]

10. Leike, J.; Krueger, D.; Everitt, T.; Martic, M.; Maini, V.; Legg, S. Scalable agent alignment via reward modeling:
A research direction. arXiv 2018, arXiv:1811.07871.

11. Sittón-Candanedo, I.; Alonso, R.S.; Corchado, J.M.; Rodríguez-González, S.; Casado-Vara, R. A review of
edge computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 2019,
99, 278–294. [CrossRef]

12. Sittón-Candanedo, I.; Alonso, R.S.; García, Ó.; Muñoz, L.; Rodríguez-González, S. Edge computing, iot and
social computing in smart energy scenarios. Sensors 2019, 19, 3353. [CrossRef] [PubMed]

13. Alonso, R.S.; Sittón-Candanedo, I.; Rodríguez-González, S.; García, Ó.; Prieto, J. A Survey on
Software-Defined Networks and Edge Computing over IoT. In Highlights of Practical Applications of Survivable
Agents and Multi-Agent Systems; The PAAMS Collection; Communications in Computer and Information
Science; De La Prieta, F., González-Briones, A., Pawleski, P., Calvaresi, D., Del Val, E., Lopes, F., Julian, V.,
Osaba, E., Sánchez-Iborra, R., Eds.; Springer: Cham, Switzerland, 2019; pp. 289–301. [CrossRef]

14. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

15. Alonso, R.S.; Tapia, D.I.; Bajo, J.; García, Ó.; de Paz, J.F.; Corchado, J.M. Implementing a hardware-embedded
reactive agents platform based on a service-oriented architecture over heterogeneous wireless sensor
networks. Ad Hoc Netw. 2013, 11, 151–166. [CrossRef]

16. Ko, H.; Bae, K.; Marreiros, G.; Kim, H.; Yoe, H.; Ramos, C. A Study on the Key Management Strategy for
Wireless Sensor Networks. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2015, 3, 43–53. [CrossRef]

17. Alonso, R.S.; García, Ó.; Saavedra, A.; Tapia, D.I.; de Paz, J.F.; Corchado, J.M. Heterogeneous wireless sensor
networks in a tele-monitoring system for homecare. In Proceedings of the International Work-Conference

http://dx.doi.org/10.1016/j.compind.2018.08.002
http://dx.doi.org/10.1016/j.future.2019.04.037
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.3390/s17040826
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1016/j.adhoc.2019.102047
http://dx.doi.org/10.1109/MCOM.2015.7120042
http://dx.doi.org/10.3390/e20040225
http://dx.doi.org/10.1016/j.eij.2018.03.004
http://dx.doi.org/10.1016/j.future.2019.04.016
http://dx.doi.org/10.3390/s19153353
http://www.ncbi.nlm.nih.gov/pubmed/31370149
http://dx.doi.org/10.1007/978-3-030-24299-2_25
http://dx.doi.org/10.1016/j.adhoc.2012.04.013
http://dx.doi.org/10.14201/ADCAIJ2014334353


Sustainability 2020, 12, 5706 20 of 23

on Artificial Neural Networks, Limassol, Cyprus, 14–17 September 2009; Springer: Berlin, Germany, 2009;
pp. 663–670.

18. García, Ó.; Alonso, R.S.; Tapia, D.I.; Corchado, J.M. Electrical power consumption monitoring in hotels
using the n-core platform. In Proceedings of the 2016 Clemson University Power Systems Conference (PSC),
Clemson, CA, USA, 8–11 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

19. Ashton, K. That ‘internet of things’ thing. RFID J. 2009, 22, 97–114.
20. Srinidhi, N.N.; Dilip Kumar, S.M.; Venugopal, K.R. Network optimizations in the Internet of Things:

A review. Eng. Sci. Technol. Int. J. 2018, 22, 1–21. [CrossRef]
21. Kethareswaran, V.; Ram, C.S. An Indian Perspective on the adverse impact of Internet of Things (IoT).

ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2017, 6, 35–40. [CrossRef]
22. Chamoso, P.; Prieta, F.D.L. Swarm-Based Smart City Platform: A Traffic Application. ADCAIJ Adv. Distrib.

Comput. Artif. Intell. J. 2015, 4, 89–98. [CrossRef]
23. González-Briones, A.; De La Prieta, F.; Mohamad, M.; Omatu, S.; Corchado, J. Multi-agent systems

applications in energy optimization problems: A state-of-the-art review. Energies 2018, 11, 1928. [CrossRef]
24. Chamoso, P.; González-Briones, A.; Rodríguez, S.; Corchado, J.M. Tendencies of Technologies and Platforms

in Smart Cities: A State-of-the-Art Review. Wirel. Commun. Mob. Comput. 2018. [CrossRef]
25. Sittón-Candanedo, I.; Hernández-Nieves, E.; Rodríguez-González, S.; Santos-Martín, M.T.; González-Briones,

A. Machine learning predictive model for industry 4.0. In Proceedings of the International Conference on
Knowledge Management in Organizations, Žilina, Slovakia, 6–10 August 2018; Springer: Berlin, Germany,
2018; pp. 501–510.

26. Liao, Y.; Loures, E.d.F.R.; Deschamps, F. Industrial Internet of Things: A systematic literature review and
insights. IEEE Internet Things J. 2018, 5, 4515–4525. [CrossRef]

27. Trappey, A.J.; Trappey, C.V.; Govindarajan, U.H.; Chuang, A.C.; Sun, J.J. A review of essential standards
and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Adv. Eng. Inform. 2017,
33, 208–229. [CrossRef]

28. Rodríguez, S.; De Paz, J.F.; Villarrubia, G.; Zato, C.; Bajo, J.; Corchado, J.M. Multi-agent information fusion
system to manage data from a WSN in a residential home. Inf. Fusion 2015, 23, 43–57. [CrossRef]

29. Sittón, I.; Rodríguez, S. Pattern extraction for the design of predictive models in industry 4.0. In Proceedings
of the International Conference on Practical Applications of Agents and Multi-Agent Systems, Porto, Portugal,
21–23 June 2017; Springer: Berlin, Germany, 2017; pp. 258–261.

30. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the
Internet of Things. IEEE Access 2017, 6, 6900–6919. [CrossRef]

31. Sanchez-Iborra, R.; Sanchez-Gomez, J.; Skarmeta, A. Evolving IoT networks by the confluence of MEC and
LP-WAN paradigms. Future Gener. Comput. Syst. 2018, 88, 199–208. [CrossRef]

32. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J.
2016, 3, 637–646. [CrossRef]

33. Sittón-Candanedo, I.; Alonso, R.S.; García, Ó.; Gil, A.B.; Rodríguez-González, S. A Review on Edge
Computing in Smart Energy by means of a Systematic Mapping Study. Electronics 2020, 9, 48. [CrossRef]

34. FAR-EDGE-P. H2020 FAR-EDGE Project; Factory Automation Edge Computing Operating System Reference
Implementation (FAR-EDGE): Rome, Italy, 2017.

35. INTEL-SAP. IoT Joint Reference Architecture from Intel and SAP. Available online: https:
//www.intel.com/content/dam/www/public/us/en/documents/reference-architectures/sap-iot-
reference-architecture.pdf (accessed on 15 May 2020).

36. Edge Computing Consortium; Alliance of Industrial Internet. Edge Computing Reference Architecture 2.0;
Technical Report; Edge Computing Consortium and Alliance of Industrial Internet: Beijing, China, 2017.

37. Malik, A.; Roop, P.S.; Allen, N.; Steger, T. Emulation of cyber-physical systems using IEC-61499. IEEE Trans.
Ind. Inform. 2018, 14, 380–389. [CrossRef]

38. Tseng, M.; Canaran, T.E.; Canaran, L. Introduction to Edge Computing in IIoT; Technical Report; Industrial
Internet Consortium: Needham, MA, USA, 2018.

39. Jararweh, Y.; Doulat, A.; AlQudah, O.; Ahmed, E.; Al-Ayyoub, M.; Benkhelifa, E. The future of mobile cloud
computing: integrating cloudlets and mobile edge computing. In Proceedings of the 2016 23rd International
Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; IEEE: Piscataway, NJ, USA,
2016; pp. 1–5.

http://dx.doi.org/10.1016/j.jestch.2018.09.003
http://dx.doi.org/10.14201/ADCAIJ2017643540
http://dx.doi.org/10.14201/ADCAIJ2015428998
http://dx.doi.org/10.3390/en11081928
http://dx.doi.org/10.1155/2018/3086854
http://dx.doi.org/10.1109/JIOT.2018.2834151
http://dx.doi.org/10.1016/j.aei.2016.11.007
http://dx.doi.org/10.1016/j.inffus.2014.03.003
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1016/j.future.2018.05.057
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.3390/electronics9010048
https://www.intel.com/content/dam/www/public/us/en/documents/reference-architectures/sap-iot-reference-architecture.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-architectures/sap-iot-reference-architecture.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-architectures/sap-iot-reference-architecture.pdf
http://dx.doi.org/10.1109/TII.2017.2724206


Sustainability 2020, 12, 5706 21 of 23

40. Caraguay, Á.L.V.; González, P.L.; Tandazo, R.T.; López, L.I.B. SDN/NFV Architecture for IoT Networks.
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST
2018), Seville, Spain, 18–20 September 2018; pp. 425–429.

41. Sabella, D.; Vaillant, A.; Kuure, P.; Rauschenbach, U.; Giust, F. Mobile-edge computing architecture: The role
of MEC in the Internet of Things. IEEE Consum. Electron. Mag. 2016, 5, 84–91. [CrossRef]

42. Yang, M.; Li, Y.; Jin, D.; Zeng, L.; Wu, X.; Vasilakos, A.V. Software-Defined and Virtualized Future Mobile
and Wireless Networks: A Survey. Mob. Netw. Appl. 2015, 20, 4–18. [CrossRef]

43. Jammal, M.; Singh, T.; Shami, A.; Asal, R.; Li, Y. Software defined networking: State of the art and research
challenges. Comput. Netw. 2014, 72, 74–98. [CrossRef]

44. Sezer, S.; Scott-Hayward, S.; Chouhan, P.K.; Fraser, B.; Lake, D.; Finnegan, J.; Viljoen, N.; Miller, M.; Rao, N.
Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag.
2013, 51, 36–43. [CrossRef]

45. Kim, H.; Feamster, N. Improving network management with software defined networking.
IEEE Commun. Mag. 2013, 51, 114–119. [CrossRef]

46. Baek, J.Y.; Kaddoum, G.; Garg, S.; Kaur, K.; Gravel, V. Managing fog networks using reinforcement learning
based load balancing algorithm. In Proceedings of the 2019 IEEE Wireless Communications and Networking
Conference (WCNC), Marrakech, Morocco, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7.

47. Sampaio, L.S.; Faustini, P.H.; Silva, A.S.; Granville, L.Z.; Schaeffer-Filho, A. Using NFV and reinforcement
learning for anomalies detection and mitigation in SDN. In Proceedings of the 2018 IEEE Symposium on
Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 00432–00437.

48. Ruiz, L.; Durán, R.J.; De Miguel, I.; Khodashenas, P.S.; Pedreno-Manresa, J.J.; Merayo, N.; Aguado, J.C.;
Pavon-Marino, P.; Siddiqui, S.; Mata, J.; et al. A genetic algorithm for VNF provisioning in NFV-Enabled
Cloud/MEC RAN architectures. Appl. Sci. 2018, 8, 2614. [CrossRef]

49. Pei, J.; Hong, P.; Li, D. Virtual network function selection and chaining based on deep learning in SDN and
NFV-enabled networks. In Proceedings of the 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 1–6.

50. Hu, F.; Hao, Q.; Bao, K. A Survey on Software-Defined Network and OpenFlow: From Concept to
Implementation. IEEE Commun. Surv. Tutor. 2014, 16, 2181–2206. [CrossRef]

51. Jagadeesan, N.A.; Krishnamachari, B. Software-Defined Networking Paradigms in Wireless Networks:
A Survey. ACM Comput. Surv. 2014, 47, 27:1–27:11. [CrossRef]

52. Mijumbi, R.; Serrat, J.; Gorricho, J.; Bouten, N.; Turck, F.D.; Boutaba, R. Network Function Virtualization:
State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2016, 18, 236–262. [CrossRef]

53. Jararweh, Y.; Doulat, A.; Darabseh, A.; Alsmirat, M.; Al-Ayyoub, M.; Benkhelifa, E. SDMEC: Software
defined system for mobile edge computing. In Proceedings of the 2016 IEEE International Conference on
Cloud Engineering Workshop (IC2EW), Berlin, Germany, 4–8 April 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 88–93.

54. Salman, O.; Elhajj, I.; Kayssi, A.; Chehab, A. Edge computing enabling the Internet of Things. In Proceedings
of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 603–608.

55. Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit from Software-Defined Networking:
A Survey, Use Cases, and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [CrossRef]

56. Pang, Z.; Sun, L.; Wang, Z.; Tian, E.; Yang, S. A Survey of Cloudlet Based Mobile Computing. In Proceedings
of the 2015 International Conference on Cloud Computing and Big Data (CCBD), Shanghai, China,
4–6 November 2015; pp. 268–275. [CrossRef]

57. Monfared, S.; Bannazadeh, H.; Leon-Garcia, A. Software defined wireless access for a two-tier cloud system.
In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM),
Ottawa, ON, USA, 11–15 May 2015; pp. 566–571. [CrossRef]

58. He, Y.; Yu, F.R.; Zhao, N.; Leung, V.C.; Yin, H. Software-defined networks with mobile edge computing
and caching for smart cities: A big data deep reinforcement learning approach. IEEE Commun. Mag. 2017,
55, 31–37. [CrossRef]

http://dx.doi.org/10.1109/MCE.2016.2590118
http://dx.doi.org/10.1007/s11036-014-0533-8
http://dx.doi.org/10.1016/j.comnet.2014.07.004
http://dx.doi.org/10.1109/MCOM.2013.6553676
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.3390/app8122614
http://dx.doi.org/10.1109/COMST.2014.2326417
http://dx.doi.org/10.1145/2655690
http://dx.doi.org/10.1109/COMST.2015.2477041
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1109/CCBD.2015.54
http://dx.doi.org/10.1109/INM.2015.7140338
http://dx.doi.org/10.1109/MCOM.2017.1700246


Sustainability 2020, 12, 5706 22 of 23

59. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep reinforcement learning framework for autonomous
driving. Electron. Imaging 2017, 2017, 70–76. [CrossRef]

60. Suerich, D.; Young, T. Machine Learning for Optimized Scheduling in Complex Semiconductor Equipment.
In Proceedings of the 2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC),
Saratoga Springs, NY, USA, 6–9 May 2019; IEEE: Piscataway, NJ, USA, 2019, pp. 1–4.

61. Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; Dai, Q. Deep direct reinforcement learning for financial signal
representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 653–664. [CrossRef] [PubMed]

62. Ma, L.; Zhang, Z.; Ko, B.; Srivatsa, M.; Leung, K.K. Resource management in distributed SDN using
reinforcement learning. In Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR
IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10635, p. 106350M.

63. Amiri, R.; Almasi, M.A.; Andrews, J.G.; Mehrpouyan, H. Reinforcement learning for self organization
and power control of two-tier heterogeneous networks. IEEE Trans. Wirel. Commun. 2019, 18, 3933–3947.
[CrossRef]

64. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.;
Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural
networks and tree search. Nature 2016, 529, 484. [CrossRef] [PubMed]

65. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
[PubMed]

66. Zhang, Q.; Lin, M.; Yang, L.T.; Chen, Z.; Khan, S.U.; Li, P. A double deep Q-learning model for energy-efficient
edge scheduling. IEEE Trans. Serv. Comput. 2018, 12, 739–749. [CrossRef]

67. Ferdowsi, A.; Saad, W. Deep learning for signal authentication and security in massive internet-of-things
systems. IEEE Trans. Commun. 2018, 67, 1371–1387. [CrossRef]

68. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
69. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief

survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [CrossRef]
70. Melo, F.S. Convergence of Q-Learning: A Simple Proof ; Institute for Systems and Robotics, Instituto Superior

Técnico: Lisboa, Portugal, 2001.
71. Amiri, R.; Mehrpouyan, H.; Fridman, L.; Mallik, R.K.; Nallanathan, A.; Matolak, D. A machine learning

approach for power allocation in HetNets considering QoS. In Proceedings of the 2018 IEEE International
Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1–7.

72. Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent Edge Computing for IoT-Based Energy Management
in Smart Cities. IEEE Netw. 2019, 33, 111–117. [CrossRef]

73. Kim, J.; Kim, J.; Lee, S.; Park, J.; Hahn, M. Vowel based voice activity detection with LSTM recurrent neural
network. In Proceedings of the 8th International Conference on Signal Processing Systems, Urumqi, China,
20–22 July 2019; ACM: New York, NY, USA, 2016; pp. 134–137.

74. Mu, T.Y.; Al-Fuqaha, A.; Shuaib, K.; Sallabi, F.M.; Qadir, J. SDN flow entry management using reinforcement
learning. ACM Trans. Auton. Adapt. Syst. (TAAS) 2018, 13, 1–23. [CrossRef]

75. De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using mininet for emulation and prototyping
software-defined networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM), Bogota, Colombia, 4–6 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6.

76. Tang, J. Intelligent Mobile Projects with TensorFlow: Build 10+ Artificial Intelligence Apps Using TensorFlow Mobile
and Lite for IOS, Android, and Raspberry Pi; Packt Publishing Ltd.: Birmingham, UK, 2018.

77. AlEroud, A.; Alsmadi, I. Identifying cyber-attacks on software defined networks: An inference-based
intrusion detection approach. J. Netw. Comput. Appl. 2017, 80, 152–164. [CrossRef]

78. Casado-Vara, R.; González-Briones, A.; Prieto, J.; Corchado, J.M. Smart Contract for Monitoring and Control
of Logistics Activities: Pharmaceutical Utilities Case Study. In Advances in Intelligent Systems and Computing
Proceedings of the International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, San Sebastián, Spain, 6–8 June
2018; Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E., Eds.;
Springer: Berlin, Germany, 2019; pp. 509–517.

79. Hasselt, H.V. Double Q-learning. In Advances in Neural Information Processing Systems 23, Proceedings of the
23rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 6-11 December 2010;

http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://dx.doi.org/10.1109/TNNLS.2016.2522401
http://www.ncbi.nlm.nih.gov/pubmed/26890927
http://dx.doi.org/10.1109/TWC.2019.2919611
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.1109/TSC.2018.2867482
http://dx.doi.org/10.1109/TCOMM.2018.2878025
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1109/MNET.2019.1800254
http://dx.doi.org/10.1145/3281032
http://dx.doi.org/10.1016/j.jnca.2016.12.024


Sustainability 2020, 12, 5706 23 of 23

Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A., Eds.; Neural Information Processing
Systems: San Diego, CA, USA, 2010; pp. 2613–2621.

80. Shoeibi, N.; Shoeibi, N. Future of Smart Parking: Automated Valet Parking Using Deep Q-Learning.
In Proceedings of the International Symposium on Distributed Computing and Artificial Intelligence, Avila,
Spain, 26–28 June 2019; Springer: Berlin, Germany, 2019; pp. 177–182.

81. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description and Related Work
	Challenges in Internet of Things and Industrial Internet of Things Scenarios
	Edge Computing and Edge-IoT Platforms
	Software-Defined Networking and Network Function Virtualization in Edge-IoT Scenarios
	Reinforcement Learning and Deep Reinforcement Learning in SDN/NFV Scenarios

	Management of SDN Flow Entries in the Global Edge Computing Architecture by means of Deep Reinforcement Learning
	The Global Edge Computing Architecture 1.0
	SDN and NFV in the New Global Edge Computing Architecture 2.0
	Adaptive Assignment of Network Resources by Means of Deep Q-Learning Techniques

	Experimentation and Results
	Conclusions and Future Work
	References

